Trampoline (OSEK/VDX OS) Test Plan - Version 1.0

Florent PAVIN
June 11, 2010

Contents
1__Introduction| 1
[2_Test cases 1
2.1 Task management| 2
[2.2 Interrupt processing] 6
P23 FEvent mechamiSml . -« vttt e e e e e 8
2.4 Resource management| L 11
BE _ATAIIl . . . o o o e e e 13
2.6 Error handling, hook routines (with interrupts) and OS execution control] 16
7 Tnternal COMI. o 19
2.8 AUTOSAR - Core OS| 0 o e e 21
2.9 AUTOSAR - Software Counter] oo o e 23
2.10 AUTOSAR. - Schedule Tablel o 0 o 25
2.11 AUTOSAR - Schedule Table Synchronisation| 0 0. .. 31
2.12 AUTOSAR - OS-Application| e 36
[2.12.1 API Service Calls for OS5 objects| 36
2.12.2 Access Rights for objects I APL SEIVICES| . . . v v v v v v e i e 39
2.12.3 Access Rights for objects from OIL filef. o oo oo 42
2.13 AUTOSAR. - Service Protectionl. e 43
[2.14 AUTOSAR - Memory Protection| e 45
[2.15 AUTOSAR - Timing Protection]. 48
2.15.1 Execution Time Budget| o 48
2.15.2 Time Framel. o o o 50
[2.15.3 Resource Locking and Interrupt Disabling| 52
|A Interrupts Management)| 52

1 Introduction

This document contains the test plan for the conformance test of the operating system. This means definition of
the test cases, which are used to certify conformance of an OS implementation. For more information about what
is a test plan and his link to the conformance methodology previously defined, see OSEK Test Plan 2.0 [I].

Unlike OSEK Test Plan 2.0 which is based from OSEK OS 2.0 [3], this test plan is defined from OSEK OS 2.2.3
[2] and the internal communication of OSEK Communication 3.0.3 [4] .

2 Test cases

This chapter contains the test cases which will be used to test an implementation of an operating system to be
OSEK conform. Thus, they are developed on the basis of the OSEK OS specification, according to figure 12-1 API
service restrictions from OSEK/VDX OS v2.2.3. The internal communication comes from CCCB conformance class

([p.59).

As we said earlier, this test plan is defined from the OSEK OS version 2.2.3, and to better see the differences

between this version and the old one (OSEK Test Plan 2.0), we will explain those differences in each section.
ISR1 does not use an operating system service since after the ISR1 is finished, processing continues exactly at the
instruction where the interrupt has occurred, i.e. the interrupt has no influence on task management. Thus, ISR
can’t be tested.

Stack Monitoring, from AUTOSAR OS, is not a functional test. It has to be tested in every target because it’s
depending on the portage. Stack Monitoring OS Requirements (OS067, OS068, OS396) are therfore not included
in this report.

Idem for Protecting the Hardware.

Meanwhile, Memory Protection OS Requirements (0S026, 0S027, 0S044, OS081, OS083, 0S086, OS087, OS195,
0S196, 0S198, 0S207, 0S208, 0S209, 0S355, 0S356) are tested (see [2.14]).

2.1 Task management

Since Schedule() returns E.OS_RESSOURCE from a task or an interrupt when a resource is occupied, test case 33

appears.

Since GetTaskID returns E_OK from an interrupt, test case 35 appears.
Category 3 interrupts have been removed.

Test | Action Expected Result

Case

No.

1 Call ActivateTask() from task-level with in- | Service returns E_OS_ID
valid task ID (task does not exist)

2 Call ActivateTask() from non-preemptive task | No preemption of running task. Activated task becomes ready.
on suspended basic task Service returns E_OK

3 Call ActivateTask() from preemptive task on | Running task is preempted. Activated task becomes running.
suspended basic task which has higher priority | Service returns E_OK
than running task.

4 Call ActivateTask() from preemptive task on | No preemption of running task. Activated task becomes ready.
suspended basic task which has lower priority | Service returns E_OK
than running task.

5 Call ActivateTask() from preemptive task on | No preemption of running task. Activated task becomes ready.
suspended basic task which has equal priority | Service returns E_OK
as running task.

6 Call ActivateTask() from non-preemptive task | No preemption of running task. Activated task becomes ready
on suspended extended task and its events are cleared. Service returns E_OK

7 Call ActivateTask() from preemptive task on | Running task is preempted. Activated task becomes running and
suspended extended task which has higher pri- | its events are cleared. Service returns E_OK
ority than running task.

8 Call ActivateTask() from preemptive task on | No preemption of running task. Activated task becomes ready
suspended extended task which has lower pri- | and its events are cleared. Service returns E_OK
ority than running task.

9 Call ActivateTask() from preemptive task on | No preemption of running task. Activated task becomes ready
suspended extended task which has equal pri- | and its events are cleared. Service returns E_OK
ority as running task.

10 Call ActivateTask() on ready basic task which | Service returns E_OS_LIMIT
has reached max. number of activations

11 Call ActivateTask() on ready extended task Service returns E_OS_LIMIT

12 Call ActivateTask() from non-preemptive task | No preemption of running task. Activation request is queued in
on ready basic task which has not reached | ready list. Service returns E_OK
max. number of activations

L

TNOFWONDODO

MO 3

30HNOS3H SO

arso 3

13A3TIVO 80 3

(Apeau) Buiuuni | (Apeas) Buiuuni
uey} Jaybiy

snjels
uinjal

1INIT SO 3

yse}
(Apeay) Buiuun,
uBy} Jomo|

payoeal
Jou

papusixe

se} 3se}

0} [enba

Awoud

payoeal

suoleAioe
Xew

oIseq

Bunyiem Bujuuni

Apeas

papuadsns

pifeAul

[aptser]

awabeuely %sel YISO

amigyselien INPaYdS
anseLen

piea

80IM8S SO

p9|ed

)se] ajeulwla]

)Se| 8jeAlY

cdsl

ou sok ou seh seh

8dinosal

Sjuleljsuod

BuiAdnooo

ou

se}

[EE]

uonnoexe

Test | Action Expected Result
Case
No.
13 Call ActivateTask() from preemptive task on | No preemption of running task. Activation request is queued in
ready basic task which has not reached max. | ready list. Service returns E_OK
number of activations and has lower priority
than running taskl
14 Call ActivateTask() from preemptive task on | No preemption of running task. Activation request is queued in
ready basic task which has not reached max. | ready list. Service returns E_OK
number of activations and has equal priority
as running task
15 Call ActivateTask() on running basic task | Service returns E_OS_LIMIT
which has reached max. number of activations
16 Call ActivateTask() on running extended task | Service returns E_OS_LIMIT
17 Call ActivateTask() from non-preemptive task | No preemption of running task. Activation request is queued in
on running basic task which has not reached | ready list. Service returns E_OK
max. number of activations
18 Call ActivateTask() from preemptive task on | No preemption of running task. Activation request is queued in
running basic task which has not reached max. | ready list. Service returns E_OK
number of activations
19 Call ActivateTask() on waiting extended task | Service returns E_OS_LIMIT
20 Call TerminateTask() from ISR category 2 Service returns E_.OS_CALLEVEL
21 Call TerminateTask() while still occupying a | Service returns E_.OS_RESOURCE
resource Running task is not terminated.
22 Call TerminateTask() Running task is terminated and ready task with highest priority
is executed
23 Call ChainTask() from task-level. Task-ID is | Service returns E_OS_ID
invalid (does not exist).
24 Call ChainTask() from ISR category 2 Service returns E_.OS_CALLEVEL
25 Call ChainTask() while still occupying a re- | Running task is not terminated. Service returns
source E_OS_RESOURCE
26 Call ChainTask() on suspended task Running task is terminated, chained task becomes ready and
ready task with highest priority is executed
27 Call ChainTask() on running task Running task is terminated, chained task becomes ready and
ready task with highest priority is executed
28 Call ChainTask() on ready basic task which | Running task is not terminated. Service returns E_OS_LIMIT
has reached max. number of activations
29 Call ChainTask() on ready extended task Running task is not terminated. Service returns E_OS_LIMIT
30 Call ChainTask() from non-preemptive task | Running task is terminated, activation request is queued in ready
on ready basic task which has not reached | list and ready task with highest priority is executed
max. number of activations
31 Call ChainTask() on waiting extended task Service returns E_OS_LIMIT
32 Call Schedule() from task. Ready task with highest priority is executed. Service returns
E_OK
33 Call Schedule() while still occupying a re- | Service returns E.OS_RESOURCE
source
34 Call Schedule() from ISR category 2 Service returns E_LOS_CALLEVEL
35 Call GetTaskID() from ISR category 2 Service returns E_OK
36 Call GetTaskID() from task Return task ID of currently running task. Service returns E_.OK
37 Call GetTaskState() with invalid task ID (task | Service returns E_OS_ID
does not exist)
38 Call GetTaskState() Return state of queried | Service returns E_OK

task.

Test | Action Expected Result

Case

No.

39 Call GetTaskState() from ISR2 with invalid | Service returns E_OS_ID
task ID (task does not exist)

40 Call GetTaskState() from ISR2. Return state | Service returns E_OK
of queried task.

41 Call ActivateTask() from ISR2 with invalid | Service returns E_OS_ID
task ID (task does not exist)

42 Call ActivateTask() from ISR2 (in non- | Activated task becomes ready. Service returns E_OK
preemptive mode) on suspended basic task.

43 Call ActivateTask() from ISR2 (in preemp- | Activated task becomes ready and first. Service returns E_OK
tive mode) on suspended basic task which has
higher priority than last running task.

44 Call ActivateTask() from ISR2 (in preemp- | Activated task becomes ready. Service returns E_OK
tive mode) on suspended basic task which has
lower priority than last running task.

45 Call ActivateTask() from ISR2 (in preemp- | Activated task becomes ready. Service returns E_OK
tive mode) on suspended basic task which has
equal priority as last running task.

46 Call ActivateTask() from ISR2 (in non- | Activated task becomes ready and its events are cleared. Service
preemptive mode) on suspended extended | returns E_OK
task

47 Call ActivateTask() from ISR2 (in preemptive | Activated task becomes ready and first and its events are cleared.
mode) on suspended extended task which has | Service returns E_.OK
higher priority than last running task.

48 Call ActivateTask() from ISR2 (in preemptive | Activated task becomes ready and its events are cleared. Service
mode) on suspended extended task which has | returns E.OK
lower priority than last running task.

49 Call ActivateTask() from ISR2 (in preemptive | Activated task becomes ready and its events are cleared. Service
mode) on suspended extended task which has | returns E_OK
equal priority as last running task.

50 Call ActivateTask() from ISR2 on ready ba- | Service returns E_OS_LIMIT
sic task which has reached max. number of
activations

51 Call ActivateTask() from ISR2 on ready ex- | Service returns E_OS_LIMIT
tended task

52 Call ActivateTask() from ISR2 (in non- | Activation request is queued in ready list. Service returns E_OK
preemptive mode) on ready basic task which
has not reached max. number of activations

53 Call ActivateTask() from ISR2 (in preemp- | Activation request is queued in ready list on first place. Service
tive mode) on ready basic task which has not | returns E_OK
reached max. number of activations and has
higher priority than last running

54 Call ActivateTask() from ISR2 (in preemp- | Activation request is queued in ready list. Service returns E_OK
tive mode) on ready basic task which has not
reached max. number of activations and has
lower priority than last running taskl

55 Call ActivateTask() from ISR2 (in preemp- | Activation request is queued in ready list. Service returns E_.OK

tive mode) on ready basic task which has not
reached max. number of activations and has
equal priority as last running task

Test | Action Expected Result

Case

No.

56 Call ActivateTask() from ISR2 on waiting ex- | Service returns E_OS_LIMIT
tended task

2.2 Interrupt processing

New routines appear (EnableAllInterrupts, DisableAllInterrupts, Suspend Alllnterrupts, ResumeAlllnterrupts, Sus-
pendOSInterrupts, ResumeOSInterrupts), test cases 1 to 19 are new ones.

Category 3 interrupts have been removed.
Maximum number of activation of ISR2 can’t be more than 1.

EnableAllInterrupts, ResumeAlllnterrupts and ResumeOSInterrupts from ISR2 are only tested with an interrupt
trigged with a priority higher than running ISR2.
SuspendAlllnterrupts and ResumeAlllnterrupts are the only ones functions allowed in callback routines.

Test | Action Expected Result
Case
No.
1 Call EnableAlllnterrupts() from task. An in- | The Interrupt is executed. Running task become ready
terrupt has been trigged in disable mode
2 Call EnableAllInterrupts() from task Enable all interrupts
3 Call EnableAllInterrupts() from task without | The service is not performed
calling DisableAllInterrupts()
4 Call DisableAllInterrupts() from task Disable all interrupts
5 Call ResumeAllInterrupts() from task. An in- | The Interrupt is executed. Running task become ready
terrupt has been trigged in disable mode
6 Call ResumeAllInterrupts() from task Resume all interrupts
7 Call ResumeAllInterrupts() from task as many | Resume all interrupts
times as SuspendAlllnterrupts() is previously
called
8 Call ResumeAllInterrupts() from task without | The service is not performed
calling SuspendAlllnterrupts()
9 Call SuspendAllInterrupts() from task Suspend all interrupts
10 Call ResumeOSInterrupts() from task. An in- | The Interrupt is executed. Running task become ready
terrupt has been trigged in disable mode
11 Call ResumeOSInterrupts() from task Resume OS interrupts
12 Call ResumeOSInterrupts() from task as | Resume OS interrupts
many times as SuspendOSInterrupts() is pre-
viously called
13 Call ResumeOSInterrupts() from task without | The service is not performed
calling SuspendOSInterrupts()
14 Call SuspendOSInterrupts() from task Suspend OS interrupts
15 Interruption of running task Interrupt is executed
16 Interruption of running task with the same in- | Interrupt is discarded
terrupt already trigged (activation count = ac-
tivation max)
17 Return from ISR2. Interrupted task is non- | Execution of interrupted task is continued
preemptive
18 Return from ISR2. Interrupted task is pre- | Ready task with highest priority is executed (Rescheduling)
emptive

S

popiessip Anoaup

1NI318vSIa SO 3

snjejs
uinjas

Joye

uonnoaxa 1dnuajul

ys| Buiuuny ds| Buiuun -
paydwaaid o _m:cwmw_m :c%s- sty jsel eandweaid
anndwaaid-uou
dsi BY} Jom
uey} Jayby
1oid paydnuisiul yse) paydnusiul
Awoid payd d

ou sok
1dnusyur
210}5q Alowew 810489 pa||ed woy
Jaynq 1dnusjul 80IMBS SO uinial
- puadsngyajqesiq

“ISOppusdsng | jullypusdsng
Auy QuISOBWNSaY

1dnusjur
196611

201MI8S SO

pajed

buissaooid ydnusiu] Y3SO

“]ivelqesia »oeg|ieo

REIVECERE]

cdsl

xsel

- <t DO MNMNWOWMODOT NMTWOMNDD - TWOWONOD
FYPI PPN ANAARRNIAAIBHIBIISHRS

—TNMO T OND®»O

Test | Action Expected Result

Case

No.

