
Trampoline (OSEK/VDX OS) Test Plan - Version 1.0

Florent PAVIN

June 11, 2010

Contents

1 Introduction 1

2 Test cases 1
2.1 Task management . 2
2.2 Interrupt processing . 6
2.3 Event mechanism . 8
2.4 Resource management . 11
2.5 Alarm . 13
2.6 Error handling, hook routines (with interrupts) and OS execution control 16
2.7 Internal COM . 19
2.8 AUTOSAR - Core OS . 21
2.9 AUTOSAR - Software Counter . 23
2.10 AUTOSAR - Schedule Table . 25
2.11 AUTOSAR - Schedule Table Synchronisation . 31
2.12 AUTOSAR - OS-Application . 36

2.12.1 API Service Calls for OS objects . 36
2.12.2 Access Rights for objects in API services . 39
2.12.3 Access Rights for objects from OIL file . 42

2.13 AUTOSAR - Service Protection . 43
2.14 AUTOSAR - Memory Protection . 45
2.15 AUTOSAR - Timing Protection . 48

2.15.1 Execution Time Budget . 48
2.15.2 Time Frame . 50
2.15.3 Resource Locking and Interrupt Disabling . 52

A Interrupts Management 52

1 Introduction

This document contains the test plan for the conformance test of the operating system. This means definition of
the test cases, which are used to certify conformance of an OS implementation. For more information about what
is a test plan and his link to the conformance methodology previously defined, see OSEK Test Plan 2.0 [1].
Unlike OSEK Test Plan 2.0 which is based from OSEK OS 2.0 [3], this test plan is defined from OSEK OS 2.2.3
[2] and the internal communication of OSEK Communication 3.0.3 [4] .

2 Test cases

This chapter contains the test cases which will be used to test an implementation of an operating system to be
OSEK conform. Thus, they are developed on the basis of the OSEK OS specification, according to figure 12-1 API
service restrictions from OSEK/VDX OS v2.2.3. The internal communication comes from CCCB conformance class
([4] p.59).
As we said earlier, this test plan is defined from the OSEK OS version 2.2.3, and to better see the differences

1

between this version and the old one (OSEK Test Plan 2.0), we will explain those differences in each section.
ISR1 does not use an operating system service since after the ISR1 is finished, processing continues exactly at the
instruction where the interrupt has occurred, i.e. the interrupt has no influence on task management. Thus, ISR
can’t be tested.
Stack Monitoring, from AUTOSAR OS, is not a functional test. It has to be tested in every target because it’s
depending on the portage. Stack Monitoring OS Requirements (OS067, OS068, OS396) are therfore not included
in this report.
Idem for Protecting the Hardware.

Meanwhile, Memory Protection OS Requirements (OS026, OS027, OS044, OS081, OS083, OS086, OS087, OS195,
OS196, OS198, OS207, OS208, OS209, OS355, OS356) are tested (see 2.14).

2.1 Task management

Since Schedule() returns E OS RESSOURCE from a task or an interrupt when a resource is occupied, test case 33
appears.
Since GetTaskID returns E OK from an interrupt, test case 35 appears.
Category 3 interrupts have been removed.

Test
Case
No.

Action Expected Result

1 Call ActivateTask() from task-level with in-
valid task ID (task does not exist)

Service returns E OS ID

2 Call ActivateTask() from non-preemptive task
on suspended basic task

No preemption of running task. Activated task becomes ready.
Service returns E OK

3 Call ActivateTask() from preemptive task on
suspended basic task which has higher priority
than running task.

Running task is preempted. Activated task becomes running.
Service returns E OK

4 Call ActivateTask() from preemptive task on
suspended basic task which has lower priority
than running task.

No preemption of running task. Activated task becomes ready.
Service returns E OK

5 Call ActivateTask() from preemptive task on
suspended basic task which has equal priority
as running task.

No preemption of running task. Activated task becomes ready.
Service returns E OK

6 Call ActivateTask() from non-preemptive task
on suspended extended task

No preemption of running task. Activated task becomes ready
and its events are cleared. Service returns E OK

7 Call ActivateTask() from preemptive task on
suspended extended task which has higher pri-
ority than running task.

Running task is preempted. Activated task becomes running and
its events are cleared. Service returns E OK

8 Call ActivateTask() from preemptive task on
suspended extended task which has lower pri-
ority than running task.

No preemption of running task. Activated task becomes ready
and its events are cleared. Service returns E OK

9 Call ActivateTask() from preemptive task on
suspended extended task which has equal pri-
ority as running task.

No preemption of running task. Activated task becomes ready
and its events are cleared. Service returns E OK

10 Call ActivateTask() on ready basic task which
has reached max. number of activations

Service returns E OS LIMIT

11 Call ActivateTask() on ready extended task Service returns E OS LIMIT
12 Call ActivateTask() from non-preemptive task

on ready basic task which has not reached
max. number of activations

No preemption of running task. Activation request is queued in
ready list. Service returns E OK

2

1 3 5 7 9 10 11 13 15 17 19 20

2 4 6 8 14 16 18 21 22 2312 25 27 29 31 33 34 35 3726 28 30 32 3836

ex
ec

ut
io

n
le

ve
l

ta
sk

IS
R2

Ac
tiv

at
eT

as
k

Te
rm

in
at

eT
as

k

ca
lle

d
O

S
se

rv
ice

O
SE

K
Ta

sk
 M

an
ag

em
en

t

Ch
ai

nT
as

kSc
he

du
le

af
fe

ct
ed

 ta
sk

ta
sk

 ID

va
lid

in
va

lid
E_

O
K

re
tu

rn
st

at
us

E_
O

S_
ID

E_
O

S_
RE

SO
UR

CE

E_
O

S_
CA

LL
EV

EL

st
at

e

wa
itin

g
re

ad
y

ru
nn

in
g

su
sp

en
de

d

ty
pe

ba
sic

ex
te

nd
ed

pr
io

rit
y

hi
gh

er
 th

an
ru

nn
in

g
(re

ad
y)

ta
sk

lo
we

r t
ha

n
ru

nn
in

g
(re

ad
y)

ta
sk

no
co

ns
tra

in
ts

pr
ee

m
pt

ive
oc

cu
py

in
g

re
so

ur
ce

ye
s

ye
s

ye
s

no
no

G
et

Ta
sk

ID G
et

Ta
sk

St
at

e

m
ax

.
ac

tiv
at

io
ns

re
ac

he
d

no
t

re
ac

he
d

eq
ua

l t
o

ru
nn

in
g

(re
ad

y)
ta

sk E_
O

S_
LI

M
IT

41 43 45 47 49 50 51 5442 44 46 48 5552 53 5624 39 40

3

Test
Case
No.

Action Expected Result

13 Call ActivateTask() from preemptive task on
ready basic task which has not reached max.
number of activations and has lower priority
than running task1

No preemption of running task. Activation request is queued in
ready list. Service returns E OK

14 Call ActivateTask() from preemptive task on
ready basic task which has not reached max.
number of activations and has equal priority
as running task

No preemption of running task. Activation request is queued in
ready list. Service returns E OK

15 Call ActivateTask() on running basic task
which has reached max. number of activations

Service returns E OS LIMIT

16 Call ActivateTask() on running extended task Service returns E OS LIMIT
17 Call ActivateTask() from non-preemptive task

on running basic task which has not reached
max. number of activations

No preemption of running task. Activation request is queued in
ready list. Service returns E OK

18 Call ActivateTask() from preemptive task on
running basic task which has not reached max.
number of activations

No preemption of running task. Activation request is queued in
ready list. Service returns E OK

19 Call ActivateTask() on waiting extended task Service returns E OS LIMIT
20 Call TerminateTask() from ISR category 2 Service returns E OS CALLEVEL
21 Call TerminateTask() while still occupying a

resource Running task is not terminated.
Service returns E OS RESOURCE

22 Call TerminateTask() Running task is terminated and ready task with highest priority
is executed

23 Call ChainTask() from task-level. Task-ID is
invalid (does not exist).

Service returns E OS ID

24 Call ChainTask() from ISR category 2 Service returns E OS CALLEVEL
25 Call ChainTask() while still occupying a re-

source
Running task is not terminated. Service returns
E OS RESOURCE

26 Call ChainTask() on suspended task Running task is terminated, chained task becomes ready and
ready task with highest priority is executed

27 Call ChainTask() on running task Running task is terminated, chained task becomes ready and
ready task with highest priority is executed

28 Call ChainTask() on ready basic task which
has reached max. number of activations

Running task is not terminated. Service returns E OS LIMIT

29 Call ChainTask() on ready extended task Running task is not terminated. Service returns E OS LIMIT
30 Call ChainTask() from non-preemptive task

on ready basic task which has not reached
max. number of activations

Running task is terminated, activation request is queued in ready
list and ready task with highest priority is executed

31 Call ChainTask() on waiting extended task Service returns E OS LIMIT
32 Call Schedule() from task. Ready task with highest priority is executed. Service returns

E OK
33 Call Schedule() while still occupying a re-

source
Service returns E OS RESOURCE

34 Call Schedule() from ISR category 2 Service returns E OS CALLEVEL
35 Call GetTaskID() from ISR category 2 Service returns E OK
36 Call GetTaskID() from task Return task ID of currently running task. Service returns E OK
37 Call GetTaskState() with invalid task ID (task

does not exist)
Service returns E OS ID

38 Call GetTaskState() Return state of queried
task.

Service returns E OK

4

Test
Case
No.

Action Expected Result

39 Call GetTaskState() from ISR2 with invalid
task ID (task does not exist)

Service returns E OS ID

40 Call GetTaskState() from ISR2. Return state
of queried task.

Service returns E OK

41 Call ActivateTask() from ISR2 with invalid
task ID (task does not exist)

Service returns E OS ID

42 Call ActivateTask() from ISR2 (in non-
preemptive mode) on suspended basic task.

Activated task becomes ready. Service returns E OK

43 Call ActivateTask() from ISR2 (in preemp-
tive mode) on suspended basic task which has
higher priority than last running task.

Activated task becomes ready and first. Service returns E OK

44 Call ActivateTask() from ISR2 (in preemp-
tive mode) on suspended basic task which has
lower priority than last running task.

Activated task becomes ready. Service returns E OK

45 Call ActivateTask() from ISR2 (in preemp-
tive mode) on suspended basic task which has
equal priority as last running task.