19 Call any 0S service between | Service returns E_OS_DISABLEINT and not perform the ser-
Suspend/Disable- and Resume/Enable- | vice (see AUTOSAR 0S092), even Disable and Enable pairs (see
pairs OSEK p26)

20 Call EnableAllInterrupts() from ISR2. An in- | The Interrupt is executed. Running ISR2 becomes ready
terrupt has been trigged in disable mode with
a higher priority than running ISR2

21 Call EnableAllInterrupts() from ISR2 Enable all interrupts

22 Call DisableAllInterrupts() from ISR2 Disable all interrupts

23 Call ResumeAllInterrupts() from ISR2. Anin- | The Interrupt is executed. Running ISR2 becomes ready
terrupt has been trigged in disable mode with
a higher priority than running ISR2

24 Call ResumeAllInterrupts() from ISR2 Resume all interrupts

25 Call ResumeAlllnterrupts() from ISR2 as | Resume all interrupts
many times as SuspendAlllnterrupts() is pre-
viously called

26 Call SuspendAlllnterrupts() from ISR2 Suspend all interrupts

27 Call ResumeOSInterrupts() from ISR2. An | The Interrupt is executed. Running ISR2 becomes ready
interrupt has been trigged in disable mode
with a higher priority than running ISR2

28 Call ResumeOSInterrupts() from ISR2 Resume OS interrupts

29 Call ResumeOSInterrupts() from ISR2 as | Resume OS interrupts
many times as SuspendOSInterrupts() is pre-
viously called

30 Call SuspendOSInterrupts() from ISR2 Suspend OS interrupts

31 Interruption of running ISR2 on interrupt | Running Interrupt is preempted. Executed interrupt becomes
which has higher priority than running inter- | running
rupt

32 Interruption of running ISR2 on interrupt | No preemption of running interrupt. Executed interrupt becomes
which has lower priority than running inter- | ready
rupt

33 Interruption of running ISR2 on interrupt | No preemption of running interrupt. Executed interrupt becomes
which has equal priority as running interrupt | ready

34 Return from ISR2 to an ISR2 which has higher | ISR2 with the highest priority is executed
priority than ISR2 preempted

35 Call ResumeAllInterrupts() from callback rou- | No preemption of callback routine because ISR2 are disabled in
tine. An interrupt has been trigged in disable | callback routines
mode

36 Call ResumeAllInterrupts() from callback rou- | Resume all interrupts
tine

37 Call ResumeAllInterrupts() from callback rou- | Resume all interrupts
tine as many times as Suspend AllInterrupts()
is previously called

38 Call SuspendAlllnterrupts() from callback | Suspend all interrupts
routine

39 Interruption in callback routines Interrupt is executed after callback routines

2.3 Event mechanism

Category 3 interrupts have been removed.
Test cases 9 and 10 have to be tested with a simple ready task and with a READY_AND_NEW task (a task which
juste came to be ready).

Test cases 41 to 43 are GOIL test cases.

TANO SO ON®DOD

L

I3IA3TIVO SO/
31VIS SO 3

arso 3

MO 3

snjels
uinjal

DHNOS3H SO (3

SS300V S0 3

yse} Buluuni (3sef)
ueyy Jeybiy
ysey Buiuuni (1se|)

uBy} JaMo|

papusixa

papuadsns

Buiuuns

)Se) pejosye

usns

BUEYE)
pajsanbai

JEI

10} Burem

pifeAul

pileA paies|d

e

[WSIUBYoBN JUSAT YISO |

JusAZNEeM

JusA3en

ULV EN:E o)

JuaA3lesS

90IMIBS SO

ps|ea

ou soh

82Inosal

BuiAdnooo

cdsl

]

uonnosxs

pepusjxa
aIseq

£

SE}

ou sof sof

Sjuleljsuod
ou

Test | Action Expected Result

Case

No.

1 Call SetEvent() with invalid Task ID Service returns E_OS_ID

2 Call SetEvent() for basic task Service returns E_OS_ACCESS

3 Call SetEvent() for suspended extended task | Service returns E_LOS_STATE

4 Call SetEvent() from non-preemptive task on | Requested events are set. Running task is not preempted. Waint-
waiting extended task which is waiting for at | ing task becomes ready. Service returns E_OK
least one of the requested events

5 Call SetEvent() from non-preemptive task on | Requested events are set. Running task is not preempted. Wait-
waiting extended task which is not waiting for | ing task doesn’t become ready. Service returns E_OK
any of the requested events

6 Call SetEvent() from preemptive task on wait- | Requested events are set. Running task becomes ready (is pre-
ing extended task which is waiting for at least | empted). Waiting task becomes running. Service returns E_OK
one of the requested events and has higher pri-
ority than running task

7 Call SetEvent() from preemptive task on wait- | Requested events are set. Running task is not preempted. Wait-
ing extended task which is waiting for at least | ing task becomes ready. Service returns E_OK
one of the requested events and has equal or
lower priority than running task

8 Call SetEvent() from preemptive task on wait- | Requested events are set. Running task is not preempted. Wait-
ing extended task which is not waiting for any | ing task doesn’t become ready. Service returns E_OK
of the requested events

9 Call SetEvent() from non-preemptive task on | Requested events are set. Running task is not preempted. Service
ready extended task returns E_OK

10 Call SetEvent() from preemptive task on | Requested events are set. Running task is not preempted. Service
ready extended task returns E_OK

11 Call ClearEvent() from basic task Service returns E_.OS_ACCESS

12 Call ClearEvent() from ISR2 Service returns E.OS_CALLEVEL

13 Call ClearEvent() from extended task Requested events are cleared. Service returns E_OK

14 Call GetEvent() with invalid Task ID Service returns E_OS_ID

15 Call GetEvent() for basic task Service returns E_LOS_ACCESS

16 Call GetEvent() for suspended extended task | Service returns E_.OS_STATE

17 Call GetEvent() for running extended task Return current state of all event bits. Service returns E_OK

18 Call GetEvent() for ready extended task Return current state of all event bits. Service returns E_OK

19 Call GetEvent() for waiting extended task Return current state of all event bits. Service returns E_OK

20 Call WaitEvent() from basic task Service returns E_OS_ACCESS

21 Call WaitEvent() from extended task which | Service returns E.OS_.RESOURCE
occupies a resource

22 Call WaitEvent() from ISR2 Service returns E_.OS_CALLEVEL

23 Call WaitEvent() from extended task. None | Running task becomes waiting and ready task with highest pri-
of the events waited for is set ority is executed Service returns E_OK

24 Call WaitEvent() from extended task. At least | No preemption of running task Service returns E_OK
one event waited for is already set

25 Call SetEvent() from ISR2 with invalid Task | Service returns E_OS_ID
ID

26 Call SetEvent() from ISR2 for basic task Service returns E_OS_ACCESS

27 Call SetEvent() from ISR2 for suspended ex- | Service returns ECOS_STATE
tended task

28 Call SetEvent() from ISR2 (in non-preemptive | Requested events are set. Waiting task becomes ready. Service
mode) on waiting extended task which is wait- | returns E_OK
ing for at least one of the requested events and
has higher priority than last running task

29 Call SetEvent() from ISR2 (in non-preemptive | Requested events are set. Waiting task becomes ready. Service

mode) on waiting extended task which is wait-
ing for at least one of the requested events and
has lower priority than last running task

returns E_OK

10

Test | Action Expected Result

Case

No.

30 Call SetEvent() from ISR2 (in non-preemptive | Requested events are set. Waiting task doesn’t become ready.
mode) on waiting extended task which is not | Service returns E_OK
waiting for any of the requested events

31 Call SetEvent() from ISR2 (in preemptive | Requested events are set. Waiting task becomes ready and first.
mode) on waiting extended task which is wait- | Service returns E_OK
ing for at least one of the requested events and
has higher priority than running task

32 Call SetEvent() from ISR2 (in preemptive | Requested events are set. Waiting task becomes ready. Service
mode) on waiting extended task which is wait- | returns E_LOK
ing for at least one of the requested events and
has equal or lower priority than running task

33 Call SetEvent() from ISR2 (in preemptive | Requested events are set. Waiting task doesn’t become ready.
mode) on waiting extended task which is not | Service returns E_.OK
waiting for any of the requested events

34 Call SetEvent() from ISR2 (in non-preemptive | Requested events are set. Service returns E_OK
mode) on ready extended task

35 Call SetEvent() from ISR2 (in preemptive | Requested events are set. Service returns E_OK
mode) on ready extended task

36 Call GetEvent() from ISR2 with invalid Task | Service returns E_OS_ID
ID

37 Call GetEvent() from ISR2 for basic task Service returns E_LOS_ACCESS

38 Call GetEvent() from ISR2 for suspended ex- | Service returns E_OS_STATE
tended task

39 Call GetEvent() from ISR2 for ready extended | Return current state of all event bits. Service returns E_OK
task

40 Call GetEvent() from ISR2 for waiting ex- | Return current state of all event bits. Service returns E_OK
tended task

41 Creating an event with a MASK using more | Warning : Event Mask uses more than one bit
than one bit

42 Creating an event with a MASK already used | Error : Mask already used

43 Creating an event with an automatic MASK | Error : All mask bits are already used, the last event can’t be
but all the MASK are already used created

2.4 Resource management

An ISR2 is like a task, it can get and release resources if it’s allowed (if it owns the resource). See test cases 3, 4, 9

and 10.

GetResource() returns E_OS_ACCESS if the resource’s priority is inferior to the task’s priority (it means the task
doesn’t use it so if it gets the resource, the resource is not well shared). Otherwise, a task is allowed to get a
Resource with a priority higher than itself.
There’s no more maximum number of nested resources reachable.
Category 3 interrupts have been removed.

Test | Action Expected Result

Case

No.

1 Call GetResource() from task with invalid re- | Service returns E_OS_ID
source 1D

2 Call GetResource() from task with priority of | Service returns E_.OS_ACCESS

the calling task higher than the calculated ceil-
ing priority

11

| OSEK Resource Management |

called

execution
0s task/ISR2
. She service
tas trigger TASK/SR return
o interrupt / Release \ trigg/;ed 2
task Resource Jdoesn't
GetResource . not RE _SCHEDULERowns own E\OS_NO_FUNC
<= free occupied thelast gny resource
resource S resource not resource E E_{OS_ACCESS
yes yes no resource defined ~ E_OS.ID
1
2
3
4
5
6
7
8
9
10
1
12
13
14
15
16
17
18
19
20
21
22
23
24
25
Test | Action Expected Result
Case
No.
3 Call GetResource() from task with occupied | Service returns E_OS_ACCESS
resource
4 Test Priority Ceiling Protocol: Call GetRe- | Resource is occupied and running task’s priority is set to re-
source() from non-preemptive task, activate | source’s ceiling priority. Service returns E_OK. No preemp-
task/ISR2 with priority higher than running | tion occurs after activating the task with higher priority and
task but lower than ceiling priority, and force | rescheduling
rescheduling
5 Test Priority Ceiling Protocol: Call GetRe- | Resource is occupied and running task’s priority is set to re-
source() from preemptive task, and activate | source’s ceiling priority. Service returns E_OK. No preemption
task/ISR2 with priority higher than running | occurs after activating the task with higher priority
task but lower than ceiling priority
6 Call GetResource() from task for resource | Resource is occupied and running task’s priority is set to re-
RES_SCHEDULER source’s ceiling priority. Service returns E_OK
7 Call ReleaseResource() from task with invalid | Service returns E_OS_ID
resource 1D
8 Call ReleaseResource() from task with re- | Service returns E.OS_NOFUNC
source which is not occupied
9 Call ReleaseResource() from task when an- | Service returns E_.OS_NOFUNC
other resource shall be released before
10 Call ReleaseResource() from task with priority | Service returns E_.OS_ACCESS
of the calling task higher than the calculated
ceiling priority
11 Call ReleaseResource() from non-preemptive | Resource is released and running task’s priority is reset. No pre-
task emption of running task. Service returns E_OK

12

Test | Action Expected Result

Case

No.

12 Call ReleaseResource() from preemptive task | Resource is released and running task’s priority is reset. Ready
task with highest priority is executed (Rescheduling). Service
returns E_OK

13 Call ReleaseResource() from non-preemptive | Resource is released and running task’s priority is reset. No pre-

task for resource RES_SCHEDULER, emption of running task. Service returns E_OK

14 Call ReleaseResource()from preemptive task | Resource is released and running task’s priority is reset. Ready

for resource RES_.SCHEDULER task with highest priority is executed (Rescheduling). Service
returns E_OK

15 Call GetResource() from ISR2 with invalid re- | Service returns E_OS_ID

source 1D

16 Call GetResource() from ISR2 with priority | Service returns E_.OS_ACCESS

of the calling ISR2 higher than the calculated
ceiling priority

17 Call GetResource() from ISR2 with occupied | Service returns E_.OS_ACCESS

resource
18 Call GetResource() from ISR2 for resource | Service returns E_OS_ACCESS
RES_SCHEDULER

19 Test Priority Ceiling Protocol: Call GetRe- | Resource is occupied and running ISR2’s priority is set to re-
source() from ISR2, and activate ISR2 with | source’s ceiling priority. Service returns E_OK. No preemption
priority higher than running ISR2 but lower | occurs after activating the ISR2 with higher priority
than ceiling priority
20 Call ReleaseResource() from ISR2 with invalid | Service returns E_OS_ID
resource 1D

21 Call ReleaseResource() from ISR2 with re- | Service returns E.OS_.NOFUNC
source which is not occupied

22 Call ReleaseResource() from ISR2 when an- | Service returns EC.OS_.NOFUNC
other resource shall be released before

23 Call ReleaseResource() from ISR2 with prior- | Service returns E_OS_ACCESS
ity of the calling ISR2 higher than the calcu-
lated ceiling priority

24 Call ReleaseResource() from ISR2 for resource | Service returns E_OS_ACCESS
RES_SCHEDULER (priority of the calling
ISR2 higher than the calculated ceiling pri-
ority)

25 Call ReleaseResource() from ISR2 Resource is released and running ISR2’s priority is reset. Ready
task /ISR2 with highest priority is executed (Rescheduling). Ser-
vice returns E_OK

2.5 Alarm

The behaviour of the OS is not defined by the specification if the action assigned to the expiration of an alarm can

not be performed, because

e it would lead to multiple task activation, which is not allowed in the used conformance class or the max.

number of activated tasks is already reached, or

e it would set an event for a task which is currently suspended.