Activated task becomes ready. Service returns E OK

46 Call ActivateTask() from ISR2 (in non-
preemptive mode) on suspended extended
task

Activated task becomes ready and its events are cleared. Service
returns E OK

47 Call ActivateTask() from ISR2 (in preemptive
mode) on suspended extended task which has
higher priority than last running task.

Activated task becomes ready and first and its events are cleared.
Service returns E OK

48 Call ActivateTask() from ISR2 (in preemptive
mode) on suspended extended task which has
lower priority than last running task.

Activated task becomes ready and its events are cleared. Service
returns E OK

49 Call ActivateTask() from ISR2 (in preemptive
mode) on suspended extended task which has
equal priority as last running task.

Activated task becomes ready and its events are cleared. Service
returns E OK

50 Call ActivateTask() from ISR2 on ready ba-
sic task which has reached max. number of
activations

Service returns E OS LIMIT

51 Call ActivateTask() from ISR2 on ready ex-
tended task

Service returns E OS LIMIT

52 Call ActivateTask() from ISR2 (in non-
preemptive mode) on ready basic task which
has not reached max. number of activations

Activation request is queued in ready list. Service returns E OK

53 Call ActivateTask() from ISR2 (in preemp-
tive mode) on ready basic task which has not
reached max. number of activations and has
higher priority than last running

Activation request is queued in ready list on first place. Service
returns E OK

54 Call ActivateTask() from ISR2 (in preemp-
tive mode) on ready basic task which has not
reached max. number of activations and has
lower priority than last running task1

Activation request is queued in ready list. Service returns E OK

55 Call ActivateTask() from ISR2 (in preemp-
tive mode) on ready basic task which has not
reached max. number of activations and has
equal priority as last running task

Activation request is queued in ready list. Service returns E OK

5

Test
Case
No.

Action Expected Result

56 Call ActivateTask() from ISR2 on waiting ex-
tended task

Service returns E OS LIMIT

2.2 Interrupt processing

New routines appear (EnableAllInterrupts, DisableAllInterrupts, SuspendAllInterrupts, ResumeAllInterrupts, Sus-
pendOSInterrupts, ResumeOSInterrupts), test cases 1 to 19 are new ones.
Category 3 interrupts have been removed.
Maximum number of activation of ISR2 can’t be more than 1.
EnableAllInterrupts, ResumeAllInterrupts and ResumeOSInterrupts from ISR2 are only tested with an interrupt
trigged with a priority higher than running ISR2.
SuspendAllInterrupts and ResumeAllInterrupts are the only ones functions allowed in callback routines.

Test
Case
No.

Action Expected Result

1 Call EnableAllInterrupts() from task. An in-
terrupt has been trigged in disable mode

The Interrupt is executed. Running task become ready

2 Call EnableAllInterrupts() from task Enable all interrupts
3 Call EnableAllInterrupts() from task without

calling DisableAllInterrupts()
The service is not performed

4 Call DisableAllInterrupts() from task Disable all interrupts
5 Call ResumeAllInterrupts() from task. An in-

terrupt has been trigged in disable mode
The Interrupt is executed. Running task become ready

6 Call ResumeAllInterrupts() from task Resume all interrupts
7 Call ResumeAllInterrupts() from task as many

times as SuspendAllInterrupts() is previously
called

Resume all interrupts

8 Call ResumeAllInterrupts() from task without
calling SuspendAllInterrupts()

The service is not performed

9 Call SuspendAllInterrupts() from task Suspend all interrupts
10 Call ResumeOSInterrupts() from task. An in-

terrupt has been trigged in disable mode
The Interrupt is executed. Running task become ready

11 Call ResumeOSInterrupts() from task Resume OS interrupts
12 Call ResumeOSInterrupts() from task as

many times as SuspendOSInterrupts() is pre-
viously called

Resume OS interrupts

13 Call ResumeOSInterrupts() from task without
calling SuspendOSInterrupts()

The service is not performed

14 Call SuspendOSInterrupts() from task Suspend OS interrupts
15 Interruption of running task Interrupt is executed
16 Interruption of running task with the same in-

terrupt already trigged (activation count = ac-
tivation max)

Interrupt is discarded

17 Return from ISR2. Interrupted task is non-
preemptive

Execution of interrupted task is continued

18 Return from ISR2. Interrupted task is pre-
emptive

Ready task with highest priority is executed (Rescheduling)

6

5 277 14 15 28 29 331 3 8 11 12 16 18 20 23 262 4 9 17 19 22 24 316 10 21 25 34 3530 3213 36 37 38 39

ex
ec

ut
io

n
le

ve
l

ta
sk

IS
R2

En
ab

le
Al

lIn
t..

Di
sa

bl
eA

lIn
t..

ca
lle

d
O

S
se

rv
ice

tri
gg

er
in

te
rru

pt

in
te

rru
pt

ed
 ta

sk

pr
ee

m
pt

ive
ta

sk

no
n-

pr
ee

m
pt

ive
ta

sk

O
SE

K
In

te
rru

pt
 P

ro
ce

ss
in

g

Re
su

m
eA

llIn
t..

Su
sp

en
dA

llIn
t..

Re
su

m
eO

SI
nt

..

Su
sp

en
dd

O
SI

nt
..

re
tu

rn
fro

m
in

te
rru

pt

in
te

rru
pt

 b
uf

fe
r

m
em

or
y

be
fo

re

'1
'

'0
'

in
te

rru
pt

ed
 p

ro
rit

y

hi
gh

er
 th

an
ru

nn
in

g
IS

Rlo
we

r t
ha

n
ru

nn
in

g
IS

R eq
ua

l t
o

ru
nn

in
g

IS
R

Ca
llB

ac
k

in
te

rru
pt

 e
xe

cu
tio

n

di
re

ct
ly

af
te

r

hi
gh

er
 th

an
IS

R
pr

ee
m

pt
ed

di
sc

ar
de

d

Di
sa

bl
e/

Su
sp

en
d

O
S

Se
rv

ice
ca

lle
d

be
fo

re

ye
s

no

re
tu

rn
st

at
us

E_
O

S_
DI

SA
BL

EI
NT

An
y

7

Test
Case
No.

Action Expected Result

19 Call any OS service between
Suspend/Disable- and Resume/Enable-
pairs

Service returns E OS DISABLEINT and not perform the ser-
vice (see AUTOSAR OS092), even Disable and Enable pairs (see
OSEK p26)

20 Call EnableAllInterrupts() from ISR2. An in-
terrupt has been trigged in disable mode with
a higher priority than running ISR2

The Interrupt is executed. Running ISR2 becomes ready

21 Call EnableAllInterrupts() from ISR2 Enable all interrupts
22 Call DisableAllInterrupts() from ISR2 Disable all interrupts
23 Call ResumeAllInterrupts() from ISR2. An in-

terrupt has been trigged in disable mode with
a higher priority than running ISR2

The Interrupt is executed. Running ISR2 becomes ready

24 Call ResumeAllInterrupts() from ISR2 Resume all interrupts
25 Call ResumeAllInterrupts() from ISR2 as

many times as SuspendAllInterrupts() is pre-
viously called

Resume all interrupts

26 Call SuspendAllInterrupts() from ISR2 Suspend all interrupts
27 Call ResumeOSInterrupts() from ISR2. An

interrupt has been trigged in disable mode
with a higher priority than running ISR2

The Interrupt is executed. Running ISR2 becomes ready

28 Call ResumeOSInterrupts() from ISR2 Resume OS interrupts
29 Call ResumeOSInterrupts() from ISR2 as

many times as SuspendOSInterrupts() is pre-
viously called

Resume OS interrupts

30 Call SuspendOSInterrupts() from ISR2 Suspend OS interrupts
31 Interruption of running ISR2 on interrupt

which has higher priority than running inter-
rupt

Running Interrupt is preempted. Executed interrupt becomes
running

32 Interruption of running ISR2 on interrupt
which has lower priority than running inter-
rupt

No preemption of running interrupt. Executed interrupt becomes
ready

33 Interruption of running ISR2 on interrupt
which has equal priority as running interrupt

No preemption of running interrupt. Executed interrupt becomes
ready

34 Return from ISR2 to an ISR2 which has higher
priority than ISR2 preempted

ISR2 with the highest priority is executed

35 Call ResumeAllInterrupts() from callback rou-
tine. An interrupt has been trigged in disable
mode

No preemption of callback routine because ISR2 are disabled in
callback routines

36 Call ResumeAllInterrupts() from callback rou-
tine

Resume all interrupts

37 Call ResumeAllInterrupts() from callback rou-
tine as many times as SuspendAllInterrupts()
is previously called

Resume all interrupts

38 Call SuspendAllInterrupts() from callback
routine

Suspend all interrupts

39 Interruption in callback routines Interrupt is executed after callback routines

2.3 Event mechanism

Category 3 interrupts have been removed.
Test cases 9 and 10 have to be tested with a simple ready task and with a READY AND NEW task (a task which
juste came to be ready).
Test cases 41 to 43 are GOIL test cases.

8

1 3 5 7 9 10 11 13 15 17 19 202 4 6 8 12 14 16 18 23 2421 22

ex
ec

ut
io

n
le

ve
l

ta
sk

IS
R2

Se
tE

ve
nt Cl
ea

rE
ve

ntca
lle

d
O

S
se

rv
ice

O
SE

K
Ev

en
t M

ec
ha

ni
sm

G
et

Ev
en

t W
ai

tE
ve

nt

af
fe

ct
ed

 ta
sk

ev
en

t

se
t

cle
ar

ed

ta
sk

 ID

va
lid

in
va

lid

E_
O

K

re
tu

rn
st

at
us

E_
O

S_
ID

E_
O

S_
RE

SO
UR

CE

E_
O

S_
AC

CE
SS

E_
O

S_
CA

LL
EV

ELE_
O

S_
ST

AT
E

st
at

e

wa
itin

g
re

ad
y

ru
nn

in
g su

sp
en

de
d

wa
itin

g
fo

r..

ot
he

r
ev

en
t

re
qu

es
te

d
ev

en
t

ty
pe

ba
sic

ex
te

nd
ed

pr
io

rit
y

hi
gh

er
 th

an
(la

st
) r

un
ni

ng
 ta

sk

lo
we

r t
ha

n
(la

st
) r

un
ni

ng
 ta

sk

no
co

ns
tra

in
ts

pr
ee

m
pt

ive
ty

pe
oc

cu
py

in
g

re
so

ur
ce

ye
s

ye
s

ye
s

no
ba

sic
ex

te
nd

ed
no

25 27 30 32 34 103
526 28 31 33 37 4036 38 3929

9

Test
Case
No.