The expected behaviour is, that at least the error hook is called. But as this situation is not covered by the speci-

fication, it is not part of conformance testing.

Since AlarmCallBack routine have been integrated in OSEK OS Specifications v2.2.3, test cases 7, 11, 18, 22, 29,

34 and 43 appear.

13

[s]
<

o
<

-
<

o
<

(o2}
[}

«
<]

~
<}

©
(%)

[Yo]
(3]

<
()

(]
(3]

o
()

-
()

(=}
™

[o2]
N

[o¢]
N

~
3

©
o

wn
o

<
o

«®
N

[\
o

&

o
o

(=2}
s

©

~
—

o
-

n
-

<
-

(2]
-

o
-

-

TNO Lo~ 002

3NIVA SO 3

MO 3

31VLS SO 3 arso 3

ONN4ON SO
Buirem jou

sniejs
uinjal

JuaAd uo
Bunrem

Juane uo sse} Buruuni
uey} Jomo|

ysey Buiuuns

uey Jaybiy a|qeNns

12816 00}

ojeIs
syisel
pajoaye

Aoud
Sp{se}
pajosye

[Jise) pejoaye |

/

MO| 00}

s|qeuns

18816 00} MO| 00}

Yoeqjjeow.efe

ane
enfea uonoe [eess |
E -

usns
18s

swiely Y350

ssel

1osun

108

ou soh

[Pauyep |

90IAMIBS SO

pajed

,
wieyien
IVEINEY:

aseguiIe|y1o
salndxe wiee| WIEYSQVISg °

anndwaaid
-uou

anndwaaid

14

Test | Action Expected Result
Case
No.
1 Call GetAlarmBase() with invalid alarm ID Service returns E_OS_ID
2 Call GetAlarmBase() Return alarm base char- | Service returns E_OK
acteristics.
3 Call GetAlarm() with invalid alarm ID Service returns E_OS_ID
4 Call GetAlarm() for alarm which is currently | Service returns E.OS_NOFUNC
not in use
5 Call GetAlarm() for alarm which will activate | Returns number of ticks until expiration. Service returns E_OK
a task on expiration
6 Call GetAlarm() for alarm which will set an | Returns number of ticks until expiration. Service returns E_OK
event on expiration
7 Call GetAlarm() for alarm which will callback | Returns number of ticks until expiration. Service returns E_OK
a routine on expiration
8 Call SetRelAlarm() with invalid alarm ID Service returns E_OS_ID
9 Call SetRelAlarm() for already activated | Service returns EC.OS_STATE
alarm which will activate a task on expiration
10 Call SetRelAlarm() for already activated | Service returns E.OS_STATE
alarm which will set an event on expiration
11 Call SetRelAlarm() for already activated | Service returns E_.OS_STATE
alarm which will callback a routine on expi-
ration
12 Call SetRelAlarm() with increment value | Service returns E_.OS_VALUE
lower than zero
13 Call SetRelAlarm() with increment value | Service returns E.OS_-VALUE
greater than maxallowedvalue
14 Call SetRelAlarm() with cycle value lower | Service returns E.OS_VALUE
than mincycle
15 Call SetRelAlarm() with cycle value greater | Service returns E_.OS_VALUE
than maxallowedvalue
16 Call SetRelAlarm() for alarm which will acti- | Alarm is activated. Service returns E_OK
vate a task on expiration
17 Call SetRelAlarm() for alarm which will set | Alarm is activated.Service returns E_OK
an event on expiration
18 Call SetRelAlarm() for alarm which will call- | Alarm is activated.Service returns E_OK
back a routine on expiration
19 Call SetAbsAlarm() with invalid alarm ID Service returns E_OS_ID
20 Call SetAbsAlarm() for already activated | Service returns E_LOS_STATE
alarm which will activate a task on expiration
21 Call SetAbsAlarm() for already activated | Service returns E_OS_STATE
alarm which will set an event on expiration
22 Call SetAbsAlarm() for already activated | Service returns E_.OS_STATE
alarm which will callback a routine on expi-
ration
23 Call SetAbsAlarm() with increment value | Service returns E_.OS_VALUE
lower than zero
24 Call SetAbsAlarm() with increment value | Service returns E.OS_-VALUE
greater than maxallowedvalue
25 Call SetAbsAlarm() with cycle value lower | Service returns E_.OS_VALUE

than mincycle

15

Test | Action Expected Result
Case
No.
26 Call SetAbsAlarm() with cycle value greater | Service returns E.OS_-VALUE
than maxallowedvalue
27 Call SetAbsAlarm() for alarm which will acti- | Alarm is activated. Service returns E_OK
vate a task on expiration
28 Call SetAbsAlarm() for alarm which will set | Alarm is activated. Service returns E_OK
an event on expiration
29 Call SetAbsAlarm() for alarm which will call- | Alarm is activated. Service returns E_OK
back a routine on expiration
30 Call CancelAlarm() with invalid alarm ID Service returns E_OS_ID
31 Call CancelAlarm() for alarm which is cur- | Service returns E.OS_NOFUNC
rently not in use
32 Call CancelAlarm() for already activated | Alarm is cancelled. Service returns E_OK
alarm which will activate a task on expiration
33 Call CancelAlarm() for already activated | Alarm is cancelled. Service returns E_OK
alarm which will set an event on expiration
34 Call CancelAlarm() for already activated | Alarm is cancelled. Service returns E_OK
alarm which will callback a routine on expi-
ration
35 Expiration of alarm which activates a task | Task is activated
while no tasks are currently running
36 Expiration of alarm which activates a task | Task is activated. No preemption of running task
while running task is non-preemptive
37 Expiration of alarm which activates a task | Task is activated. Task with highest priority is executed
with higher priority than running task while
running task is preemptive
38 Expiration of alarm which activates a task | Task is activated. No preemption of running task.
with lower priority than running task while
running task is preemptive
39 Expiration of alarm which sets an event while | Event is set
running task is non-preemptive. Task which
owns the event is not waiting for this event
and not suspended
40 Expiration of alarm which sets an event while | Event is set. Task which is owner of the event becomes ready.
running task is non-preemptive. Task which | No preemption of running task
owns the event is waiting for this event
41 Expiration of alarm which sets an event while | Event is set
running task is preemptive. Task which owns
the event is not waiting for this event and not
suspended
42 Expiration of alarm which sets an event while | Event is set. Task which is owner of the event becomes ready.
running task is preemptive. Task which owns | Task with highest priority is executed (Rescheduling)
the event is waiting for this event
43 Expiration of alarm which callback a routine | Running task becomes ready. Callback routine is activated.
2.6 Error handling, hook routines (with interrupts) and OS execution control

The specification doesn’t provide an error status when calling an OS service which is not allowed on hook level from
inside a hook routine. It is assumed that the correct behaviour would be to return E_.OS_CALLEVEL. As this is
not prescribed by the specification, this will not be used as a criteria for the conformance of the implementation.
Anyway, the conformance tests will check that restricted OS services return a value not equal E_OK.

Compare to the previous Test Plan 2.0, it’s forbidden to call ActivateTask() from StartupHook routine.

Sus-

pendAllInterrupts() and ResumeAllInterrupts() are allowed in hook routines.
See Annexe |A| for more information about interrupt management (test case from 15 to 32).

16

17

Test | Action Expected Result
Case
No.
1 Call GetActiveApplicationMode() Return current application mode
2 Call StartOS() Start operating system
3 Call ShutdownOS() Shutdown operating system
4 Check PreTaskHook/PostTaskHook: Force | PreTaskHook is called before executing the new task, but after
rescheduling the transition to running state. PostTaskHook is called after
exiting the current task but before leaving the task’s running
state
5 Check ErrorHook: Force error ErrorHook is called at the end of a system service which has a
return value not equal E_OK
6 Check StartupHook: Start OS StartupHook is called after initialisation of OS
7 Check ShutdownHook: Shutdown OS ShutdownHook is called after the OS shutdown
Check availability of OS services inside hook | OS services which must not be called from hook routines return
routines according to fig 12-1 of OS spec. status not equal E_OK
8 Call GetTaskID() from ErrorHook, Pre- | Return E_OK
TaskHook and PostTaskHook
9 Call GetTaskState() from ErrorHook, Pre- | Return E_OK if TaskID is valid
TaskHook and PostTaskHook
10 Call SuspendAllInterrupts() from ErrorHook,
PreTaskHook and PostTaskHook
11 Call ResumeAllInterrupts() from ErrorHook,
PreTaskHook and PostTaskHook
12 Call GetEvent() from ErrorHook, Pre- | Return E_OK if TaskID is valid, Referenced task <TaskID> is
TaskHook and PostTaskHook an extended task and not in suspended state.
13 Call GetAlarmBase() from ErrorHook, Pre- | Return E_OK if AlarmID is valid
TaskHook and PostTaskHook
14 Call GetAlarm() from ErrorHook, Pre- | Return E_OK if AlarmID is valid and used

TaskHook and PostTaskHook

Interrupt processing in Hook routines :

15 Interrupt activation in PostTaskHook of a task preempted by an alarm which activate a task.

16 Interrupt activation in PreTaskHook of a task preempted by an alarm which activate a task.

17 Interrupt activation in PostTaskHook of a task preempted by an ISR2.

18 Interrupt activation in PreTaskHook of a task preempted by an ISR2.

19 Interrupt activation in PostTaskHook of a task activated by an task (preempted or not).

20 Interrupt activation in PreTaskHook of a task activated by an task (preempted or not).

21 Interrupt activation in PostTaskHook of a task activated by an alarm which will give back the hand to the
previous running task.

22 Interrupt activation in PreTaskHook of a task activated by an alarm which will give back the hand to the
previous running task.

23 Interrupt activation in PostTaskHook of an ISR2 which will give back the hand to the previous running task.

24 Interrupt activation in PreTaskHook of an ISR2 which will give back the hand to the previous running task.

25 Interrupt triggering with an activation in PostTaskHook of a task preempted by an alarm which activate a
task.

26 Interrupt triggering with an activation in PreTaskHook of a task preempted by an alarm which activate a task.

27 Interrupt triggering with an activation in PostTaskHook of a task preempted by an ISR2.

28 Interrupt triggering with an activation in PreTaskHook of a task preempted by an ISR2.

29 Interrupt triggering with an activation in PostTaskHook of a task followed by an task (preempted or not).

30 Interrupt triggering with an activation in PreTaskHook of a task followed by an task (preempted or not).

31 Interrupt triggering with an activation in PostTaskHook of a task activated by an alarm which will give back

the hand to the previous running task.

18

Test | Action Expected Result

Case

No.

32 Interrupt triggering with an activation in PreTaskHook of a task activated by an alarm which will give back
the hand to the previous running task.

33 Interrupt triggering with an activation in PostTaskHook of an ISR2 which will give back the hand to the
previous running task.

34 Interrupt triggering with an activation in PreTaskHook of an ISR2 which will give back the hand to the previous
running task.

35 Interrupt activation in ErrorHook.

36 Interrupt triggering with an activation in ErrorHook.

2.7 Internal COM

Test | Action Expected Result

Case

No.

1 Call SendMessage() to an unqueued message Service returns E_OK

2 Call SendMessage() to an unqueued message with <Message> out | Service returns E_.COM_ID
of range

3 Call SendMessage() to a queued message Service returns E_OK

4 Call SendMessage() to a queued message with <Message> out of | Service returns E_.COM_ID
range

5 Call ReceiveMessage() to an unqueued message with <Message> | Service returns E_.COM_ID
out of range

6 Call ReceiveMessage() to an unqueued message Service returns E_OK

7 Call ReceiveMessage() to an unqueued message with a notification | Service returns E_OK
which activate a task

8 Call ReceiveMessage() to an unqueued message with a notification | Service returns E_OK
which activate a task and a ”always” filter

9 Call ReceiveMessage() to an unqueued message with a notification | Service returns E.OK
which activate a task and a "never” filter

10 Call ReceiveMessage() to an unqueued message with a notification | Service returns E_OK
which activate a task and a ”MaskedNewEqualX” filter

11 Call ReceiveMessage() to an unqueued message with a notification | Service returns E_OK
which activate a task and a ”MaskedNewDiffersX” filter

12 Call ReceiveMessage() to an unqueued message with a notification | Service returns E_OK
which activate a task and a "NewlIsEqual” filter

13 Call ReceiveMessage() to an unqueued message with a notification | Service returns E.OK
which activate a task and a ”NewlsDifferent” filter

14 Call ReceiveMessage() to an unqueued message with a notification | Service returns E_OK
which activate a task and a ” MaskedNewEqualsMaskedOld” filter

15 Call ReceiveMessage() to an unqueued message with a notification | Service returns E_OK
which activate a task and a ” MaskedNewEqualsMaskedOld” filter

16 Call ReceiveMessage() to an unqueued message with a notification | Service returns E.OK
which activate a task and a "NewIsWithin” filter

17 Call ReceiveMessage() to an unqueued message with a notification | Service returns E.OK
which activate a task and a "NewlIsOutside” filter

18 Call ReceiveMessage() to an unqueued message with a notification | Service returns E_OK
which activate a task and a "NewlIsGreater” filter