Action Expected Result

1 Call SetEvent() with invalid Task ID Service returns E OS ID
2 Call SetEvent() for basic task Service returns E OS ACCESS
3 Call SetEvent() for suspended extended task Service returns E OS STATE
4 Call SetEvent() from non-preemptive task on

waiting extended task which is waiting for at
least one of the requested events

Requested events are set. Running task is not preempted. Waint-
ing task becomes ready. Service returns E OK

5 Call SetEvent() from non-preemptive task on
waiting extended task which is not waiting for
any of the requested events

Requested events are set. Running task is not preempted. Wait-
ing task doesn’t become ready. Service returns E OK

6 Call SetEvent() from preemptive task on wait-
ing extended task which is waiting for at least
one of the requested events and has higher pri-
ority than running task

Requested events are set. Running task becomes ready (is pre-
empted). Waiting task becomes running. Service returns E OK

7 Call SetEvent() from preemptive task on wait-
ing extended task which is waiting for at least
one of the requested events and has equal or
lower priority than running task

Requested events are set. Running task is not preempted. Wait-
ing task becomes ready. Service returns E OK

8 Call SetEvent() from preemptive task on wait-
ing extended task which is not waiting for any
of the requested events

Requested events are set. Running task is not preempted. Wait-
ing task doesn’t become ready. Service returns E OK

9 Call SetEvent() from non-preemptive task on
ready extended task

Requested events are set. Running task is not preempted. Service
returns E OK

10 Call SetEvent() from preemptive task on
ready extended task

Requested events are set. Running task is not preempted. Service
returns E OK

11 Call ClearEvent() from basic task Service returns E OS ACCESS
12 Call ClearEvent() from ISR2 Service returns E OS CALLEVEL
13 Call ClearEvent() from extended task Requested events are cleared. Service returns E OK
14 Call GetEvent() with invalid Task ID Service returns E OS ID
15 Call GetEvent() for basic task Service returns E OS ACCESS
16 Call GetEvent() for suspended extended task Service returns E OS STATE
17 Call GetEvent() for running extended task Return current state of all event bits. Service returns E OK
18 Call GetEvent() for ready extended task Return current state of all event bits. Service returns E OK
19 Call GetEvent() for waiting extended task Return current state of all event bits. Service returns E OK
20 Call WaitEvent() from basic task Service returns E OS ACCESS
21 Call WaitEvent() from extended task which

occupies a resource
Service returns E OS RESOURCE

22 Call WaitEvent() from ISR2 Service returns E OS CALLEVEL
23 Call WaitEvent() from extended task. None

of the events waited for is set
Running task becomes waiting and ready task with highest pri-
ority is executed Service returns E OK

24 Call WaitEvent() from extended task. At least
one event waited for is already set

No preemption of running task Service returns E OK

25 Call SetEvent() from ISR2 with invalid Task
ID

Service returns E OS ID

26 Call SetEvent() from ISR2 for basic task Service returns E OS ACCESS
27 Call SetEvent() from ISR2 for suspended ex-

tended task
Service returns E OS STATE

28 Call SetEvent() from ISR2 (in non-preemptive
mode) on waiting extended task which is wait-
ing for at least one of the requested events and
has higher priority than last running task

Requested events are set. Waiting task becomes ready. Service
returns E OK

29 Call SetEvent() from ISR2 (in non-preemptive
mode) on waiting extended task which is wait-
ing for at least one of the requested events and
has lower priority than last running task

Requested events are set. Waiting task becomes ready. Service
returns E OK

10

Test
Case
No.

Action Expected Result

30 Call SetEvent() from ISR2 (in non-preemptive
mode) on waiting extended task which is not
waiting for any of the requested events

Requested events are set. Waiting task doesn’t become ready.
Service returns E OK

31 Call SetEvent() from ISR2 (in preemptive
mode) on waiting extended task which is wait-
ing for at least one of the requested events and
has higher priority than running task

Requested events are set. Waiting task becomes ready and first.
Service returns E OK

32 Call SetEvent() from ISR2 (in preemptive
mode) on waiting extended task which is wait-
ing for at least one of the requested events and
has equal or lower priority than running task

Requested events are set. Waiting task becomes ready. Service
returns E OK

33 Call SetEvent() from ISR2 (in preemptive
mode) on waiting extended task which is not
waiting for any of the requested events

Requested events are set. Waiting task doesn’t become ready.
Service returns E OK

34 Call SetEvent() from ISR2 (in non-preemptive
mode) on ready extended task

Requested events are set. Service returns E OK

35 Call SetEvent() from ISR2 (in preemptive
mode) on ready extended task

Requested events are set. Service returns E OK

36 Call GetEvent() from ISR2 with invalid Task
ID

Service returns E OS ID

37 Call GetEvent() from ISR2 for basic task Service returns E OS ACCESS
38 Call GetEvent() from ISR2 for suspended ex-

tended task
Service returns E OS STATE

39 Call GetEvent() from ISR2 for ready extended
task

Return current state of all event bits. Service returns E OK

40 Call GetEvent() from ISR2 for waiting ex-
tended task

Return current state of all event bits. Service returns E OK

41 Creating an event with a MASK using more
than one bit

Warning : Event Mask uses more than one bit

42 Creating an event with a MASK already used Error : Mask already used
43 Creating an event with an automatic MASK

but all the MASK are already used
Error : All mask bits are already used, the last event can’t be
created

2.4 Resource management

An ISR2 is like a task, it can get and release resources if it’s allowed (if it owns the resource). See test cases 3, 4, 9
and 10.
GetResource() returns E OS ACCESS if the resource’s priority is inferior to the task’s priority (it means the task
doesn’t use it so if it gets the resource, the resource is not well shared). Otherwise, a task is allowed to get a
Resource with a priority higher than itself.
There’s no more maximum number of nested resources reachable.
Category 3 interrupts have been removed.

Test
Case
No.

Action Expected Result

1 Call GetResource() from task with invalid re-
source ID

Service returns E OS ID

2 Call GetResource() from task with priority of
the calling task higher than the calculated ceil-
ing priority

Service returns E OS ACCESS

11

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

execution
level

preemptive

yes yes no

task ISR2

no
constraints

Release
Resource

GetResource

called
OS

service

<=
resource >

resource

free occupied any
not

defined

RES_SCHEDULER

E_OK

priority state name
return
status

E_OS_ID
E_OS_ACCESS

E_OS_NO_FUNC

resource

OSEK Resource Management

trigger
interrupt /

task

TASK/ISR2
trigged

owns
resource

doesn't
own

resource

task/ISR2

not
the last

resource

24
25

Test
Case
No.

Action Expected Result

3 Call GetResource() from task with occupied
resource

Service returns E OS ACCESS

4 Test Priority Ceiling Protocol: Call GetRe-
source() from non-preemptive task, activate
task/ISR2 with priority higher than running
task but lower than ceiling priority, and force
rescheduling

Resource is occupied and running task’s priority is set to re-
source’s ceiling priority. Service returns E OK. No preemp-
tion occurs after activating the task with higher priority and
rescheduling

5 Test Priority Ceiling Protocol: Call GetRe-
source() from preemptive task, and activate
task/ISR2 with priority higher than running
task but lower than ceiling priority

Resource is occupied and running task’s priority is set to re-
source’s ceiling priority. Service returns E OK. No preemption
occurs after activating the task with higher priority

6 Call GetResource() from task for resource
RES SCHEDULER

Resource is occupied and running task’s priority is set to re-
source’s ceiling priority. Service returns E OK

7 Call ReleaseResource() from task with invalid
resource ID

Service returns E OS ID

8 Call ReleaseResource() from task with re-
source which is not occupied

Service returns E OS NOFUNC

9 Call ReleaseResource() from task when an-
other resource shall be released before

Service returns E OS NOFUNC

10 Call ReleaseResource() from task with priority
of the calling task higher than the calculated
ceiling priority

Service returns E OS ACCESS

11 Call ReleaseResource() from non-preemptive
task

Resource is released and running task’s priority is reset. No pre-
emption of running task. Service returns E OK

12

Test
Case
No.

Action Expected Result

12 Call ReleaseResource() from preemptive task Resource is released and running task’s priority is reset. Ready
task with highest priority is executed (Rescheduling). Service
returns E OK

13 Call ReleaseResource() from non-preemptive
task for resource RES SCHEDULER

Resource is released and running task’s priority is reset. No pre-
emption of running task. Service returns E OK

14 Call ReleaseResource()from preemptive task
for resource RES SCHEDULER

Resource is released and running task’s priority is reset. Ready
task with highest priority is executed (Rescheduling). Service
returns E OK

15 Call GetResource() from ISR2 with invalid re-
source ID

Service returns E OS ID

16 Call GetResource() from ISR2 with priority
of the calling ISR2 higher than the calculated
ceiling priority

Service returns E OS ACCESS

17 Call GetResource() from ISR2 with occupied
resource

Service returns E OS ACCESS

18 Call GetResource() from ISR2 for resource
RES SCHEDULER

Service returns E OS ACCESS

19 Test Priority Ceiling Protocol: Call GetRe-
source() from ISR2, and activate ISR2 with
priority higher than running ISR2 but lower
than ceiling priority

Resource is occupied and running ISR2’s priority is set to re-
source’s ceiling priority. Service returns E OK. No preemption
occurs after activating the ISR2 with higher priority

20 Call ReleaseResource() from ISR2 with invalid
resource ID

Service returns E OS ID

21 Call ReleaseResource() from ISR2 with re-
source which is not occupied

Service returns E OS NOFUNC

22 Call ReleaseResource() from ISR2 when an-
other resource shall be released before

Service returns E OS NOFUNC

23 Call ReleaseResource() from ISR2 with prior-
ity of the calling ISR2 higher than the calcu-
lated ceiling priority

Service returns E OS ACCESS

24 Call ReleaseResource() from ISR2 for resource
RES SCHEDULER (priority of the calling
ISR2 higher than the calculated ceiling pri-
ority)

Service returns E OS ACCESS

25 Call ReleaseResource() from ISR2 Resource is released and running ISR2’s priority is reset. Ready
task/ISR2 with highest priority is executed (Rescheduling). Ser-
vice returns E OK

2.5 Alarm

The behaviour of the OS is not defined by the specification if the action assigned to the expiration of an alarm can
not be performed, because

• it would lead to multiple task activation, which is not allowed in the used conformance class or the max.
number of activated tasks is already reached, or

• it would set an event for a task which is currently suspended.

The expected behaviour is, that at least the error hook is called. But as this situation is not covered by the speci-
fication, it is not part of conformance testing.
Since AlarmCallBack routine have been integrated in OSEK OS Specifications v2.2.3, test cases 7, 11, 18, 22, 29,
34 and 43 appear.

13

1 3 5 7 9 10 11 13 15 17 19 202 4 6 8 14 16 18 2421 22 2312 25 27 29 31 33 34 35 3726 28 30 32 3836 39 41 4340 42

ru
nn

in
g

ta
sk

pr
ee

m
pt

ive
no

n-
pr

ee
m

pt
ive

G
et

Al
ar

m
Ba

se

G
et

Al
ar

m

ca
lle

d
O

S
se

rv
ice

O
SE

K
Al

ar
m

s

Se
tR

el
Al

ar
m

Se
tA

bs
Al

ar
m

af
fe

ct
ed

 ta
sk

E_
O

K

re
tu

rn
st

at
us

E_
O

S_
IDE_
O

S_
NO

FU
NC

E_
O

S_
ST

AT
E

af
fe

ct
ed

ta
sk

's
pr

io
rit

y

hi
gh

er
 th

an
ru

nn
in

g
ta

sklo
we

r t
ha

n
ru

nn
in

g
ta

sk
Ca

nc
el

Al
ar

m
al

ar
m

 e
xp

ire
s

af
fe

ct
ed

ta
sk

's
st

at
e

wa
itin

g
on

 e
ve

ntno
t w

ai
tin

g
on

 e
ve

nt
E_

O
S_

VA
LU

E

al
ar

m

de
fin

ed

ye
s

no

st
at

e un
se

t
se

t

ac
tio

n

ac
tiv

e
ta

sk
se

t
ev

en
t

cy
cle

va
lu

e
in

cr
em

en
t

va
lu

e

su
ita

bl
eto

o
gr

ea
t

al
ar

m
ca

llb
ac

k
to

o
lo

w

su
ita

bl
eto

o
gr

ea
t

to
o

lo
w

14

Test
Case
No.

Action Expected Result

1 Call GetAlarmBase() with invalid alarm ID Service returns E OS ID
2 Call GetAlarmBase() Return alarm base char-

acteristics.
Service returns E OK

3 Call GetAlarm() with invalid alarm ID Service returns E OS ID
4 Call GetAlarm() for alarm which is currently

not in use
Service returns E OS NOFUNC

5 Call GetAlarm() for alarm which will activate
a task on expiration

Returns number of ticks until expiration. Service returns E OK

6 Call GetAlarm() for alarm which will set an
event on expiration

Returns number of ticks until expiration. Service returns E OK

7 Call GetAlarm() for alarm which will callback
a routine on expiration

Returns number of ticks until expiration. Service returns E OK

8 Call SetRelAlarm() with invalid alarm ID Service returns E OS ID
9 Call SetRelAlarm() for already activated

alarm which will activate a task on expiration
Service returns E OS STATE

10 Call SetRelAlarm() for already activated
alarm which will set an event on expiration

Service returns E OS STATE

11 Call SetRelAlarm() for already activated
alarm which will callback a routine on expi-
ration

Service returns E OS STATE

12 Call SetRelAlarm() with increment value
lower than zero

Service returns E OS VALUE

13 Call SetRelAlarm() with increment value
greater than maxallowedvalue

Service returns E OS VALUE

14 Call SetRelAlarm() with cycle value lower
than mincycle

Service returns E OS VALUE

15 Call SetRelAlarm() with cycle value greater
than maxallowedvalue

Service returns E OS VALUE

16 Call SetRelAlarm() for alarm which will acti-
vate a task on expiration

Alarm is activated. Service returns E OK

17 Call SetRelAlarm() for alarm which will set
an event on expiration

Alarm is activated.Service returns E OK

18 Call SetRelAlarm() for alarm which will call-
back a routine on expiration

Alarm is activated.Service returns E OK

19 Call SetAbsAlarm() with invalid alarm ID Service returns E OS ID
20 Call SetAbsAlarm() for already activated

alarm which will activate a task on expiration
Service returns E OS STATE

21 Call SetAbsAlarm() for already activated
alarm which will set an event on expiration

Service returns E OS STATE

22 Call SetAbsAlarm() for already activated
alarm which will callback a routine on expi-
ration

Service returns E OS STATE

23 Call SetAbsAlarm() with increment value
lower than zero

Service returns E OS VALUE

24 Call SetAbsAlarm() with increment value
greater than maxallowedvalue

Service returns E OS VALUE

25 Call SetAbsAlarm() with cycle value lower
than mincycle

Service returns E OS VALUE

15

Test
Case
No.

Action Expected Result

26 Call SetAbsAlarm() with cycle value greater
than maxallowedvalue

Service returns E OS VALUE

27 Call SetAbsAlarm() for alarm which will acti-
vate a task on expiration

Alarm is activated. Service returns E OK

28 Call SetAbsAlarm() for alarm which will set
an event on expiration

Alarm is activated. Service returns E OK

29 Call SetAbsAlarm() for alarm which will call-
back a routine on expiration

Alarm is activated. Service returns E OK

30 Call CancelAlarm() with invalid alarm ID Service returns E OS ID
31 Call CancelAlarm() for alarm which is cur-

rently not in use
Service returns E OS NOFUNC

32 Call CancelAlarm() for already activated
alarm which will activate a task on expiration

Alarm is cancelled. Service returns E OK

33 Call CancelAlarm() for already activated
alarm which will set an event on expiration

Alarm is cancelled. Service returns E OK

34 Call CancelAlarm() for already activated
alarm which will callback a routine on expi-
ration

Alarm is cancelled. Service returns E OK

35 Expiration of alarm which activates a task
while no tasks are currently running

Task is activated

36 Expiration of alarm which activates a task
while running task is non-preemptive

Task is activated. No preemption of running task

37 Expiration of alarm which activates a task
with higher priority than running task while
running task is preemptive

Task is activated. Task with highest priority is executed

38 Expiration of alarm which activates a task
with lower priority than running task while
running task is preemptive

Task is activated. No preemption of running task.

39 Expiration of alarm which sets an event while
running task is non-preemptive. Task which
owns the event is not waiting for this event
and not suspended

Event is set

40 Expiration of alarm which sets an event while
running task is non-preemptive. Task which
owns the event is waiting for this event

Event is set. Task which is owner of the event becomes ready.
No preemption of running task

41 Expiration of alarm which sets an event while
running task is preemptive. Task which owns
the event is not waiting for this event and not
suspended

Event is set

42 Expiration of alarm which sets an event while
running task is preemptive. Task which owns
the event is waiting for this event

Event is set. Task which is owner of the event becomes ready.
Task with highest priority is executed (Rescheduling)

43 Expiration of alarm which callback a routine Running task becomes ready. Callback routine is activated.

2.6 Error handling, hook routines (with interrupts) and OS execution control

The specification doesn’t provide an error status when calling an OS service which is not allowed on hook level from
inside a hook routine. It is assumed that the correct behaviour would be to return E OS CALLEVEL. As this is
not prescribed by the specification, this will not be used as a criteria for the conformance of the implementation.
Anyway, the conformance tests will check that restricted OS services return a value not equal E OK.
Compare to the previous Test Plan 2.0, it’s forbidden to call ActivateTask() from StartupHook routine. Sus-
pendAllInterrupts() and ResumeAllInterrupts() are allowed in hook routines.
See Annexe A for more information about interrupt management (test case from 15 to 32).

16

17

Test
Case
No.

Action Expected Result

1 Call GetActiveApplicationMode() Return current application mode
2 Call StartOS() Start operating system
3 Call ShutdownOS() Shutdown operating system
4 Check PreTaskHook/PostTaskHook: Force

rescheduling
PreTaskHook is called before executing the new task, but after
the transition to running state. PostTaskHook is called after
exiting the current task but before leaving the task’s running
state

5 Check ErrorHook: Force error ErrorHook is called at the end of a system service which has a
return value not equal E OK

6 Check StartupHook: Start OS StartupHook is called after initialisation of OS
7 Check ShutdownHook: Shutdown OS ShutdownHook is called after the OS shutdown

Check availability of OS services inside hook
routines according to fig 12-1 of OS spec.

OS services which must not be called from hook routines return
status not equal E OK

8 Call GetTaskID() from ErrorHook, Pre-
TaskHook and PostTaskHook

Return E OK

9 Call GetTaskState() from ErrorHook, Pre-
TaskHook and PostTaskHook

Return E OK if TaskID is valid

10 Call SuspendAllInterrupts() from ErrorHook,
PreTaskHook and PostTaskHook

11 Call ResumeAllInterrupts() from ErrorHook,
PreTaskHook and PostTaskHook

12 Call GetEvent() from ErrorHook, Pre-
TaskHook and PostTaskHook

Return E OK if TaskID is valid, Referenced task <TaskID> is
an extended task and not in suspended state.

13 Call GetAlarmBase() from ErrorHook, Pre-
TaskHook and PostTaskHook

Return E OK if AlarmID is valid

14 Call GetAlarm() from ErrorHook, Pre-
TaskHook and PostTaskHook

Return E OK if AlarmID is valid and used

Interrupt processing in Hook routines :
15 Interrupt activation in PostTaskHook of a task preempted by an alarm which activate a task.
16 Interrupt activation in PreTaskHook of a task preempted by an alarm which activate a task.
17 Interrupt activation in PostTaskHook of a task preempted by an ISR2.
18 Interrupt activation in PreTaskHook of a task preempted by an ISR2.
19 Interrupt activation in PostTaskHook of a task activated by an task (preempted or not).
20 Interrupt activation in PreTaskHook of a task activated by an task (preempted or not).
21 Interrupt activation in PostTaskHook of a task activated by an alarm which will give back the hand to the

previous running task.
22 Interrupt activation in PreTaskHook of a task activated by an alarm which will give back the hand to the

previous running task.
23 Interrupt activation in PostTaskHook of an ISR2 which will give back the hand to the previous running task.
24 Interrupt activation in PreTaskHook of an ISR2 which will give back the hand to the previous running task.
25 Interrupt triggering with an activation in PostTaskHook of a task preempted by an alarm which activate a

task.
26 Interrupt triggering with an activation in PreTaskHook of a task preempted by an alarm which activate a task.
27 Interrupt triggering with an activation in PostTaskHook of a task preempted by an ISR2.
28 Interrupt triggering with an activation in PreTaskHook of a task preempted by an ISR2.
29 Interrupt triggering with an activation in PostTaskHook of a task followed by an task (preempted or not).
30 Interrupt triggering with an activation in PreTaskHook of a task followed by an task (preempted or not).
31 Interrupt triggering with an activation in PostTaskHook of a task activated by an alarm which will give back

the hand to the previous running task.