19 Call ReceiveMessage() to an unqueued message with a notification | Service returns E_OK

which activate a task and a ”NewlIsLessOrEqual” filter

19

I3A3TIVO OO 3

MO 3
_ MOJJIOAO pananp
WOO 3 paseslo pananbun
LINIT WOO 3 Mojpan0 obuel jo 1no NAleAgeuQ
fdwe lenb3iQ010IS!
abessaw [di]

snjers
unjal

ssaTs|MoN

19]2RIDSIMON | UIUNMSIMON

BPISINOSIMN

obessal pajoaye

WOD X3S0

[enb3simeN
SI1olIQMaNPYSE

bBey

eAgles

1 SSE|D UONEIyION

NORGIEOWOF S| 81RAnoR

obesss|ypuag
300H
10LINOD

obesso|anIgoay

Jodereq [LaweN] 103wo:

20IMI8S SO
Pajed

cdsl
Pisel

TANOYOLON®OD

20

Test | Action Expected Result
Case
No.
20 Call ReceiveMessage() to an unqueued message with a notification | Service returns E.OK
which activate a task and a "NewlsLess” filter
21 Call ReceiveMessage() to an unqueued message with a notification | Service returns E_OK
which activate a task and a "NewlIsGreaterOrEqual” filter
22 Call ReceiveMessage() to an unqueued message with a notification | Service returns E_OK
which activate a task and a ”OneEveryN” filter
23 Call ReceiveMessage() to an unqueued message with a notification | Service returns E.OK
which set an event
24 Call ReceiveMessage() to an unqueued message with a notification | Service returns E. COM_CALLEVEL
which callback a routine
25 Call ReceiveMessage() to an unqueued message with a notification | Service returns E_OK
which set a flag
26 Call ReceiveMessage() to a queued message with <Message> out | Service returns E_.COM_ID
of range
27 Call ReceiveMessage() to a queued message which had an overflow | Service returns E.COM_LIMIT and reset the
on last SendMessage overflow flag
28 Call ReceiveMessage() to a queued message which had an overflow | Service returns E_OK
cleared on last call to ReceiveMessage
29 Call ReceiveMessage() to a queued message which is empty Service returns E_COM_NOMSG
30 Call ReceiveMessage() to a queued message Service returns E_OK
31 Call GetMessageStatus() to an unqueued message Service returns E_.COM_ID
32 Call GetMessageStatus() to a queued message Service returns E_OK
33 Call GetMessageStatus() to a queued message with <Message> | Service returns E.COM_ID
out of range
34 Call GetMessageStatus() to a queued message which had an over- | Service returns E_.COM_LIMIT
flow on last SendMessage
35 Call GetMessageStatus() to a queued message which is empty Service returns E_.COM_NOMSG
36 Call ComErrorGetServiceld() from ComErrorHook with | Service returns COMServiceld_SendMessage
SendMessage error
37 Call ComError_SendMessage_Message from ComErrorHook Service returns <Message> used in last
SendMessage
38 Call ComError_SendMessage_DataRef from ComErrorHook Service returns <DataRef> used in last
SendMessage
39 Call ComErrorGetServiceld() from ComErrorHook with Re- | Service returns COMServi-
ceiveMessage error celd_ReceiveMessage
40 Call ComError_ReceiveMessage_Message from ComErrorHook Service returns <Message> used in last Re-
ceiveMessage
41 Call ComError_ReceiveMessage_DataRef from ComErrorHook Service returns <DataRef> used in last Re-
ceiveMessage
42 Call ComErrorGetServiceld() from ComErrorHook with GetMes- | Service returns COMServi-
sageStatus error celd_GetMessageStatus
43 Call ComError_GetMessageStatus_Message from ComErrorHook | Service returns <Message> used in last

GetMessageStatus

2.8 AUTOSAR - Core OS

OS Requirements : 263*, 264*, 285, 301, 304, 321
Test cases 3 and 5 are GOIL test cases. Test case 7 is impossible to test.

21

| AUTOSAR_Core_0OS

called
OS service

execution
level

) Increment
crement value
Counter
SetRelAlarm alarm GetISRID

alarm

return
status

Alarm action
error

@

Increment otk SotE Iljcrgment E_OK INVALID_ISR
etEvent SetEvent Hardware
task ISR2 expires too low Counter (basic (Suspended Counter E_OS_VALUE
ActivateTask task) task)
SW (too many
activation)
1
2
3
4
5
6
7
8
9
10
1 —
12 1 T
Test | Action Expected Result (ON] Require-
Case ments
No.
1 Call SetRelAlarm() from task with <increment> value equal to | Service returns | OS304
Zero E_OS_VALUE

2 Call IncrementCounter() of a software counter from task (alarm | Errorhook is called. Service | 0S321
action results in an error : ActivateTask() on a task which has | returns E.OK
already its max number of activation)

3 It is impossible to call IncrementCounter() setting an event from | error : An alarm can’t set an | 0S321

an alarm expiration to a basic task. Event to a basic task (Task
t1 is a basic task).

4 Call IncrementCounter() of a software counter from task (alarm | Errorhook is called. Service | 0S321

action results in an error : SetEvent() on a task is suspended) returns E_OK

5 It is impossible to call IncrementCounter() incrementing a hard- | error : It is impossible to in- | 0S285

ware counter from an alarm expiration. crement a hardware counter
(Z is not a software counter).
6 Expiration of alarm which increment a software counter Software counter is incre- | OS301
mented and alarm(s) is(are)
launched if needed
7 Increment a hardware counter from an alarm expiration is impos-
sible. GOIL generation should forbid to create an alarm which
increment a hardware counter

8 Call SetRelAlarm() from ISR2 with <increment> value equal to | Service returns | 0S304
Zero E_OS_VALUE

9 Call IncrementCounter() of a software counter from ISR2 (alarm | Errorhook is called. Service | 0S321
action results in an error : ActivateTask() on a task which has | returns E.OK
already its max number of activation)

10 Call IncrementCounter() of a software counter from ISR2 (alarm | Errorhook is called. Service | 0S321

action results in an error : SetEvent() on a task is suspended) returns E_OK

11 Call GetISRID() from an other object than ISR2 or Hook routine | Service returns IN- | OS264

called inside an ISR2 VALID_ISR

22

Test | Action Expected Result 0S Require-
Case ments
No.
12 Call GetISRID() from an ISR2 Service returns the identi- | OS263
fier of the currently running
ISR2

2.9 AUTOSAR - Software Counter

OS Requirements : 285, 286, 321,376, 377, 381, 382, 383, 391, 392, 399, 460
0S374 and OS384 are indirectly tested thanks to the good fonctionning of the counter.

| AUTOSAR_Software_Counter |

7

execution called return
level rvi
eve OS service status

Alarm action

Increment error

Counter GetElapsed
CounterValue

task ISR2 GetCounterValue E_OK E_OS_VALUE

E_OS_ID

out of
HW SW invalid range

W ~NOO O~ W=

©

-
o

—_
N =

—_
w

—_
ESN

—_
[6)]

—_
]

_
[e N

—_
©

NN
- O

[\
N

N
w

N
D

Test | Action Expected Result 0S Require-
Case ments

1 Call IncrementCounter() of a software counter | Service returns E_OK 085286, 0S399
from task

23

Test | Action Expected Result 0S Require-
Case ments
No.
2 Call IncrementCounter() of a software counter | Errorhook is called. Service returns E_OK 08321
from task (alarm action results in an error)
3 Call IncrementCounter() of a hardware | Service returns E_OS_ID 05285
counter from task
4 Call IncrementCounter() from task with in- | Service returns E_OS_ID 05285
valid ID
5 Call IncrementCounter() of a software counter | Service returns E_OK
from ISR2
6 Call IncrementCounter() of a software counter | Errorhook is called. Service returns E_OK
from ISR2 (alarm action results in an error)
7 Call IncrementCounter() of a hardware | Service returns E_OS_ID
counter from ISR2
8 Call IncrementCounter() from ISR2 with in- | Service returns E_OS_ID
valid ID
9 Call GetCounterValue() of a sofwtare counter | Service returns E_OK and <Value> of the | OS377, OS383
from task counter
10 Call GetCounterValue() of a hardware counter | Service returns E_OK and <Value> of the | OS377, OS383
from task counter
11 Call GetCounterValue() from task with in- | Service returns E_OS_ID 08376
valid ID
12 Call GetCounterValue() of a sofwtare counter | Service returns E_OK and <Value> of the
from ISR2 counter
13 Call GetCounterValue() of a hardware counter | Service returns E_OK and <Value> of the
from ISR2 counter
14 Call GetCounterValue() from ISR2 with in- | Service returns E_OS_ID
valid ID
15 Call GetElapsedCounterValue() of a software | Service returns E_OK, the <Value> of the | 0S382, 0S392,
counter from task counter and the number of elapsed ticks since | OS460
the given <Value> value via <ElapsedValue>
16 Call GetElapsedCounterValue() of a software | Service returns E.OS_-VALUE 08391
counter from task with <Value> out of range
17 Call GetElapsedCounterValue() of a hardware | Service returns E_OK, the <Value> of the | OS382, 0S392,
counter from task counter and the number of elapsed ticks since | OS460
the given <Value> value via <FElapsedValue>
18 Call GetElapsedCounterValue() of a hardware | Service returns E.OS_VALUE 085391
counter from task with <Value> out of range
19 Call GetElapsedCounterValue() from task | Service returns E_OS_ID 08381
with invalid ID
20 Call GetElapsedCounterValue() of a software | Service returns E_OK, the <Value> of the
counter from ISR2 counter and the number of elapsed ticks since
the given <Value> value via <ElapsedValue>
21 Call GetElapsedCounterValue() of a software | Service returns E.OS_-VALUE
counter from ISR2 with <Value> out of range
22 Call GetElapsedCounterValue() of a hardware | Service returns E_OK, the <Value> of the
counter from ISR2 counter and the number of elapsed ticks since
the given <Value> value via <FElapsedValue>
23 Call GetElapsedCounterValue() of a hardware | Service returns E_OS_VALUE
counter from ISR2 with <Value> out of range
24 Call GetElapsedCounterValue() from ISR2 | Service returns E_OS_ID

with invalid ID

24

Test
Case
No.

Action

Expected Result

0OS Require-
ments

2.10 AUTOSAR - Schedule Table

OS Requirements :

309, 324, 330, 332, 347, 348, 349, 350, 351, 353, 358, 359, 410, 412, 414, 428, 453.
OS Requirements 401, 402, 403, 404, 407, 408, 409, 427, 442, 443, 444 are GOIL test cases (Test cases 33 to 42 and

002, 006, 007, 009, 191, 194, 275, (276), 277, 278, 279, 280, 281, 282, 283, 284, 289, 291, 293,

70).
0S411 can’t be tested. As a schedule table is automatically set to single-shot if not specified, OS413 can’t be tested.
Test | Action Expected Result 0S Require-
Case ments
No.
1 Call StartScheduleTableRel() from task Service returns E.OK 085278, 0S358
2 Call StartScheduleTableRel() from task with invalid id Service returns E_OS_ID 05275
3 Call StartScheduleTableRel() from task with <offset> | Service returns E.OS_VALUE 08332
value equal to zero
4 Call StartScheduleTableRel() from task with <offset> > | Service returns E.OS_VALUE 085276
(MAXALLOWEDVALUE - InitialOffset)
5 Call StartScheduleTableRel() from task when schedule ta- | Service returns E_OS_STATE (in | OS277
ble is not in state SCHEDULETABLE _STOPPED STANDARD and EXTENDED)
6 Call StartScheduleTableAbs() from task Service returns E_OK 085347, 0S351
7 Call StartScheduleTableAbs() from task with invalid id Service returns E_OS_ID 085348
8 Call StartScheduleTableAbs() from task with <offset> > | Service returns E.OS_VALUE 085349
(MAXALLOWEDVALUE)
9 Call StartScheduleTableAbs() from task when schedule ta- | Service returns E_OS_STATE (in | OS350
ble is in state SCHEDULETABLE_STOPPED STANDARD and EXTENDED)
10 Call StopScheduleTable() from task Service returns E_OK 0S006 0OS281,
085453
11 Call StopScheduleTable() from task with invalid id Service returns E_OS_ID 05279
12 Call StopScheduleTable() from task when schedule table is | Service returns ELOS_NOFUNC (in | OS280
in state SCHEDULETABLE_STOPPED STANDARD and EXTENDED)
13 Call NextScheduleTable() from task Service returns E_OK 0S191, 0S284,
085324, 05414
14 Call NextScheduleTable() from task with invalid Sched- | Service returns E_OS_ID 05282
uleTableID_From
15 Call NextScheduleTable() from task with invalid Sched- | Service returns E_OS_ID 05282
uleTableID_To
16 Call NextScheduleTable() from task with different schedule | Service returns E_OS_ID 085330
table counters
17 Call NextScheduleTable() from task when schedule table | Service returns ELOS_NOFUNC (in | 0S283
"from” is in state SCHEDULETABLE_NEXT STANDARD and EXTENDED)
18 Call NextScheduleTable() from task when schedule table | Service returns ELOS_NOFUNC (in | OS283
"from” is in state SCHEDULETABLE_STOPPED STANDARD and EXTENDED)
19 Call NextScheduleTable() from task when schedule table | Service returns E_OS_STATE 08309
"to” is not in state SCHEDULETABLE_STOPPED
20 Call GetMessageStatus() from task Service returns E_OK 085359
21 Call GetMessageStatus() from task with invalid id Service returns E_OS_ID 085293
22 Call GetMessageStatus() from task for a schedule table | Service returns E_OK and | OS353
which waits for the end of the current schedule table SCHEDULETABLE NEXT via
<ScheduleStatus>

25

|
|
|
|
, ‘
7\5\
_\.‘
|
|
3
|
, .
, .
, .
, .
. _, .
_ .
' N
' N
' .
.
|
3NIVA SO 3 ou soh d3ddols 1X3N I[eA snje
o arso—3 JUCICI 1esyouy| ou sohk PlIreA DNINNNY preAu Pl ; ﬂwﬂw ou
31V1SS0 3 yors R XVIN< / \ aaddols pifeAU) @3ddoL Henu! — AEL qqy aog S B
ONN4ON SO XVIN< 0= pien pauElS log eldeL m_:aﬂ%zom 8lqeL ojnpayos
pireAul pananb a|qe} a|qe} oreis oJels 8|npayds S sinpayos yeis
XeN veig
sniels [s18un0g 15 | [WeIs /1980 | (3I9ELBINP3YDS) OF SI9ELaINPaYOS | [WOl B ELENpewS | So/ISE G pais f e

uinyol

| 8|qel 8|NPaYds” HYSOLNY

uonnoexa

N M < WO~

26

AUTOSAR_Schedule_Table_functional

ScheduleTable |

[Autostart |

[Number] [Processing |

FALSE

ABSOLUTE

RELATIVE

single single-

multiple shot)
repeating

\ Processing |

expiry point
order
offset =

expiry
point good
order

x LENGTH
Q)

next expiry
point after
final expiry

ST
restarted

point

next repeating

ST

Action

[ActivateTask | [SetEvent |

ok error
ok error
basic

task suspended

task

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

[AUTOSAR_Schedule_Table_GOIL

[ScheduleTable

Schedule Table parameters

Autostart

single-
shot

ABSOLUTE
RELATIVE

ScheduleTable
processing

expiry point
number

expiry point
action

repeating

counter driver
number

offset number

delay

First.Delay
Others

Final.Delay

offset
delay
>Max-
Initial.Offset

=0 <MIN

OK >MAX

27

Test | Action Expected Result 0S Require-
Case ments
No.
23 Call GetMessageStatus() from task for a schedule table | Service returns E_LOK and SCHED- | OS289
which is not started ULETABLE_STOPPED via
<ScheduleStatus>
24 Call GetMessageStatus() from task for a schedule table | Service returns E_OK and SCHED- | 0S291
which is started ULETABLE_RUNNING via
<ScheduleStatus>
25 If single-shot ST, stop the schedule table Final Delay ticks 0S009
after the Final Expiry Point is processed
26 If single-shot ST, an expiry point can be set to offset=0 0S002
27 The schedule table has to be processed from the Initial- 0S002, OS410
ExpiryPoint to the FinalExpiryPoint in order of increasing
offset
28 If single-shot ST, an expiry point can be set to off- 0S002
set=LENGTH
29 If single-shot ST, The OS shall process all task activations 05412
on an expiry point first and then set events
30 Action of a ST results in a ActivateTask
31 Action of a ST results in a ActivateTask and and overflow | ErrorHook is launched
of Activation occurs.
32 Action of a ST results in a SetEvent
33 Action of a ST results in a SetEvent on a basic task. error : An action can’t set an Event
to a basic task (Task t1 is a basic
task).
34 Action of a ST results in a SetEvent on a suspended task. | ErrorHook is launched
35 If single-shot ST, Intial expiry point of a 'nexted’ ST shall 0S414
be launched at Final Expiry point + Final Delay + Initial
Expiry point (as there’s a ”finalize” expiry point, this test
case as to check when Initial Expiry point is different AND
equal to zero.)
36 A ST restarts from the begging (offset=0) 085428
37 If repeating ST, Initial Expiry Point shall be launched at 0S19%4
Final Expiry Point + Final Delay + Initial Offset
38 If repeating ST, an expiry point can be set to offset=0 and 0S002
at offset=LENGTH-1
39 Multiple ST are allowed 0S007
40 A ST can be autostarted with ABSOLUTE mode. OsSchedule-
<OFFSET> should be in the range MINCY- TableAutostart
CLE.MAXALLOWEDVALUE OR equal to 0
41 A ST can be autostarted with RELATIVE mode. OsSchedule-
<START> should be in the range MINCY- TableAutostart
CLE.MAXALLOWEDVALUE
42 No Expiry point in a schedule table error : no EXPIRY_POINT found | OS401
for SCHEDULETABLE X
43 One or several expiry points in a schedule table 05401
44 No Action in an expiry point error : no ACTION found for EX- | OS407
PIRY _POINT Y
45 One action in an expiry point 05402, 0S403
46 Several actions in an expiry point 05407
47 No counter in a schedule table error : Counter is not defined in X | OS409
48 One counter in a schedule table 05409
49 Several counters in a schedule table error : COUNTER attribute al- | OS409

ready defined for Schedule Table X

28

Test | Action Expected Result 0S Require-
Case ments
No.
50 No offset in an expiry point error : OFFSET is missing for ex- | 0S404
piry point Y
51 One offset in an expiry point 05442
52 Several offsets in an expiry point error : OFFSET Redefinition 05442
53 First.Delay is equal to 0 05443
54 First.Delay is lower than MINCYCLE error : OFFSET of first expiry | OS443
point is lower than MINCYCLE of
the driving counter and not equal
to 0.
55 First.Delay is in the range 05443
56 First.Delay is greater than MAXALLOWEDVALUE error OFFSET of first ex- | OS443
piry point is greater than MAX-
ALLOWEDVALUE of the driving
counter
57 Delay between adjacent expiry point is lower than MINCY- | error : Delay between expiry point | OS408
CLE number A and B is lower than MIN-
CYCLE of the driving counter
58 Delay between adjacent expiry point is in the range 05408
59 Delay between adjacent expiry point is greater than MAX- | error Delay between expiry | OS408
ALLOWEDVALUE point number A and B is greater
than MAXALLOWEDVALUE of
the driving counter
60 In single-shot, Final.Delay is equal to 0 05427
61 In repeating, Final.Delay is equal to 0 error : Final delay can be equal to | 0S444
0 only for single-shot schedule table
and X is a repeating one
62 Final.Delay is lower than MINCYCLE error : Final delay should be | OS444
within MINCYCLE and MAX-
ALLOWEDVALUE of the driving
counter
63 Final.Delay is in the range 05444
64 Final.Delay is greater than MAXALLOWEDVALUE error Final delay should be | OS444
within MINCYCLE and MAX-
ALLOWEDVALUE of the driving
counter
65 In an ABSOLUTE autostarted schedule table, <OFFSET>
is equal to 0
66 In an ABSOLUTE autostarted schedule table, <OFFSET>
is lower than MAXALLOWEDVALUE
67 In an ABSOLUTE autostarted schedule table, <OFFSET> | error X autostart’s offset is | OS349
is greater than MAXALLOWEDVALUE greater than MAXALLOWED-
VALUE
68 In an RELATIVE autostarted schedule table, <START> | error : X autostart’s offset is equal | 0S332
is equal to 0 to 0
69 In an RELATIVE autostarted schedule table, <START>
is lower than (MAXALLOWEDVALUE - Initial.Offset)
70 In an RELATIVE autostarted schedule table, <START> | error X autostart’s offset is | OS276
is greater than (MAXALLOWEDVALUE - Initial.Offset) | greater than (MAXALLOWED-

VALUE - Initial.Offset)

29

Test
Case
No.

Action

Expected Result

0OS Require-
ments

When a schedule table is started, the first expiry point can be set to the ”second” value of a counter tick (only
with StartScheduleTableAbs) if :

o (<start> > current date) AND (<start> + FirstDelay - MAX_ALLOWED_VALUE) > current date

o (<start> < current date) AND ((<start> + FirstDelay) > current date)

Because of that, more tests has to be done to check that the expiry point is not launched at the first value of the
counter but at the "second”. In Trampoline, we use a ”Bootstrap” to implement the solution. A bit of the schedule
table’s state is set to 1’ when the first expiry point has reached the conditions above. When the time object is
launched, we take a look at the state and if the bit is '1’, we take out the time object and place it before the current

date, setting the bit to '0’. In this way, the expiry point is shifted to the ”second” value of the counter.

Moreover, other tests have to check the correct functionning of the sequences when there are only ”bootstraped”
schedule table on an expiry point, or when there are ”bootstraped” and "normal” schedule tabe, whatever the first
inserted in the counter’s date.
The plan below conclues on the schedule table tests. ”Date” is the date of the first expiry point.

| AUTOSAR_Schedule_Table_Bootstrap |

|

API service
call (0S002)

StartSchedule StartSchedule

execution TableRel TableAbs
level

Scheduletable's
expiry point's state

<Start> is lower than current date and Date is
equal to current date.

composition
[<Start> < current | [<Start> > current | (0S412)
all .
t Offset Date "bootsraped" " first " "normal"
ask/ < normal
ISR2 < = > < = > first " "
MAX current current current current current current "bootsraped" bootstrap
71
72
73
74
75
76
77
78
79
80 .
Test | Action Expected Result
Case
No.
71 Call StartScheduleTableRel() from task. Offset is | Service returns E_OK
lower than max allowed value of the counter.
72 Call StartScheduleTableAbs() from task. | Service returns E_OK
<Start> and Date are lower than current
date.
73 Call StartScheduleTableAbs() from task. | Service returns E_OK

30

Test | Action Expected Result

Case

No.

74 Call StartScheduleTableAbs() from task. | Service returns E_OK. The schedule table is set to a ”boot-
<Start> is lower than current date and Date is | strap” one.
greater than current date.

75 Call StartScheduleTableAbs() from task. | Service returns E_OK
<Start> is greater than current date and
Date is lower than current date.

76 Call StartScheduleTableAbs() from task. | Service returns E_OK
<Start> is greater than current date and
Date is equal to current date.

7 Call StartScheduleTableAbs() from task. | Service returns E_OK. The schedule table is set to a ”boot-
<Start> and Date are greater than current | strap” one.
date.

78 Set several ”"bootstraped” schedule table to a | Expiry points stay in the list and schedule table state becomes
same date ”normal”

79 Set several "bootstraped” and "normal” schedule | Expiry points which was "bootstraped” stay in the list and
table to a same date. A "bootstrap” schedule | there schedule table state becomes "normal”. Expiry point
table is inserted first in the list. which was "normal” are taken out of the list.

80 Set several ”"bootstraped” and "normal” schedule | Expiry points which was ”bootstraped” stay in the list and
table to a same date. A "normal” schedule table | there schedule table state becomes "normal”. Expiry point
is inserted first in the list. which was "normal” are taken out of the list.

2.11 AUTOSAR - Schedule Table Synchronisation

OS Requirements :

013, 199, 201, 206, 227, 278, 290, 291, 300, 323, 351, 354, 362, (363), 387, 388, 389, 417, 418,

419, 420, 421, 422, 429, 430, 434, 435, 452, 454, 455, 456, 457, 458
05462 and OS463 can’t be tested.
OS Requirements 415, 416, 429, 430, 431, 436, 437, 438 are GOIL test cases (Test cases 38 to 60).

Test | Action Expected Result 0S Require-
Case ments
No.
1 Call StartScheduleTableSynchron() from | Service returns E_OK, the state is set to | OS389, OS435
task/ISR2. The state of the schedule table is | SCHEDULETABLE_WAITING
equal to SCHEDULETABLE _STOPPED
2 Call StartScheduleTableSynchron() from | Service returns E_OS_ID 08387
task/ISR2 with invalid id
3 Call StartScheduleTableSynchron() from | Service returns E_OS_ID 0S387
task /ISR2. The schedule table is not
explicitly synchronized
4 Call StartScheduleTableSynchron() from | Service returns E.OS_STATE (in STANDARD | OS388
task/ISR2. The state of the schedule table is | and EXTENDED)
not equal to SCHEDULETABLE_STOPPED
5 Call SyncScheduleTable() from task/ISR2. Service returns E_OK, the processing of the | OS013, 0S457,
schedule table is started 05199, 0S201
6 Call SyncScheduleTable() from task/ISR2 | Service returns E_OS_ID 085454
with invalid id
7 Call SyncScheduleTable() from task/ISR2. | Service returns E_OS_ID 05454
The schedule table is not explicitly synchro-
nized

31

- M Y0 ON®©

avisTs0 3 wopeing LI01dX3 1XaN ONILIVM ol
AN anvasog QI$03 o Loy L Lorexa ONINNNY d3ddoLs pieAur

%0 3 orealb o SNONOHHONAS

“anv

<enjep>
[Aboreis | ONINNNY

uoyouk
oy ouhsy mﬂm._.w cdsl|
9I0eL sneig olgeL anpayog 5%
SAY 9npauds ggey OIMPOUS gqe; _ﬁuﬂc s
Sl9eL yeig 8|npayog s 8|npayog S NOHHONAS
a|Npayos) oulkg
uels

u
a3ddols

[oess |
SIGELeINPaYOS

leuy 1se| e

L+ XVIN
= uoneing

(0> uonenep) | [uoneinep 7

0=i 0=
@ws0) .
J189p10 poob [uoispaid | [snouoiyouhsy | [snieis
juiod Andx3 winjal

[uoneziuoiyouAg Buiwioped |

[E5]

B0IAIBS SO Paj[ed

uoynoexe
© lgvisolny

BEENEEN

| UOIJeZ|U0JYOUAS B|qeL 9INPaydS HYSOLNY]

32

| AUTOSAR_Schedule_Table_Synchronization_bis |

Schedule Table parameters

Strategy

MaxAdvance
MaxRetard
Schedule'!’able Autostart Length Adjustable exp_pt
processing
first
EXPLICIT repeating ELATIVE I=MAX+1 exp_pt
missing

> Duration other <MAX >MAX <MAX >MAX

IMPLICIT sg?;f ABSOLUTE ~ SYNCHRON e - burhiion exp. pt

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

Test | Action Expected Result (ON] Require-

Case ments

No.