18

Test
Case
No.

Action Expected Result

32 Interrupt triggering with an activation in PreTaskHook of a task activated by an alarm which will give back
the hand to the previous running task.

33 Interrupt triggering with an activation in PostTaskHook of an ISR2 which will give back the hand to the
previous running task.

34 Interrupt triggering with an activation in PreTaskHook of an ISR2 which will give back the hand to the previous
running task.

35 Interrupt activation in ErrorHook.
36 Interrupt triggering with an activation in ErrorHook.

2.7 Internal COM

Test
Case
No.

Action Expected Result

1 Call SendMessage() to an unqueued message Service returns E OK
2 Call SendMessage() to an unqueued message with <Message> out

of range
Service returns E COM ID

3 Call SendMessage() to a queued message Service returns E OK
4 Call SendMessage() to a queued message with <Message> out of

range
Service returns E COM ID

5 Call ReceiveMessage() to an unqueued message with <Message>
out of range

Service returns E COM ID

6 Call ReceiveMessage() to an unqueued message Service returns E OK
7 Call ReceiveMessage() to an unqueued message with a notification

which activate a task
Service returns E OK

8 Call ReceiveMessage() to an unqueued message with a notification
which activate a task and a ”always” filter

Service returns E OK

9 Call ReceiveMessage() to an unqueued message with a notification
which activate a task and a ”never” filter

Service returns E OK

10 Call ReceiveMessage() to an unqueued message with a notification
which activate a task and a ”MaskedNewEqualX” filter

Service returns E OK

11 Call ReceiveMessage() to an unqueued message with a notification
which activate a task and a ”MaskedNewDiffersX” filter

Service returns E OK

12 Call ReceiveMessage() to an unqueued message with a notification
which activate a task and a ”NewIsEqual” filter

Service returns E OK

13 Call ReceiveMessage() to an unqueued message with a notification
which activate a task and a ”NewIsDifferent” filter

Service returns E OK

14 Call ReceiveMessage() to an unqueued message with a notification
which activate a task and a ”MaskedNewEqualsMaskedOld” filter

Service returns E OK

15 Call ReceiveMessage() to an unqueued message with a notification
which activate a task and a ”MaskedNewEqualsMaskedOld” filter

Service returns E OK

16 Call ReceiveMessage() to an unqueued message with a notification
which activate a task and a ”NewIsWithin” filter

Service returns E OK

17 Call ReceiveMessage() to an unqueued message with a notification
which activate a task and a ”NewIsOutside” filter

Service returns E OK

18 Call ReceiveMessage() to an unqueued message with a notification
which activate a task and a ”NewIsGreater” filter

Service returns E OK

19 Call ReceiveMessage() to an unqueued message with a notification
which activate a task and a ”NewIsLessOrEqual” filter

Service returns E OK

19

1 3 5 7 9 10 11 13 15 17 19 20

2 4 6 8 14 16 18 21 22 2312 25 27 29 31 33 34 35 3726 28 30 32 3836

ex
ec

ut
io

n
le

ve
l

ta
sk

/
IS

R2

G
et

Co
m

Ap
pl

ica
tio

nM
od

e

Se
nd

M
es

sa
ge

ca
lle

d
O

S
se

rv
ice

O
SE

K
CO

M

Re
ce

ive
M

es
sa

ge
G

et
M

es
sa

ge
St

at
us

af
fe

ct
ed

 m
es

sa
ge

E_
O

K

re
tu

rn
st

at
us

E_
CO

M
_I

D

E_
CO

M
_N

O
M

SG

No
tifi

ca
tio

n
Cl

as
s1

fla
g

co
m

Ca
llB

ac
k

se
tE

ve
nt

ac
tiv

at
eT

as
k

ty
pe

Un
qu

eu
ed

Q
ue

ue
d

filt
er

Al
wa

ys
Ne

ve
r

Co
m

Er
ro

rG
et

Se
rv

ice
Id

Co
m

Er
ro

r_
[N

am
e1

]_
M

es
sa

ge

Co
nd

itio
ns

m
es

sa
ge

em
pt

y
M

as
ke

dN
ew

Eq
ua

lX
E_

CO
M

_L
IM

IT

41 434224 39 40

ov
er

flo
wov

er
flo

w
cle

ar
ed

M
as

ke
dN

ew
Di

ffe
rs

X
Ne

wI
sE

qu
al

Ne
wI

sD
iff

er
en

t
M
as
ke
dN
ew
Eq
ua
lsM

as
ke
dO
ld

M
as
ke
dN
ew
D
iff
er
sM
as
ke
dO
ld

Ne
wI

sW
ith

in
Ne

wI
sO

ut
sid

e
Ne

wI
sG

re
at

er

Ne
wI

sL
es

sO
rE

qu
al

O
ne

Ev
er

yN
Ne

wI
sL

es
s

Ne
wI

sG
re

at
er

O
rE

qu
al

ou
t o

f r
an

ge

CO
M

Er
ro

r
Ho

ok

Co
m

Er
ro

r_
[N

am
e1

]_
Da

ta
Re

f
E_

CO
M

_C
AL

LE
VE

L

20

Test
Case
No.

Action Expected Result

20 Call ReceiveMessage() to an unqueued message with a notification
which activate a task and a ”NewIsLess” filter

Service returns E OK

21 Call ReceiveMessage() to an unqueued message with a notification
which activate a task and a ”NewIsGreaterOrEqual” filter

Service returns E OK

22 Call ReceiveMessage() to an unqueued message with a notification
which activate a task and a ”OneEveryN” filter

Service returns E OK

23 Call ReceiveMessage() to an unqueued message with a notification
which set an event

Service returns E OK

24 Call ReceiveMessage() to an unqueued message with a notification
which callback a routine

Service returns E COM CALLEVEL

25 Call ReceiveMessage() to an unqueued message with a notification
which set a flag

Service returns E OK

26 Call ReceiveMessage() to a queued message with <Message> out
of range

Service returns E COM ID

27 Call ReceiveMessage() to a queued message which had an overflow
on last SendMessage

Service returns E COM LIMIT and reset the
overflow flag

28 Call ReceiveMessage() to a queued message which had an overflow
cleared on last call to ReceiveMessage

Service returns E OK

29 Call ReceiveMessage() to a queued message which is empty Service returns E COM NOMSG
30 Call ReceiveMessage() to a queued message Service returns E OK
31 Call GetMessageStatus() to an unqueued message Service returns E COM ID
32 Call GetMessageStatus() to a queued message Service returns E OK
33 Call GetMessageStatus() to a queued message with <Message>

out of range
Service returns E COM ID

34 Call GetMessageStatus() to a queued message which had an over-
flow on last SendMessage

Service returns E COM LIMIT

35 Call GetMessageStatus() to a queued message which is empty Service returns E COM NOMSG
36 Call ComErrorGetServiceId() from ComErrorHook with

SendMessage error
Service returns COMServiceId SendMessage

37 Call ComError SendMessage Message from ComErrorHook Service returns <Message> used in last
SendMessage

38 Call ComError SendMessage DataRef from ComErrorHook Service returns <DataRef> used in last
SendMessage

39 Call ComErrorGetServiceId() from ComErrorHook with Re-
ceiveMessage error

Service returns COMServi-
ceId ReceiveMessage

40 Call ComError ReceiveMessage Message from ComErrorHook Service returns <Message> used in last Re-
ceiveMessage

41 Call ComError ReceiveMessage DataRef from ComErrorHook Service returns <DataRef> used in last Re-
ceiveMessage

42 Call ComErrorGetServiceId() from ComErrorHook with GetMes-
sageStatus error

Service returns COMServi-
ceId GetMessageStatus

43 Call ComError GetMessageStatus Message from ComErrorHook Service returns <Message> used in last
GetMessageStatus

2.8 AUTOSAR - Core OS

OS Requirements : 263*, 264*, 285, 301, 304, 321
Test cases 3 and 5 are GOIL test cases. Test case 7 is impossible to test.

21

1

4

2
3

5

task

execution
level

ISR2
SetRelAlarm alarm

expires

called
OS service

action

too low

Increment
value

ActivateTask
(too many
activation)

E_OK

return
status

E_OS_VALUE

alarm

AUTOSAR_Core_OS

Increment
Counter

Alarm action
error

6
7

SetEvent
(basic
task)

Increment
Counter SetEvent

(Suspended
task)

HWSW

Increment
Hardware
Counter

8
9

10
11
12

INVALID_ISR
GetISRID

Test
Case
No.

Action Expected Result OS Require-
ments

1 Call SetRelAlarm() from task with <increment> value equal to
zero

Service returns
E OS VALUE

OS304

2 Call IncrementCounter() of a software counter from task (alarm
action results in an error : ActivateTask() on a task which has
already its max number of activation)

Errorhook is called. Service
returns E OK

OS321

3 It is impossible to call IncrementCounter() setting an event from
an alarm expiration to a basic task.

error : An alarm can’t set an
Event to a basic task (Task
t1 is a basic task).

OS321

4 Call IncrementCounter() of a software counter from task (alarm
action results in an error : SetEvent() on a task is suspended)

Errorhook is called. Service
returns E OK

OS321

5 It is impossible to call IncrementCounter() incrementing a hard-
ware counter from an alarm expiration.

error : It is impossible to in-
crement a hardware counter
(Z is not a software counter).

OS285

6 Expiration of alarm which increment a software counter Software counter is incre-
mented and alarm(s) is(are)
launched if needed

OS301

7 Increment a hardware counter from an alarm expiration is impos-
sible. GOIL generation should forbid to create an alarm which
increment a hardware counter

8 Call SetRelAlarm() from ISR2 with <increment> value equal to
zero

Service returns
E OS VALUE

OS304

9 Call IncrementCounter() of a software counter from ISR2 (alarm
action results in an error : ActivateTask() on a task which has
already its max number of activation)

Errorhook is called. Service
returns E OK

OS321

10 Call IncrementCounter() of a software counter from ISR2 (alarm
action results in an error : SetEvent() on a task is suspended)

Errorhook is called. Service
returns E OK

OS321

11 Call GetISRID() from an other object than ISR2 or Hook routine
called inside an ISR2

Service returns IN-
VALID ISR

OS264

22

Test
Case
No.