8 Call SyncScheduleTable() from task/ISR2. | Service returns E_.OS_VALUE 085455
The <value> is greater than OSSched-
uleTableDuration

9 Call SyncScheduleTable() from task/ISR2. | Service returns E_.OS_STATE 085456
The state of the schedule table is equal to
SCHEDULETABLE_STOPPED

10 Call SyncScheduleTable() from task/ISR2. | Service returns E_.OS_STATE 085456
The state of the schedule table is equal to
SCHEDULETABLE_NEXT

11 Call SetScheduleTableAsync() from | Service returns E_OK, the state is set to | OS300
task/ISR2. The schedule table is explic- | SCHEDULETABLE_RUNNING
itly synchronized

12 Call SetScheduleTableAsync() from | Service returns E_OK, the synchronisation is | 0S362, 0S323,
task/ISR2. The schedule table is ex- | stopped but expiry point are still processed 05422
plicitly synchronized and the state of
the schedule table is equal to SCHED-
ULETABLE_RUNNING

13 Call SetScheduleTableAsync() from | Service returns E_OS_ID 0S458
task/ISR2. The schedule table’s strategy is
not equal to EXPLICIT

14 Call SetScheduleTableAsync() from | Service returns E_OS_ID 085458
task/ISR2 with invalid id

15 Call GetScheduleTableStatus() from | Service returns E_OK and SCHED- | OS354, OS227
task/ISR2. The schedule table is EX- | ULETABLE_WAITING via <ScheduleStatus>
CPLICIT and no synchronisation count was
provided

33

Test | Action Expected Result 0S Require-
Case ments
No.
16 Call GetScheduleTableStatus() from | Service returns E_OK and SCHED- | 0S291
task/ISR2. The schedule table is started | ULETABLE_RUNNING via <ScheduleStatus>
AND NOT synchronous
17 Call GetScheduleTableStatus() from | Service returns E_OK and SCHED- | 0S290
task/ISR2. The schedule table is started | ULETABLE_RUNNING_AND_SYNCHRONOUS
AND synchronous (deviation in the precision | via <ScheduleStatus>
interval)
18 Call StartScheduleTableRel() from task/ISR2. | Service returns E_OS_ID 085452, 05430
The schedule table’s strategy is IMPLICIT
19 Call StartScheduleTableRel() from task/ISR2. | Service returns E_OK, the processing of the | OS278, 0S434
The schedule table’s strategy is EXPLICIT schedule table is started and the state is SCHED-
ULETABLE_RUNNING
20 Call StartScheduleTableRel() from task /ISR2. | Service returns E_OS_STATE 08277
The schedule table’s strategy is EXPLICIT
and its state is not stopped
21 Call StartScheduleTableAbs() from | Service returns E_OK, the processing of the | OS351
task/ISR2. The schedule table’s strategy is | schedule table is started and the state is SCHED-
IMPLICIT ULETABLE RUNNING
22 Call StartScheduleTableAbs() from | Service returns E_OK, the processing of the | OS351, 0S434
task/ISR2. The schedule table’s strategy is | schedule table is started and the state is SCHED-
EXPLICIT ULETABLE _RUNNING
23 Call StartScheduleTableAbs() from | Service returns E_.OS_STATE 0S350
task/ISR2. The schedule table’s strategy is
EXPLICIT and its state is not stopped
24 An IMPLICIT schedule table shall have a pe- 05429
riod equal to (MAX_ALLOWED_VALUE +
1) of its counter
25 An IMPLICIT schedule table is always syn- | Next expiry point is inserted in the list
chronized.
26 No synchronisation with deviation equal to 0 | Next expiry point is inserted in the list 05389, 0S201
27 Performing synchronisation with precision | According to deviation and MaxRetard, Next | OS206, 0OS417,
equal to 0 and deviation less than 0. Check | expiry point is inserted in the list 05420
expiry point good order
28 Performing synchronisation with precision | According to deviation and MaxRetard, First ex- | 0OS420
equal to 0 and deviation less than 0. Check | piry point is adjusted and if comes before Final
expiry point good order on last expiry point expiry point, Final expiry point is adjuted to the
same offset of First expiry point and inserted in
the list and First expiry point offset becomes 0
29 Performing synchronisation with precision | According to deviation and MaxRetard, First ex- | 0OS420

equal to 0 and deviation less than 0. Check
expiry point good order on final expiry point

piry point is launched now if First.Delay equal
to 0, otherwise if only one expiry point in the ST
(the final one), adjust the Final expiry point, in-
sert it in the list and First expiry point offset
becomes 0 otherwise is adjusted and inserted in
the list

34

Test | Action Expected Result 0S Require-
Case ments
No.
30 Performing synchronisation with precision | According to deviation and MaxAdvance, Next | OS421
equal to 0 and deviation greater than 0. Check | expiry point is inserted in the list
expiry point good order
31 Performing synchronisation with precision | According to deviation and MaxAdvance, First | OS421
equal to 0 and deviation greater than 0. Check | expiry point is adjusted and Final expiry point
expiry point good order on last expiry point is inserted in the list
32 Performing synchronisation with precision | According to deviation and MaxAdvance, First | OS421
equal to 0 and deviation greater than 0. Check | expiry point is launched now if First.Delay equal
expiry point good order on final expiry point | to 0, otherwise is adjusted and inserted in the list
33 Performing synchronisation with precision dif- | According to deviation, precision and MaxRe- | OS418, OS419
ferent than 0 and deviation less than 0. Check | tard, Next expiry point is inserted in the list
expiry point good order
34 Performing synchronisation with precision dif- | According to deviation, precision and MaxRe- | OS418, OS419
ferent than 0 and deviation less than 0. Check | tard, First expiry point is adjusted and if comes
expiry point good order on last expiry point before Final expiry point, Final expiry point is
adjuted to the same offset of First expiry point
and inserted in the list and First expiry point
offset becomes 0
35 Performing synchronisation with precision dif- | According to deviation, precision and MaxRe- | OS418, OS419
ferent than 0 and deviation less than 0. Check | tard, First expiry point is launched now if
expiry point good order on final expiry point | First.Delay equal to 0, otherwise if only one ex-
piry point in the ST (the final one), adjust the
Final expiry point, insert it in the list and First
expiry point offset becomes 0 otherwise is ad-
justed and inserted in the list
36 No synchronisation if schedule table asyn- | Next expiry point is inserted in the list 085362, 0S323
chronous
37 A schedule table can be autostarted with | The state is SCHEDULETABLE WAITING OsSchedule-
SYNCHRON mode TableAutostart
38 IMPLICIT schedule table is single-shot A synchronized schedule table shall be repeating
otherwise, synchronisation can’t be done.
39 IMPLICIT schedule table is repeating
40 IMPLICIT schedule table autostarts in AB-
SOLUTE mode
41 IMPLICIT schedule table autostarts in REL- | An IMPLICIT schedule table should be started | OS430
ATIVE mode in Absolute mode only
42 IMPLICIT schedule table autostarts in SYN- | An IMPLICIT schedule table should be started | OS430
CHRON mode in Absolute mode only
43 IMPLICIT schedule table duration is different | An IMPLICIT schedule table should have a du- | 0S429
to MAXALLOWEDVALUE + 1 ration equal to OSMAXALLOWEDVALUE + 1
of its counter.
44 EXPLICIT schedule table is single-shot A synchronized schedule table shall be repeating
otherwise, synchronisation can’t be done.
45 EXPLICIT schedule table is repeating
46 EXPLICIT schedule table autostarts in AB-
SOLUTE mode
47 EXPLICIT schedule table autostarts in REL-
ATIVE mode
48 EXPLICIT schedule table autostarts in SYN-
CHRON mode
49 EXPLICIT schedule table duration is greater | An EXPLICIT schedule table shouldn’t have | OS431

than MAXALLOWEDVALUE + 1

a duration greater than OSMAXALLOWE-
VALUE + 1 of its counter.

35

Test | Action Expected Result 0S Require-
Case ments
No.
50 EXPLICIT schedule table precision missing PRECISION attribute is missing
51 EXPLICIT schedule table precision lower
than duration
52 EXPLICIT schedule table precision greater | An explicit schedule table shall have a precision | 0S438
than duration in the range 0 to duration.
53 In the first expiry point of an EXPLICIT
schedule table, MaxRetard is lower than the
maximum value allowed
54 In the first expiry point of an EXPLICIT | In first expiry point, MaxRetard should be infe- | OS415, OS436
schedule table, MaxRetard is greater than the | rior to the previous delay minus MINCYCLE of
maximum value allowed the counter.
55 In the first expiry point of an EXPLICIT
schedule table, MaxAdvance is lower than the
maximum value allowed
56 In the first expiry point of an EXPLICIT | In first expiry point, MaxAdvance should be in- | OS416, OS437
schedule table, MaxAdvance is greater than | ferior to duration minus the first delay.
the maximum value allowed
57 In an expiry point of an EXPLICIT schedule
table, MaxRetard is lower than the maximum
value allowed
58 In an expiry point of an EXPLICIT schedule | In expiry point at offset X, MaxRetard should be | OS415, OS436
table, MaxRetard is greater than the maxi- | inferior to the previous delay minus MINCYCLE
mum value allowed of the counter.
59 In an expiry point of an EXPLICIT schedule
table, MaxAdvance is lower than the maxi-
mum value allowed
60 In an expiry point of an EXPLICIT schedule | In expiry point at offset X, MaxAdvance should | OS416, OS4337
table, MaxAdvance is greater than the maxi- | be inferior to duration minus the previous delay.
mum value allowed
2.12 AUTOSAR - OS-Application
2.12.1 API Service Calls for OS objects
OS Requirements : 016, 017, 256, 258, 261, 262, 271, 272, 273, 274, 287, 318, 319, 346, 423, 445, 447, 450, 459
0S288* is in the sequence which test all the APT service calls from wrong context.
Test | Action Expected Result 0S Require-
Case ments
No.
1 Call CheckObjectAccess() with <AppID> in- | Service returns NO_ACCESS 05423
valid
2 Call CheckObject Access() with | Service returns NO_ACCESS 05423
<ObjectType> invalid
3 Call CheckObjectAccess() for a task object | Service returns NO_ACCESS 05423
type with <ObjectID> invalid
4 Call CheckObjectAccess() for a task object | Service returns ACCESS 08256, 0OS271,
type, running task /ISR2 has access to the ob- 05450
ject
5 Call CheckObjectAccess() for a task object | Service returns NO_ACCESS 085272

type, running task/ISR2 has NO access to the
object

36

- ANM T 0 ONO

3INTVA SO 3
SS300V ON
SS300V

ou

NOILYOKIdHYSO ™ AlITVANI

SS90y
19lq0

EET

Jaunon
walshs

14v1S3yd

14v1S3y PlfEAUl p

Buiuuni
uoneoldde
ou

i <uondouelsey> TL[AIQF@.EOV |

ON H3TINA3HOS S3H 9|qey 3|npayos

J9)UN0d

80IN0Ssal
IleAU PIEA plfeAul wuele US| dSEl PIleAUl pifeA

i <adA]100lq0> | [<anddy> |

!

OA/ \o

ai

uoneolddy

1©H

Jaquinu
Is|sopiseL
uoneolddy

S|[eQ 80IMBS |dy uonedlddy HySOLNY

diysieump
welqo
3o8y9

uoneolddy
oleulwIa]

$5800Y

sse)

108[qO308yD

80IMIBS SO

pajed

]

[ELE]
uonNOaXa

37

Test | Action Expected Result 0S Require-
Case ments
No.
6 Call CheckObjectAccess() for an ISR2 object | Service returns NO_ACCESS
type with <ObjectID> invalid
7 Call CheckObjectAccess() for an ISR2 object | Service returns ACCESS
type, running task/ISR2 has access to the ob-
ject
8 Call CheckObjectAccess() for an ISR2 object | Service returns NO_ACCESS
type, running task/ISR2 has NO access to the
object
9 Call CheckObjectAccess() for an alarm object | Service returns NO_ACCESS
type with <ObjectID> invalid
10 Call CheckObjectAccess() for an alarm object | Service returns ACCESS
type, running task /ISR2 has access to the ob-
ject
11 Call CheckObjectAccess() for an alarm object | Service returns NO_ACCESS
type, running task/ISR2 has NO access to the
object
12 Call CheckObjectAccess() for a resource ob- | Service returns NO_ACCESS
ject type with <ObjectID> invalid
13 Call CheckObjectAccess() for a resource ob- | Service returns ACCESS
ject type, running task/ISR2 has access to the
object
14 Call CheckObjectAccess() for a resource ob- | Service returns NO_ACCESS
ject type, running task/ISR2 has NO access
to the object
15 Call CheckObjectAccess() for a resource ob- | Service returns ACCESS 0S318
ject type (RES_.SCHEDULER)
16 Call CheckObjectAccess() for a schedule table | Service returns NO_ACCESS
object type with <ObjectID> invalid
17 Call CheckObjectAccess() for a schedule table | Service returns ACCESS
object type, running task/ISR2 has access to
the object
18 Call CheckObjectAccess() for a schedule table | Service returns NO_ACCESS
object type, running task/ISR2 has NO access
to the object
19 Call CheckObjectAccess() for a counter object | Service returns NO_ACCESS
type with <ObjectID> invalid
20 Call CheckObjectAccess() for a counter object | Service returns ACCESS
type, running task/ISR2 has access to the ob-
ject
21 Call CheckObjectAccess() for a counter object | Service returns NO_ACCESS
type, running task/ISR2 has NO access to the
object
22 Call CheckObjectAccess() for a counter object | Service returns NO_ACCESS
type (SystemCounter)
23 Call CheckObjectOwnerShip() with | Service returns INVALID_OSAPPLICATION 08274, OS017
<ObjectType> invalid
24 Call CheckObjectOwnerShip() for a task ob- | Service returns INVALID_OSAPPLICATION 05274
ject type with <ObjectID> invalid
25 Call CheckObjectOwnerShip() for a task ob- | Service returns the identifier of the OS- | OS273

ject type

Application to which the object belongs

38

Test | Action Expected Result 0S Require-
Case ments
No.
26 Call CheckObjectOwnerShip() for an ISR2 | Service returns INVALID_OSAPPLICATION
object type with <ObjectID> invalid
27 Call CheckObjectOwnerShip() for an ISR2 | Service returns the identifier of the OS-
object type Application to which the object belongs
28 Call CheckObjectOwnerShip() for an alarm | Service returns INVALID_OSAPPLICATION
object type with <ObjectID> invalid
29 Call CheckObjectOwnerShip() for an alarm | Service returns the identifier of the OS-
object type Application to which the object belongs
30 Call CheckObjectOwnerShip() for a resource | Service returns INVALID_OSAPPLICATION
object type with <ObjectID> invalid
31 Call CheckObjectOwnerShip() for a resource | Service returns the identifier of the OS-
object type Application to which the object belongs
32 Call CheckObjectOwnerShip() for a resource | Service returns INVALID_OSAPPLICATION 08319
object type (RES_.SCHEDULER)
33 Call CheckObjectOwnerShip() for a schedule | Service returns INVALID_OSAPPLICATION
table object type with <ObjectID> invalid
34 Call CheckObjectOwnerShip() for a schedule | Service returns the identifier of the OS-
table object type Application to which the object belongs
35 Call CheckObjectOwnerShip() for a counter | Service returns INVALID_OSAPPLICATION
object type with <ObjectID> invalid
36 Call CheckObjectOwnerShip() for a counter | Service returns the identifier of the OS-
object type Application to which the object belongs
37 Call CheckObjectOwnerShip() for a counter | Service returns INVALID_OSAPPLICATION
object type (SystemCounter)
38 Call TerminateApplication() with | Service returns E_OS_VALUE 05459
<RestartOption> invalid
39 Call TerminateApplication() with | The OS shall terminate the calling OS- | 0S258, 05287,
<RestartOption> equals NO RESTART Application (i.e. to kill all tasks, disable the | 0S447
interrupt sources of those Oslsrs which belong
to the OS-Application and free all other OS re-
sources associated with the application)
40 Call TerminateApplication() with | The OS shall terminate the calling OS- | 0S258, 0S346,
<RestartOption> equals RESTART Application (i.e. to kill all tasks, disable the | 0S447
interrupt sources of those Oslsrs which belong
to the OS-Application and free all other OS
resources associated with the application) and
shall activate the configured OsRestartTask of
the terminated OS-Application
41 Call GetApplicationID() and mno OS- | Service returns INVALID_OSAPPLICATION 085262
Application is running
42 Call GetApplicationID() and one OS- | Service returns the application identifier to | 0S016, OS261
Application is running which the executing Task/OsIsr/hook belongs
43 No Task nor ISR2 in an application error : An application should have at least one | 0OS445
Task OR ISR2.
44 At least one Task or Oslsr in an application 0S445

2.12.2 Access Rights for objects in API services
OS Requirements : 56, 448

39

SS300V SO 3

snjels
uinjal

ou sok

sybu
$S900E

anjeAlajunonlen
anjepsaunoppasde|3i0n

Sniels1SIen
JaunoDusWaIoU|

OUAsYLSIeS

1SIXeN

wiejy|egies

sdoig |ed1Suels wielysqyes Wieyien

VLSHEIS A_m_s!&o

f 90IM9S SO PaIIBD

JUSAZIeH
us,

90IN0saHesEsoY

|~

Sybry sseo0y uoneodlddy HySOLNY

82In0say1en)

SleISYHSELIvY

sseLureyD

ASELSIeAIOY

—TANNOTOONOD

40

Test | Action Expected Result 0S Require-

Case ments

No.