Action Expected Result OS Require-
ments

12 Call GetISRID() from an ISR2 Service returns the identi-
fier of the currently running
ISR2

OS263

2.9 AUTOSAR - Software Counter

OS Requirements : 285, 286, 321,376, 377, 381, 382, 383, 391, 392, 399, 460
OS374 and OS384 are indirectly tested thanks to the good fonctionning of the counter.

1

4

2
3

5

9
10
11
12

15
16
17

19
18

task

execution
level

ISR2 GetCounterValue

GetElapsed
CounterValue

called
OS service

invalidHW SW
out of
range

E_OK
id value

return
status

E_OS_ID
E_OS_VALUE

Counter

AUTOSAR_Software_Counter

Increment
Counter

Alarm action
error

6
7
8

13
14

20
21
22
23
24

Test
Case
No.

Action Expected Result OS Require-
ments

1 Call IncrementCounter() of a software counter
from task

Service returns E OK OS286, OS399

23

Test
Case
No.

Action Expected Result OS Require-
ments

2 Call IncrementCounter() of a software counter
from task (alarm action results in an error)

Errorhook is called. Service returns E OK OS321

3 Call IncrementCounter() of a hardware
counter from task

Service returns E OS ID OS285

4 Call IncrementCounter() from task with in-
valid ID

Service returns E OS ID OS285

5 Call IncrementCounter() of a software counter
from ISR2

Service returns E OK

6 Call IncrementCounter() of a software counter
from ISR2 (alarm action results in an error)

Errorhook is called. Service returns E OK

7 Call IncrementCounter() of a hardware
counter from ISR2

Service returns E OS ID

8 Call IncrementCounter() from ISR2 with in-
valid ID

Service returns E OS ID

9 Call GetCounterValue() of a sofwtare counter
from task

Service returns E OK and <Value> of the
counter

OS377, OS383

10 Call GetCounterValue() of a hardware counter
from task

Service returns E OK and <Value> of the
counter

OS377, OS383

11 Call GetCounterValue() from task with in-
valid ID

Service returns E OS ID OS376

12 Call GetCounterValue() of a sofwtare counter
from ISR2

Service returns E OK and <Value> of the
counter

13 Call GetCounterValue() of a hardware counter
from ISR2

Service returns E OK and <Value> of the
counter

14 Call GetCounterValue() from ISR2 with in-
valid ID

Service returns E OS ID

15 Call GetElapsedCounterValue() of a software
counter from task

Service returns E OK, the <Value> of the
counter and the number of elapsed ticks since
the given <Value> value via <ElapsedValue>

OS382, OS392,
OS460

16 Call GetElapsedCounterValue() of a software
counter from task with <Value> out of range

Service returns E OS VALUE OS391

17 Call GetElapsedCounterValue() of a hardware
counter from task

Service returns E OK, the <Value> of the
counter and the number of elapsed ticks since
the given <Value> value via <ElapsedValue>

OS382, OS392,
OS460

18 Call GetElapsedCounterValue() of a hardware
counter from task with <Value> out of range

Service returns E OS VALUE OS391

19 Call GetElapsedCounterValue() from task
with invalid ID

Service returns E OS ID OS381

20 Call GetElapsedCounterValue() of a software
counter from ISR2

Service returns E OK, the <Value> of the
counter and the number of elapsed ticks since
the given <Value> value via <ElapsedValue>

21 Call GetElapsedCounterValue() of a software
counter from ISR2 with <Value> out of range

Service returns E OS VALUE

22 Call GetElapsedCounterValue() of a hardware
counter from ISR2

Service returns E OK, the <Value> of the
counter and the number of elapsed ticks since
the given <Value> value via <ElapsedValue>

23 Call GetElapsedCounterValue() of a hardware
counter from ISR2 with <Value> out of range

Service returns E OS VALUE

24 Call GetElapsedCounterValue() from ISR2
with invalid ID

Service returns E OS ID

24

Test
Case
No.

Action Expected Result OS Require-
ments

2.10 AUTOSAR - Schedule Table

OS Requirements : 002, 006, 007, 009, 191, 194, 275, (276), 277, 278, 279, 280, 281, 282, 283, 284, 289, 291, 293,
309, 324, 330, 332, 347, 348, 349, 350, 351, 353, 358, 359, 410, 412, 414, 428, 453.
OS Requirements 401, 402, 403, 404, 407, 408, 409, 427, 442, 443, 444 are GOIL test cases (Test cases 33 to 42 and
70).
OS411 can’t be tested. As a schedule table is automatically set to single-shot if not specified, OS413 can’t be tested.

Test
Case
No.

Action Expected Result OS Require-
ments

1 Call StartScheduleTableRel() from task Service returns E OK OS278, OS358
2 Call StartScheduleTableRel() from task with invalid id Service returns E OS ID OS275
3 Call StartScheduleTableRel() from task with <offset>

value equal to zero
Service returns E OS VALUE OS332

4 Call StartScheduleTableRel() from task with <offset> >
(MAXALLOWEDVALUE - InitialOffset)

Service returns E OS VALUE OS276

5 Call StartScheduleTableRel() from task when schedule ta-
ble is not in state SCHEDULETABLE STOPPED

Service returns E OS STATE (in
STANDARD and EXTENDED)

OS277

6 Call StartScheduleTableAbs() from task Service returns E OK OS347, OS351
7 Call StartScheduleTableAbs() from task with invalid id Service returns E OS ID OS348
8 Call StartScheduleTableAbs() from task with <offset> >

(MAXALLOWEDVALUE)
Service returns E OS VALUE OS349

9 Call StartScheduleTableAbs() from task when schedule ta-
ble is in state SCHEDULETABLE STOPPED

Service returns E OS STATE (in
STANDARD and EXTENDED)

OS350

10 Call StopScheduleTable() from task Service returns E OK OS006 OS281,
OS453

11 Call StopScheduleTable() from task with invalid id Service returns E OS ID OS279
12 Call StopScheduleTable() from task when schedule table is

in state SCHEDULETABLE STOPPED
Service returns E OS NOFUNC (in
STANDARD and EXTENDED)

OS280

13 Call NextScheduleTable() from task Service returns E OK OS191, OS284,
OS324, OS414

14 Call NextScheduleTable() from task with invalid Sched-
uleTableID From

Service returns E OS ID OS282

15 Call NextScheduleTable() from task with invalid Sched-
uleTableID To

Service returns E OS ID OS282

16 Call NextScheduleTable() from task with different schedule
table counters

Service returns E OS ID OS330

17 Call NextScheduleTable() from task when schedule table
”from” is in state SCHEDULETABLE NEXT

Service returns E OS NOFUNC (in
STANDARD and EXTENDED)

OS283

18 Call NextScheduleTable() from task when schedule table
”from” is in state SCHEDULETABLE STOPPED

Service returns E OS NOFUNC (in
STANDARD and EXTENDED)

OS283

19 Call NextScheduleTable() from task when schedule table
”to” is not in state SCHEDULETABLE STOPPED

Service returns E OS STATE OS309

20 Call GetMessageStatus() from task Service returns E OK OS359
21 Call GetMessageStatus() from task with invalid id Service returns E OS ID OS293
22 Call GetMessageStatus() from task for a schedule table

which waits for the end of the current schedule table
Service returns E OK and
SCHEDULETABLE NEXT via
<ScheduleStatus>

OS353

25

1 42 3 5 9 10 11 12 15 16 17 19186 7 8 13 14 20 21 22 23 24

ta
skex

ec
ut

io
n

le
ve

l IS
R2

St
ar

t
Sc

he
du

le
Ta

bl
e

Ab
s

St
op

Sc
he

du
le

Ta
bl

e

ca
lle

d
O

S
se

rv
ice

in
va

lid
va

lid
NE

XT

E_
O

K

id
st

at
e

re
tu

rn
st

at
us

E_
O

S_
ID E_

O
S_

VA
LU

E

Sc
he

du
le

Ta
bl

e_
fro

m

AU
TO

SA
R_

Sc
he

du
le

_T
ab

le

St
ar

t
Sc

he
du

le
Ta

bl
e

Re
l

Ne
xt

Sc
he

du
le

Ta
bl

e
G

et
Sc

he
du

le
Ta

bl
e

St
at

us
ST

O
PP

ED RU
NN

IN
G

in
va

lid
va

lid

id
st

at
e

Sc
he

du
le

Ta
bl

e_
to

 (S
ch

ed
ul

eT
ab

le
)

ST
O

PP
ED

no
t

ST
O

PP
ED

ST
 C

ou
nt

er
s

id
en

tic
al

di
ffé

re
nt

O
ffs

et
 /

St
ar

t

=0
>M

AX
-

In
itO

ffs
et>M

AX
ta

bl
e

st
ar

te
d

ta
bl

e
qu

eu
ed

ye
s

no
ye

s
no

E_
O

S_
NO

FU
NC

E_
O

S_
ST

AT
E

va
lid

in
va

lid

26

25

28

26
27

29

33

35
36

39
40
41

30
31
32

37
38

next
ST

repeating
ST

FALSE

Autostart

multiple
single

Number

AUTOSAR_Schedule_Table_functional

RELATIVE
x0 LENGTH

(-1)repeating

single-
shot

Processing

Processing ActionScheduleTable

expiry point
order

offset =

next expiry
point after
final expiry

point

expiry
point good

order

ST
restarted

ActivateTask SetEvent

ok error
ok error

ABSOLUTE

34

basic
task suspended

task

42

45

43
44

46

50
51
52
53

56
57
58

60
59

47
48
49

54
55

61
62
63
64
65
66
67
68
69
70

Autostart

AUTOSAR_Schedule_Table_GOIL

RELATIVE repeating

single-
shot

ScheduleTable
processing

Schedule Table parametersScheduleTable

delaycounter driver
number

offset
delay

expiry point
action

expiry point
number

offset number

ABSOLUTE 0 >1 0 1 2 0 1 2 0 1 2 <MIN OK >MAX=0

First.Delay

Others

Final.Delay
>Max-

Initial.Offset

27

Test
Case
No.

Action Expected Result OS Require-
ments

23 Call GetMessageStatus() from task for a schedule table
which is not started

Service returns E OK and SCHED-
ULETABLE STOPPED via
<ScheduleStatus>

OS289

24 Call GetMessageStatus() from task for a schedule table
which is started

Service returns E OK and SCHED-
ULETABLE RUNNING via
<ScheduleStatus>

OS291

25 If single-shot ST, stop the schedule table Final Delay ticks
after the Final Expiry Point is processed

OS009

26 If single-shot ST, an expiry point can be set to offset=0 OS002
27 The schedule table has to be processed from the Initial-

ExpiryPoint to the FinalExpiryPoint in order of increasing
offset

OS002, OS410

28 If single-shot ST, an expiry point can be set to off-
set=LENGTH

OS002

29 If single-shot ST, The OS shall process all task activations
on an expiry point first and then set events

OS412

30 Action of a ST results in a ActivateTask
31 Action of a ST results in a ActivateTask and and overflow

of Activation occurs.
ErrorHook is launched

32 Action of a ST results in a SetEvent
33 Action of a ST results in a SetEvent on a basic task. error : An action can’t set an Event

to a basic task (Task t1 is a basic
task).

34 Action of a ST results in a SetEvent on a suspended task. ErrorHook is launched
35 If single-shot ST, Intial expiry point of a ’nexted’ ST shall

be launched at Final Expiry point + Final Delay + Initial
Expiry point (as there’s a ”finalize” expiry point, this test
case as to check when Initial Expiry point is different AND
equal to zero.)

OS414

36 A ST restarts from the begging (offset=0) OS428
37 If repeating ST, Initial Expiry Point shall be launched at

Final Expiry Point + Final Delay + Initial Offset
OS194

38 If repeating ST, an expiry point can be set to offset=0 and
at offset=LENGTH-1

OS002

39 Multiple ST are allowed OS007
40 A ST can be autostarted with ABSOLUTE mode.

<OFFSET> should be in the range MINCY-
CLE..MAXALLOWEDVALUE OR equal to 0

OsSchedule-
TableAutostart

41 A ST can be autostarted with RELATIVE mode.
<START> should be in the range MINCY-
CLE..MAXALLOWEDVALUE

OsSchedule-
TableAutostart

42 No Expiry point in a schedule table error : no EXPIRY POINT found
for SCHEDULETABLE X

OS401

43 One or several expiry points in a schedule table OS401
44 No Action in an expiry point error : no ACTION found for EX-

PIRY POINT Y
OS407

45 One action in an expiry point OS402, OS403
46 Several actions in an expiry point OS407
47 No counter in a schedule table error : Counter is not defined in X OS409
48 One counter in a schedule table OS409
49 Several counters in a schedule table error : COUNTER attribute al-

ready defined for Schedule Table X
OS409

28

Test
Case
No.

Action Expected Result OS Require-
ments

50 No offset in an expiry point error : OFFSET is missing for ex-
piry point Y

OS404

51 One offset in an expiry point OS442
52 Several offsets in an expiry point error : OFFSET Redefinition OS442
53 First.Delay is equal to 0 OS443
54 First.Delay is lower than MINCYCLE error : OFFSET of first expiry

point is lower than MINCYCLE of
the driving counter and not equal
to 0.

OS443

55 First.Delay is in the range OS443
56 First.Delay is greater than MAXALLOWEDVALUE error : OFFSET of first ex-

piry point is greater than MAX-
ALLOWEDVALUE of the driving
counter

OS443

57 Delay between adjacent expiry point is lower than MINCY-
CLE

error : Delay between expiry point
number A and B is lower than MIN-
CYCLE of the driving counter

OS408

58 Delay between adjacent expiry point is in the range OS408
59 Delay between adjacent expiry point is greater than MAX-

ALLOWEDVALUE
error : Delay between expiry
point number A and B is greater
than MAXALLOWEDVALUE of
the driving counter

OS408

60 In single-shot, Final.Delay is equal to 0 OS427
61 In repeating, Final.Delay is equal to 0 error : Final delay can be equal to

0 only for single-shot schedule table
and X is a repeating one

OS444

62 Final.Delay is lower than MINCYCLE error : Final delay should be
within MINCYCLE and MAX-
ALLOWEDVALUE of the driving
counter

OS444

63 Final.Delay is in the range OS444
64 Final.Delay is greater than MAXALLOWEDVALUE error : Final delay should be

within MINCYCLE and MAX-
ALLOWEDVALUE of the driving
counter

OS444

65 In an ABSOLUTE autostarted schedule table, <OFFSET>
is equal to 0

66 In an ABSOLUTE autostarted schedule table, <OFFSET>
is lower than MAXALLOWEDVALUE

67 In an ABSOLUTE autostarted schedule table, <OFFSET>
is greater than MAXALLOWEDVALUE

error : X autostart’s offset is
greater than MAXALLOWED-
VALUE

OS349

68 In an RELATIVE autostarted schedule table, <START>
is equal to 0

error : X autostart’s offset is equal
to 0

OS332

69 In an RELATIVE autostarted schedule table, <START>
is lower than (MAXALLOWEDVALUE - Initial.Offset)

70 In an RELATIVE autostarted schedule table, <START>
is greater than (MAXALLOWEDVALUE - Initial.Offset)

error : X autostart’s offset is
greater than (MAXALLOWED-
VALUE - Initial.Offset)

OS276

29

Test
Case
No.

Action Expected Result OS Require-
ments

When a schedule table is started, the first expiry point can be set to the ”second” value of a counter tick (only
with StartScheduleTableAbs) if :

• (<start> > current date) AND (<start> + FirstDelay - MAX ALLOWED VALUE) > current date

• (<start> < current date) AND ((<start> + FirstDelay) > current date)

Because of that, more tests has to be done to check that the expiry point is not launched at the first value of the
counter but at the ”second”. In Trampoline, we use a ”Bootstrap” to implement the solution. A bit of the schedule
table’s state is set to ’1’ when the first expiry point has reached the conditions above. When the time object is
launched, we take a look at the state and if the bit is ’1’, we take out the time object and place it before the current
date, setting the bit to ’0’. In this way, the expiry point is shifted to the ”second” value of the counter.
Moreover, other tests have to check the correct functionning of the sequences when there are only ”bootstraped”
schedule table on an expiry point, or when there are ”bootstraped” and ”normal” schedule tabe, whatever the first
inserted in the counter’s date.
The plan below conclues on the schedule table tests. ”Date” is the date of the first expiry point.

71

74

72
73

75

79
80

76
77
78

task/
ISR2

execution
level

StartSchedule
TableAbs

API service
call (OS002)

AUTOSAR_Schedule_Table_Bootstrap

StartSchedule
TableRel expiry point's

composition
(OS412)

all
"bootsraped"

first
"bootsraped"

first
"normal"Offset

<
MAX

<Start> < current <Start> > current

<
current

=
current

>
current

Date

<
current

=
current

>
current

Date

Scheduletable's
state

"bootstrap"

"normal"

Test
Case
No.

Action Expected Result

71 Call StartScheduleTableRel() from task. Offset is
lower than max allowed value of the counter.

Service returns E OK

72 Call StartScheduleTableAbs() from task.
<Start> and Date are lower than current
date.

Service returns E OK

73 Call StartScheduleTableAbs() from task.
<Start> is lower than current date and Date is
equal to current date.

Service returns E OK

30

Test
Case
No.

Action Expected Result

74 Call StartScheduleTableAbs() from task.
<Start> is lower than current date and Date is
greater than current date.

Service returns E OK. The schedule table is set to a ”boot-
strap” one.

75 Call StartScheduleTableAbs() from task.
<Start> is greater than current date and
Date is lower than current date.

Service returns E OK

76 Call StartScheduleTableAbs() from task.
<Start> is greater than current date and
Date is equal to current date.

Service returns E OK

77 Call StartScheduleTableAbs() from task.
<Start> and Date are greater than current
date.

Service returns E OK. The schedule table is set to a ”boot-
strap” one.

78 Set several ”bootstraped” schedule table to a
same date

Expiry points stay in the list and schedule table state becomes
”normal”

79 Set several ”bootstraped” and ”normal” schedule
table to a same date. A ”bootstrap” schedule
table is inserted first in the list.

Expiry points which was ”bootstraped” stay in the list and
there schedule table state becomes ”normal”. Expiry point
which was ”normal” are taken out of the list.

80 Set several ”bootstraped” and ”normal” schedule
table to a same date. A ”normal” schedule table
is inserted first in the list.

Expiry points which was ”bootstraped” stay in the list and
there schedule table state becomes ”normal”. Expiry point
which was ”normal” are taken out of the list.

2.11 AUTOSAR - Schedule Table Synchronisation

OS Requirements : 013, 199, 201, 206, 227, 278, 290, 291, 300, 323, 351, 354, 362, (363), 387, 388, 389, 417, 418,
419, 420, 421, 422, 429, 430, 434, 435, 452, 454, 455, 456, 457, 458
OS462 and OS463 can’t be tested.
OS Requirements 415, 416, 429, 430, 431, 436, 437, 438 are GOIL test cases (Test cases 38 to 60).

Test
Case
No.

Action Expected Result OS Require-
ments

1 Call StartScheduleTableSynchron() from
task/ISR2. The state of the schedule table is
equal to SCHEDULETABLE STOPPED

Service returns E OK, the state is set to
SCHEDULETABLE WAITING

OS389, OS435

2 Call StartScheduleTableSynchron() from
task/ISR2 with invalid id

Service returns E OS ID OS387

3 Call StartScheduleTableSynchron() from
task/ISR2. The schedule table is not
explicitly synchronized

Service returns E OS ID OS387

4 Call StartScheduleTableSynchron() from
task/ISR2. The state of the schedule table is
not equal to SCHEDULETABLE STOPPED

Service returns E OS STATE (in STANDARD
and EXTENDED)