1 Call ActivateTask() for a task which can be | Service returns E_OK if no error 05448
accessed by the running task/ISR2

2 Call ActivateTask() for a task which can’t be | Service returns E_OS_ACCESS 0S056, 0S448
accessed by the running task/ISR2

3 Call ChainTask() for a task which can be ac- | Service returns E_OK if no error
cessed by the running task/ISR2

4 Call ChainTask() for a task which can’t be | Service returns E_LOS_ACCESS
accessed by the running task/ISR2

5 Call GetTaskState() for a task which can be | Service returns E_OK if no error
accessed by the running task/ISR2

6 Call GetTaskState() for a task which can’t be | Service returns E_.OS_ACCESS
accessed by the running task/ISR2

7 Call GetResource() for a task which can be | Service returns E_OK if no error
accessed by the running task/ISR2

8 Call GetResource() for a task which can’t be | Service returns E_OS_ACCESS
accessed by the running task/ISR2

9 Call ReleaseResource() for a task which can | Service returns E_OK if no error
be accessed by the running task/ISR2

10 Call ReleaseResource() for a task which can’t | Service returns E_OS_ACCESS
be accessed by the running task/ISR2

11 Call SetEvent() for a task which can be ac- | Service returns E_OK if no error
cessed by the running task/ISR2

12 Call SetEvent() for a task which can’t be ac- | Service returns E_.OS_ACCESS
cessed by the running task/ISR2

13 Call GetEvent() for a task which can be ac- | Service returns E_OK if no error
cessed by the running task/ISR2

14 Call GetEvent() for a task which can’t be ac- | Service returns E_OS_ACCESS
cessed by the running task/ISR2

15 Call GetAlarmBase() for a task which can be | Service returns E_OK if no error
accessed by the running task/ISR2

16 Call GetAlarmBase() for a task which can’t | Service returns E_OS_ACCESS
be accessed by the running task/ISR 2

17 Call GetAlarm() for a task which can be ac- | Service returns E_OK if no error
cessed by the running task/ISR2

18 Call GetAlarm() for a task which can’t be ac- | Service returns E_LOS_ACCESS
cessed by the running task/ISR2

19 Call SetRelAlarm() for a task which can be | Service returns E_OK if no error
accessed by the running task/ISR2

20 Call SetRelAlarm() for a task which can’t be | Service returns E_.OS_ACCESS
accessed by the running task/ISR2

21 Call SetAbsAlarm() for a task which can be | Service returns E_OK if no error
accessed by the running task/ISR2

22 Call SetAbsAlarm() for a task which can’t be | Service returns E_OS_ACCESS
accessed by the running task/ISR2

23 Call CancelAlarm() for a task which can be | Service returns E_OK if no error
accessed by the running task/ISR2

24 Call CancelAlarm() for a task which can’t be | Service returns E_.OS_ACCESS

accessed by the running task/ISR2

41

Test | Action Expected Result 0S Require-

Case ments

No.

25 Call StartScheduleTableRel() for a task which | Service returns E_OK if no error
can be accessed by the running task/ISR2

26 Call StartScheduleTableRel() for a task which | Service returns E_.OS_ACCESS
can’t be accessed by the running task/ISR2

27 Call StartScheduleTableAbs() for a task which | Service returns E_OK if no error
can be accessed by the running task /ISR2

28 Call StartScheduleTableAbs() for a task which | Service returns E_.OS_ACCESS
can’t be accessed by the running task/ISR2

29 Call StopScheduleTable() for a task which can | Service returns E_OK if no error
be accessed by the running task/ISR2

30 Call StopScheduleTable() for a task which | Service returns E_.OS_ACCESS
can’t be accessed by the running task/ISR2

31 Call NextScheduleTable() for a task which can | Service returns E_OK if no error
be accessed by the running task/ISR2

32 Call NextScheduleTable() for a task which | Service returns E_LOS_ACCESS
can’t be accessed by the running task/ISR2

33 Call StartScheduleTableSynchron() for a task | Service returns E_OK if no error
which can be accessed by the running
task/ISR2

34 Call StartScheduleTableSynchron() for a task | Service returns E_.OS_ACCESS
which can’t be accessed by the running
task/ISR2

35 Call SyncScheduleTable() for a task which can | Service returns E_OK if no error
be accessed by the running task/ISR2

36 Call SyncScheduleTable() for a task which | Service returns E_LOS_ACCESS
can’t be accessed by the running task/ISR2

37 Call SetScheduleTableAsync() for a task | Service returns E_OK if no error
which can be accessed by the running
task/ISR2

38 Call SetScheduleTableAsync() for a task | Service returns E_OS_ACCESS
which can’t be accessed by the running
task/ISR2

39 Call GetScheduleTableStatus() for a task | Service returns E_OK if no error
which can be accessed by the running
task/ISR2

40 Call GetScheduleTableStatus() for a task | Service returns E_.OS_ACCESS
which can’t be accessed by the running
task/ISR2

41 Call IncrementCounter() for a task which can | Service returns E_OK if no error
be accessed by the running task/ISR2

42 Call IncrementCounter() for a task which | Service returns E_.OS_ACCESS
can’t be accessed by the running task/ISR2

43 Call GetCounterValue() for a task which can | Service returns E_OK if no error
be accessed by the running task/ISR2

44 Call GetCounterValue() for a task which can’t | Service returns E_.OS_ACCESS
be accessed by the running task/ISR2

45 Call GetElapsedCounterValue() for a task | Service returns E_OK if no error

which can be accessed by the running
task /ISR2

42

Test | Action Expected Result 0S Require-
Case ments
No.
46 Call GetElapsedCounterValue() for a task | Service returns E_OS_ACCESS
which can’t be accessed by the running
task/ISR2
2.12.3 Access Rights for objects from OIL file
OS Requirements: 056
| AUTOSAR_Application_Access_Rights_from_OIL _file |
\ O/bject | [Object ACTION | [Wrong parameter |
A
Schedule Set Task Counter
Table Event Counter
]
2
3
4
5
6
7 1 g 1
Test | Action Expected Result 0S Require-
Case ments
No.
1 Alarm’s Counter doesn’t belong to the same | error : Counter C doesn’t belong to the same
application of the alarm and the alarm has no | application of alarm A
access rights to the counter’s application
2 Action of an alarm results in a ActivateTask. | error : Task T doesn’t belong to the same appli-
Action’s Task doesn’t belong to the same ap- | cation of alarm A
plication of the alarm and the alarm has no
access rights to the task’s application
3 Action of an alarm results in a SetEvent. Ac- | error : Task T doesn’t belong to the same appli-
tion’s Task doesn’t belong to the same applica- | cation of alarm A
tion of the alarm and the alarm has no access
rights to the task’s application
4 Action of an alarm results in a Increment- | error : Counter C doesn’t belong to the same
Counter. Action’s Counter doesn’t belong to | application of alarm A
the same application of the alarm and the
alarm has no access rights to the counter’s ap-
plication
5 Schedule table’s Counter doesn’t belong to the | error : Counter C doesn’t belong to the same
same application of the schedule table and | application of schedule table S
the schedule table has no access rights to the
counter’s application
6 Action of an expiry point of a schedule ta- | error : Task T doesn’t belong to the same appli-

ble results in a ActivateTask. Action’s Task
doesn’t belong to the same application of the
schedule table and the schedule table has no
access rights to the task’s application

cation of schedule table S

43

Test | Action Expected Result 0S Require-

Case ments
No.

7 Action of an expiry point of a schedule table | error : Task T doesn’t belong to the same appli-
results in a SetEvent. Action’s Task doesn’t | cation of schedule table S

belong to the same application of the sched-
ule table and the schedule table has no access
rights to the task’s application

2.13 AUTOSAR - Service Protection

OS Requirements : 52, 69, 70, 71, 92, 93, 239, 368, 369

Test case 11 can’t be tested because enabling/resuming API service call doesn’t return.

As specified in AUTOSAR OS Specifications, when an API service call happens when interrupts are disabled, the
service should be ignored and should return E_.OS_DISABLEDINT when the service return a StatusType (OS093,
Test Case 10). The ErrorHook(s) is(are) called.

As nothing is described for API services which doesn’t return a StatusType, we decide executing the service
correctly, calling the Errorhook(s) with E_OS_DISABLEDINT as sequence 5 in the procedure (See GetActiveAp-
plicationMode(), GetApplicationID(), GetISRID(), CheckObjectAccess(), CheckObjectOwnership()).

[AUTOSAR_Service_Protection]

Task/OSlsr state
Resources
held by..

ShutdowsOS interrupts

E_OS_MISSINGEND

0S "~ Enable/ ~that
task OSlsr Service ResumeAll enabled task ..an other E_OS_DISABLENT
end end Call |nterrupts disabled 1/ A task E_OS_RESOURCES
1
2
3
4
5
6
7
8
9
10
1
12
Test | Action Expected Result OS Require-
Case ments
No.
1 Ending a task without making a Terminate- | The OS shall terminate the task, call | OS052, OS069
Task() or ChainTask() call the errorhook (if configured) with status
E_OS_MISSINGEND before leaving RUNNING
state and call the posttaskhook (is configured)
2 Ending a task without making a Terminate- | The OS shall terminate the task, call | 0S239
Task() with interrupts disabled the errorhook (if configured) with status
E_OS_MISSINGEND and enabling interrupts
3 Ending a task without making a Terminate- | The OS shall terminate the task, call | OS070
Task(), holding 1 resource the errorhook (if configured) with status
E_OS_MISSINGEND and release the resource
4 Ending a task without making a Terminate- | The OS shall terminate the task, call | OS070
Task(), holding several resources the errorhook (if configured) with status
E_OS_MISSINGEND and release resources

44

Test | Action Expected Result 0S Require-
Case ments
No.
5 Ending a task without making a Terminate- | The OS shall terminate the task, call | OS070
Task(), an other task holding resource(s) the errorhook (if configured) with status
E_OS_MISSINGEND
6 Ending an ISR2 with interrupts disabled The OS shall call the errorhook (if configured) | OS368
with status E.OS_DISABLEDINT and enabling
interrupts
7 Ending an ISR2, holding 1 resource The OS shall call the errorhook (if configured) | OS369
with status E.OS_RESOURCE and release the
resource
8 Ending an ISR2, holding several resources The OS shall call the errorhook (if configured) | OS369
with status E_OS_RESOURCE and release re-
sources
9 Ending an ISR2, an other task holding re- | The OS shall call the errorhook (if configured) | OS369
source(s) with status E.OS_.RESOURCE
10 Call an OS service when interrupts are dis- | Service (which can) returns | OS093
abled E_OS_DISABLEDINT, ignoring the service
11 Enabling/Resuming ingterrupts when inter- | Service ignored 05092
rupts are already enabled
12 Call ShutdownOS() PostTaskHook is not performed (even if Post- | OS071
TaskHook is configured)
2.14 AUTOSAR - Memory Protection

OS Requirements :

26, 27, 44, 81, 83, 86, 87, 195, 196, 198, 207, 208, 209, 355, 356.

Test case 14, 15, 16, 18 (the own peripheral part) are not tested yet.

| AUTOSAR_Memory_Protection]

from to
OS application... ‘ ‘ OS application... ‘ oS access to...
data 0s peripherals
non-trusted non-trusted the stack code
execute trusted same OSApplication Task/Oslsr cocrg;neon protected h ok 0
read . trusted data own other cal
write Task/Oslsr Stack protectionhook
data

P —
5| |

l
2 |
o —
2 | | | |

| | | | |

[| | | [
5 | | | l |

| | | | |
H—
12
13
14
15
& |

| |
18—

As you can see above, the test case 1 correspond to two test cases : a Read test case (1la) and a Write test case
(1b). Moreover, the test case 7 (and some others) correspond to six test cases as described in the table below.

45

read e

to
OS application...

non-trusted

the
same
trusted

Qo TN

I,

Test | Action Expected Result (ON] Require-
Case ments
No.
la Read OS datas from non-trusted OS applica- | The OS shall call the protection- | OS198
tion hook (if configured) with status
E_OS_.PROTECTION_MEMORY
1b Write OS datas from non-trusted OS applica- | The OS shall call the protection- | OS198
tion hook (if configured) with status
E_OS_PROTECTION_MEMORY
2a, Read OS datas from trusted OS application Access allowed 0S198
2b Write OS datas from trusted OS application | Access allowed 0S198
3a, Read OS stack from non-trusted OS applica- | The OS shall call the protection- | OS198
tion hook (if configured) with status
E_OS_PROTECTION_MEMORY
3b Write OS stack from non-trusted OS applica- | The OS shall call the protection- | OS198
tion hook (if configured) with status
E_OS_PROTECTION_MEMORY
4a Read OS stack from trusted OS application Access allowed 0S198
4b Write OS stack from trusted OS application Access allowed 0S198
5a Read its own OS application’s datas from non- | Access allowed 0S086
trusted OS application
5b Write its own OS application’s datas from | Access allowed 0S086
non-trusted OS application
6¢c Read non-trusted OS application’s datas from | The OS shall call the protection- | OS026
non-trusted OS application hook (if configured) with status
E_OS_PROTECTION_MEMORY
6d Write non-trusted OS application’s datas from | The OS shall call the protection- | OS207
non-trusted OS application hook (if configured) with status
E_OS_.PROTECTION_MEMORY
6e Read trusted other OS application’s datas | The OS shall call the protection- | OS026
from non-trusted OS application hook (if configured) with status
E_OS_PROTECTION_MEMORY
6f Write trusted other OS application’s datas | The OS shall call the protection- | OS207
from non-trusted OS application hook (if configured) with status
E_OS_PROTECTION_MEMORY
Ta Read its own OS application’s datas from | Access allowed According to
trusted OS application 0S026
b Write its own OS application’s datas from | Access allowed 0S086
trusted OS application
Tc Read non-trusted OS application’s datas from | Access allowed According to

trusted OS application

085026

46

Test | Action Expected Result 0S Require-
Case ments
No.
7d Write non-trusted OS application’s datas from | Access allowed According to
trusted OS application 05207
Te Read trusted OS application’s datas from | Access allowed According to
trusted OS application 05026
Tt Write trusted OS application’s datas from | Access allowed According to
trusted OS application 0S207
8a Read Task/Oslsr’s datas of the same non- | The OS shall call the protection- | OS195
trusted OS application hook (if configured) with status
E_OS_.PROTECTION_MEMORY
8b Write Task/Oslsr’s datas of the same non- | The OS shall call the protection- | OS195
trusted OS application hook (if configured) with status
E_OS_.PROTECTION_MEMORY
8c Read Task/Oslsr’s datas of an other non- | The OS shall call the protection- | OS356
trusted OS application from non-trusted OS | hook (if configured) with status
application E_OS_.PROTECTION_MEMORY
8d Read Task/Oslsr’s datas of an other non- | The OS shall call the protection- | OS356
trusted OS application from non-trusted OS | hook (if configured) with status
application E_OS_PROTECTION_MEMORY
8e Read Task/Oslsr’s datas of a trusted OS ap- | The OS shall call the protection- | OS356
plication from non-trusted OS application hook (if configured) with status
E_OS_PROTECTION_MEMORY
8f Write Task/Oslsr’s datas of a trusted OS ap- | The OS shall call the protection- | OS356
plication from non-trusted OS application hook (if configured) with status
E_OS_.PROTECTION_MEMORY
9a Read Task/Oslsr’s datas of the same trusted | Access allowed 0S087
OS application
9b Write Task/Oslsr’s datas of the same trusted | Access allowed 05087
OS application
9c Read Task/Oslsr’s datas of a non-trusted OS | Access allowed 05087
application from trusted OS application
9d Write Task/Oslsr’s datas of a non-trusted OS | Access allowed 0S087
application from trusted OS application
9e Read Task/Oslsr’s datas of an other trusted | Access allowed 0S087
OS application from trusted OS application
of Write Task/Oslst’s datas of an other trusted | Access allowed 0S087
OS application from trusted OS application
10a | Read Task/Oslsr’s stack of the same non- | The OS shall call the protection- | 0S208
trusted OS application hook (if configured) with status
E_OS_.PROTECTION_MEMORY
10b | Write Task/Oslsr’s stack of the same non- | The OS shall call the protection- | OS208
trusted OS application hook (if configured) with status
E_OS_.PROTECTION_MEMORY
10c | Read Task/Oslsr’s stack of an other non- | The OS shall call the protection- | OS355
trusted OS application from non-trusted OS | hook (if configured) with status
application E_OS_PROTECTION_MEMORY
10d | Write Task/Oslsr’s stack of an other non- | The OS shall call the protection- | OS355
trusted OS application from non-trusted OS | hook (if configured) with status

application

E_OS_.PROTECTION_MEMORY

47

Test | Action Expected Result 0S Require-
Case ments
No.
10e Read Task/Oslsr’s stack of a trusted OS ap- | The OS shall call the protection- | OS355
plication from non-trusted OS application hook (if configured) with status
E_OS_.PROTECTION_MEMORY
10f Write Task/Oslsr’s stack of a trusted OS ap- | The OS shall call the protection- | OS355
plication from non-trusted OS application hook (if configured) with status
E_OS_PROTECTION_MEMORY
11a | Read Task/Oslsr’s stack of the same trusted | Access allowed 05196
OS application
11b | Write Task/Oslst’s stack of the same trusted | Access allowed 05196
OS application
11c | Read Task/Oslsr’s stack of a non-trusted OS | Access allowed 085196
application from trusted OS application
11d | Write Task/Oslsr’s stack of a non-trusted OS | Access allowed 05196
application from trusted OS application
1le Read Task/Oslsr’s stack of an other trusted | Access allowed 0S196
OS application from trusted OS application
11f Write Task/Oslsr’s stack of an other trusted | Access allowed 085196
OS application from trusted OS application
12 Execute sharde library code from non-trusted | Access allowed 0S081
OS application
13 Execute sharde library code from trusted OS | Access allowed 0S081
application
14 Execute protected (an OS application can pro- | The OS shall call the protection- | OS027
tect its code section) code from non-trusted | hook (if configured) with status
OS application E_OS_PROTECTION_MEMORY
15 Execute protected (an OS application can pro- | Access allowed 0S027
tect its code section) code from trusted OS
application
16a | Read its own peripherals from non-trusted OS | Access allowed 0S083
application
16b | Write to its own peripherals from non-trusted | Access allowed 0S083
OS application
17c Read other peripherals from non-trusted OS | The OS shall call the protection- | according to
application hook (if configured) with status | OS083
E_OS_.PROTECTION_MEMORY
17d | Write to other peripherals from non-trusted | The OS shall call the protection- | according to
OS application hook (if configured) with status | OS083
E_OS_.PROTECTION_MEMORY
18a Read its own peripherals from trusted OS ap- | Access allowed 0S209
plication
18b | Write its own peripherals from trusted OS ap- | Access allowed 0S209
plication
18c Read other peripherals from trusted OS appli- | Access allowed 05209
cation
18d Write other peripherals from trusted OS ap- | Access allowed 0S209
plication
2.15 AUTOSAR - Timing Protection

OS Requirements : (28), (89), (397)

48

2.15.1 Execution Time Budget
OS Requirements : 64, 210, 473, 474

AUTOSAR_Timing_Protection
Execution budget)

/

AN

execution Task/ISR2 Execution Execution Time Operating
level preempted time i restarted System call
/ (with i
task ISR2 <= Execution WaitEvent) avgtlitcatt?:n nothing
/ Budget with
basic > Execution / E_OS_PROTEC
no Budget no event TION_TIME
extended yes event (ProtectionHook)
received
1
2
3
4
5
6
7
8 ! 3 > v > >
9
10
1
12
13 ®
14
15
16
Test | Action Expected Result (O Require-
Case ments
No.
1 Execution Time of a non-preempted basic task 05473
is less than the Execution Budget
2 Execution Time of a non-preempted basic task | The OS shall call the protectionhook (if config- | OS064
reaches the Execution Budget ured) with status E_OS_PROTECTION_TIME
3 Execution Time of a preempted basic task is
less than the Execution Budget
4 Execution Time of a preempted basic task | The OS shall call the protectionhook (if config- | OS064
reaches the Execution Budget ured) with status ELOS_.PROTECTION_TIME
5 Execution Time of an extended task which has
been reset by the activation of the task until
WaitEvent API calls
6 Execution Time of an extended task which has | The OS shall call the protectionhook (if config- | 0S064
been reset by the activation of the task but | ured) with status E.OS_ PROTECTION_TIME
never comes to the WaitEvent API

49

Test | Action Expected Result 0S Require-

Case ments

No.

7 Execution Time (restarted by WaitEvent 085473
without event set) of a non-preempted ex-
tended task is less than the Execution Budget

8 Execution Time (restarted by WaitEvent | The OS shall call the protectionhook (if config- | OS064
without event set) of a non-preempted ex- | ured) with status ECOS_.PROTECTION_TIME
tended task reaches the Execution Budget

9 Execution Time (restarted by WaitEvent 085473
without event set) of a preempted basic task
is less than the Execution Budget

10 Execution Time (restarted by WaitEvent | The OS shall call the protectionhook (if config- | OS064
without event set) of a preempted basic task | ured) with status ECOS_PROTECTION_TIME
reaches the Execution Budget

11 Execution Time (restarted by WaitEvent with
the event(s) set) of a non-preempted extended
task is less than the Execution Budget

12 Execution Time (restarted by WaitEvent with | The OS shall call the protectionhook (if config- | OS064
the event(s) set) of a non-preempted extended | ured) with status E.OS_ PROTECTION_TIME
task reaches the Execution Budget

13 Execution Time of a preempted ISR2 is less 05474
than the Execution Budget

14 Execution Time of a preempted ISR2 reaches | The OS shall call the protectionhook (if config- | 0S210
the Execution Budget ured) with status ELOS_.PROTECTION_TIME

15 Execution Time of a preempted ISR2 is less
than the Execution Budget

16 Execution Time of a preempted ISR2 reaches | The OS shall call the protectionhook (if config- | 0S210
the Execution Budget ured) with status E_OS_PROTECTION_TIME

2.15.2 Time Frame
OS Requirements : 48, (465), 466, 467, 469, (470), 471, 472

Test | Action Expected Result 0S Require-

Case ments

No.

1 Basic task inter-arrival time is greater than
Time Frame

2 Basic task inter-arrival time is lower than | The OS shall call the protection- | OS466
Time Frame (and the task activation is al- | hook (if configured) with status
lowed) E_OS_PROTECTION_ARRIVAL

3 Basic task inter-arrival time is lower than | The OS shall call the errorhook (if configured) | OS469
Time Frame (and the task activation is not | with status E_OS_LIMIT
allowed)

4 Extended task inter-arrival time is greater
than Time Frame. Time from the activation
to the first release (task running directly)

5 Extended task inter-arrival time is greater

than Time Frame. Time from the activation
to the first release (task running after a pre-
emption to test the inter-arrival time is well
started at the activation and not from the run-
ning point)

50

AUTOSAR_Timing_Protection

/ Qne Frame)
execution /inter-arrival activation ™ from the between | Operating
level time allowed activation releases System call
to the first
task ISR2 / re'easf nothing E(E(r)rfm%zﬂg
/ <=Time / running
basic Frame . yes no directly E_OS_PROTECT
> Time through a ION_TIME
extended Frame preemption (ProtectionHook)
2
4
5
9
10
Test | Action Expected Result 0S Require-
Case ments
No.
6 Extended task inter-arrival time is lower than | The ~ OS shall call the protection- | OS467
Time Frame. Time from the activation to the | hook (if configured) with status
first release (task running directly) E_OS_PROTECTION_ARRIVAL
7 Extended task inter-arrival time is greater 05472
than Time Frame. Time between two releases.
8 Extended task inter-arrival time is lower than | The OS shall call the protection- | OS467
Time Frame. Time between two releases. hook (if configured) with status
E_OS_PROTECTION_ARRIVAL
9 ISR2 inter-arrival time is greater than Time
Frame (ISR2 running directly)
10 ISR2 inter-arrival time is greater than Time 05471
Frame (ISR2 running after a preemption to
test the inter-arrival time is well started at the
activation and not from the running point)
11 ISR2 inter-arrival time is lower than Time | The OS shall call the protection- | OS048
Frame (the ISR2 is not running) hook (if configured) with status
E_OS_PROTECTION_ARRIVAL
12 Basic task inter-arrival time is lower than
Time Frame (the ISR2 is running)
2.15.3 Resource Locking and Interrupt Disabling

OS Requirements : (33), (37)

51

A Interrupts Management

References

[1] Consortium OSEK/VDX
[2] Consortium OSEK/VDX
[3] Consortium OSEK/VDX
[4] Consortium OSEK/VDX

. OSEK/VDX OS Test Plan, 2.0 edition, 16th April 1999.

. OSEK/VDX Operating System, 2.2.3 edition, 17th February 2005.
. OSEK/VDX Operating System, 2.0 edition, 2001.

. OSEK/VDX Communication, 3.0.3 edition, 2004.

52

)
X
=X
54
ﬁ_T
(&)
C
2 <
| =
%9
B-2--
S ®©
=
S |
=
Q.
>
=
=
(9]
o
£
I_
.
o
=
=
Q
X 5
<&
=
_l
(0]
2
C
3
Q
(&
_l
©
°
a
s

TY:
WaitEvent

g
5 x
- P
5 £2
n._V.v ©
~
D x $7
n 9 >
] ‘ $ 2w
[V} Q Won
g © = < © =
g T |2¥ © QX
2] i ga— S+ g £ SdO
15} = [ZkF S C
© o 7] R
\
)
=
2 E E 2
o leo._S_____ ©C__8_\a_
£ o
= o
3 c
©

awaken

TerminateTask

switch

53

TerminateTask

switch

	Introduction
	Test cases
	Task management
	Interrupt processing
	Event mechanism
	Resource management
	Alarm
	Error handling, hook routines (with interrupts) and OS execution control
	Internal COM
	AUTOSAR - Core OS
	AUTOSAR - Software Counter
	AUTOSAR - Schedule Table
	AUTOSAR - Schedule Table Synchronisation
	AUTOSAR - OS-Application
	API Service Calls for OS objects
	Access Rights for objects in API services
	Access Rights for objects from OIL file

	AUTOSAR - Service Protection
	AUTOSAR - Memory Protection
	AUTOSAR - Timing Protection
	Execution Time Budget
	Time Frame
	Resource Locking and Interrupt Disabling

	Interrupts Management