OS388

5 Call SyncScheduleTable() from task/ISR2. Service returns E OK, the processing of the
schedule table is started

OS013, OS457,
OS199, OS201

6 Call SyncScheduleTable() from task/ISR2
with invalid id

Service returns E OS ID OS454

7 Call SyncScheduleTable() from task/ISR2.
The schedule table is not explicitly synchro-
nized

Service returns E OS ID OS454

31

1 42 3 5 9 10 11 12 15 16 17 19186 7 8 13 14 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

ta
sk

/
IS

R2

ex
ec

ut
io

n
le

ve
l

Sy
nc

Sc
he

du
le

Ta
bl

e
Se

t
Sc

he
du

le
Ta

bl
e

As
yn

c

ca
lle

d
O

S
se

rv
ice

E_
O

K

re
tu

rn
st

at
us

E_
O

S_
ID

E_
O

S_
VA

LU
E

AU
TO

SA
R_

Sc
he

du
le

_T
ab

le
_S

yn
ch

ro
ni

za
tio

n

St
ar

t
Sc

he
du

le
Ta

bl
e

Sy
nc

hr
on

G
et

Sc
he

du
le

Ta
bl

e
St

at
us

E_
O

S_
ST

AT
E

in
va

lid
va

lid

id
st

at
e

Sc
he

du
le

Ta
bl

e

ST
O

PP
ED

St
ra

te
gy

EX
PL

IC
IT

no
t

EX
PL

IC
IT

<V
al

ue
>

gr
ea

te
r

th
an

Du

ra
tio

n
NE

XT
RU

NN
IN

G

RU
NN

IN
G

_
AN

D_
SY

NC
HR

O
NO

US

W
AI

TI
NG

no
t

ST
O

PP
ED

St
ar

t
Sc

he
du

le
Ta

bl
e

Ab
s

St
ar

t
Sc

he
du

le
Ta

bl
e

Re
l

IM
PL

IC
IT

Du
ra

tio
n

=
M

AX
 +

 1

Pa
ra

m
et

er
s

Pe
rfo

rm
in

g
Sy

nc
hr

on
iza

tio
n

pr
ec

isi
on

=
0

de
via

tio
n

!=
 0

(d
ev

ia
tio

n
<

0)

As
yn

ch
ro

no
us

=
0

<
0

>
0

Ex
pi

ry
 p

oi
nt

go
od

 o
rd

er
(O

S4
12

)

al
l

la
st

fin
al

AU
TO

ST
AR

T

SY
NC

HR
O

N

32

38

41

39
40

42

46
47
48
49

52
53
54

56
55

43
44
45

50
51

57
58
59
60

Autostart

AUTOSAR_Schedule_Table_Synchronization_bis

RELATIVE

< Duration
missing > Durationrepeating

single-
shot

ScheduleTable
processing

Schedule Table parameters

Strategy

Precision

ABSOLUTE SYNCHRONIMPLICIT
EXPLICIT

Length

!=MAX+1

>MAX+1

Adjustable exp_pt

first
exp_pt

other
exp_pt

MaxRetard

MaxAdvance

<MAX >MAX <MAX >MAX

Test
Case
No.

Action Expected Result OS Require-
ments

8 Call SyncScheduleTable() from task/ISR2.
The <value> is greater than OSSched-
uleTableDuration

Service returns E OS VALUE OS455

9 Call SyncScheduleTable() from task/ISR2.
The state of the schedule table is equal to
SCHEDULETABLE STOPPED

Service returns E OS STATE OS456

10 Call SyncScheduleTable() from task/ISR2.
The state of the schedule table is equal to
SCHEDULETABLE NEXT

Service returns E OS STATE OS456

11 Call SetScheduleTableAsync() from
task/ISR2. The schedule table is explic-
itly synchronized

Service returns E OK, the state is set to
SCHEDULETABLE RUNNING

OS300

12 Call SetScheduleTableAsync() from
task/ISR2. The schedule table is ex-
plicitly synchronized and the state of
the schedule table is equal to SCHED-
ULETABLE RUNNING

Service returns E OK, the synchronisation is
stopped but expiry point are still processed

OS362, OS323,
OS422

13 Call SetScheduleTableAsync() from
task/ISR2. The schedule table’s strategy is
not equal to EXPLICIT

Service returns E OS ID OS458

14 Call SetScheduleTableAsync() from
task/ISR2 with invalid id

Service returns E OS ID OS458

15 Call GetScheduleTableStatus() from
task/ISR2. The schedule table is EX-
CPLICIT and no synchronisation count was
provided

Service returns E OK and SCHED-
ULETABLE WAITING via <ScheduleStatus>

OS354, OS227

33

Test
Case
No.

Action Expected Result OS Require-
ments

16 Call GetScheduleTableStatus() from
task/ISR2. The schedule table is started
AND NOT synchronous

Service returns E OK and SCHED-
ULETABLE RUNNING via <ScheduleStatus>

OS291

17 Call GetScheduleTableStatus() from
task/ISR2. The schedule table is started
AND synchronous (deviation in the precision
interval)

Service returns E OK and SCHED-
ULETABLE RUNNING AND SYNCHRONOUS
via <ScheduleStatus>

OS290

18 Call StartScheduleTableRel() from task/ISR2.
The schedule table’s strategy is IMPLICIT

Service returns E OS ID OS452, OS430

19 Call StartScheduleTableRel() from task/ISR2.
The schedule table’s strategy is EXPLICIT

Service returns E OK, the processing of the
schedule table is started and the state is SCHED-
ULETABLE RUNNING

OS278, OS434

20 Call StartScheduleTableRel() from task/ISR2.
The schedule table’s strategy is EXPLICIT
and its state is not stopped

Service returns E OS STATE OS277

21 Call StartScheduleTableAbs() from
task/ISR2. The schedule table’s strategy is
IMPLICIT

Service returns E OK, the processing of the
schedule table is started and the state is SCHED-
ULETABLE RUNNING

OS351

22 Call StartScheduleTableAbs() from
task/ISR2. The schedule table’s strategy is
EXPLICIT

Service returns E OK, the processing of the
schedule table is started and the state is SCHED-
ULETABLE RUNNING

OS351, OS434

23 Call StartScheduleTableAbs() from
task/ISR2. The schedule table’s strategy is
EXPLICIT and its state is not stopped

Service returns E OS STATE OS350

24 An IMPLICIT schedule table shall have a pe-
riod equal to (MAX ALLOWED VALUE +
1) of its counter

OS429

25 An IMPLICIT schedule table is always syn-
chronized.

Next expiry point is inserted in the list

26 No synchronisation with deviation equal to 0 Next expiry point is inserted in the list OS389, OS201
27 Performing synchronisation with precision

equal to 0 and deviation less than 0. Check
expiry point good order

According to deviation and MaxRetard, Next
expiry point is inserted in the list

OS206, OS417,
OS420

28 Performing synchronisation with precision
equal to 0 and deviation less than 0. Check
expiry point good order on last expiry point

According to deviation and MaxRetard, First ex-
piry point is adjusted and if comes before Final
expiry point, Final expiry point is adjuted to the
same offset of First expiry point and inserted in
the list and First expiry point offset becomes 0

OS420

29 Performing synchronisation with precision
equal to 0 and deviation less than 0. Check
expiry point good order on final expiry point

According to deviation and MaxRetard, First ex-
piry point is launched now if First.Delay equal
to 0, otherwise if only one expiry point in the ST
(the final one), adjust the Final expiry point, in-
sert it in the list and First expiry point offset
becomes 0 otherwise is adjusted and inserted in
the list

OS420

34

Test
Case
No.

Action Expected Result OS Require-
ments

30 Performing synchronisation with precision
equal to 0 and deviation greater than 0. Check
expiry point good order

According to deviation and MaxAdvance, Next
expiry point is inserted in the list

OS421

31 Performing synchronisation with precision
equal to 0 and deviation greater than 0. Check
expiry point good order on last expiry point

According to deviation and MaxAdvance, First
expiry point is adjusted and Final expiry point
is inserted in the list

OS421

32 Performing synchronisation with precision
equal to 0 and deviation greater than 0. Check
expiry point good order on final expiry point

According to deviation and MaxAdvance, First
expiry point is launched now if First.Delay equal
to 0, otherwise is adjusted and inserted in the list

OS421

33 Performing synchronisation with precision dif-
ferent than 0 and deviation less than 0. Check
expiry point good order

According to deviation, precision and MaxRe-
tard, Next expiry point is inserted in the list

OS418, OS419

34 Performing synchronisation with precision dif-
ferent than 0 and deviation less than 0. Check
expiry point good order on last expiry point

According to deviation, precision and MaxRe-
tard, First expiry point is adjusted and if comes
before Final expiry point, Final expiry point is
adjuted to the same offset of First expiry point
and inserted in the list and First expiry point
offset becomes 0

OS418, OS419

35 Performing synchronisation with precision dif-
ferent than 0 and deviation less than 0. Check
expiry point good order on final expiry point

According to deviation, precision and MaxRe-
tard, First expiry point is launched now if
First.Delay equal to 0, otherwise if only one ex-
piry point in the ST (the final one), adjust the
Final expiry point, insert it in the list and First
expiry point offset becomes 0 otherwise is ad-
justed and inserted in the list

OS418, OS419

36 No synchronisation if schedule table asyn-
chronous

Next expiry point is inserted in the list OS362, OS323

37 A schedule table can be autostarted with
SYNCHRON mode

The state is SCHEDULETABLE WAITING OsSchedule-
TableAutostart

38 IMPLICIT schedule table is single-shot A synchronized schedule table shall be repeating
otherwise, synchronisation can’t be done.

39 IMPLICIT schedule table is repeating
40 IMPLICIT schedule table autostarts in AB-

SOLUTE mode
41 IMPLICIT schedule table autostarts in REL-

ATIVE mode
An IMPLICIT schedule table should be started
in Absolute mode only

OS430

42 IMPLICIT schedule table autostarts in SYN-
CHRON mode

An IMPLICIT schedule table should be started
in Absolute mode only

OS430

43 IMPLICIT schedule table duration is different
to MAXALLOWEDVALUE + 1

An IMPLICIT schedule table should have a du-
ration equal to OSMAXALLOWEDVALUE + 1
of its counter.

OS429

44 EXPLICIT schedule table is single-shot A synchronized schedule table shall be repeating
otherwise, synchronisation can’t be done.

45 EXPLICIT schedule table is repeating
46 EXPLICIT schedule table autostarts in AB-

SOLUTE mode
47 EXPLICIT schedule table autostarts in REL-

ATIVE mode
48 EXPLICIT schedule table autostarts in SYN-

CHRON mode
49 EXPLICIT schedule table duration is greater

than MAXALLOWEDVALUE + 1
An EXPLICIT schedule table shouldn’t have
a duration greater than OSMAXALLOWE-
VALUE + 1 of its counter.

OS431

35

Test
Case
No.

Action Expected Result OS Require-
ments

50 EXPLICIT schedule table precision missing PRECISION attribute is missing
51 EXPLICIT schedule table precision lower

than duration
52 EXPLICIT schedule table precision greater

than duration
An explicit schedule table shall have a precision
in the range 0 to duration.

OS438

53 In the first expiry point of an EXPLICIT
schedule table, MaxRetard is lower than the
maximum value allowed

54 In the first expiry point of an EXPLICIT
schedule table, MaxRetard is greater than the
maximum value allowed

In first expiry point, MaxRetard should be infe-
rior to the previous delay minus MINCYCLE of
the counter.

OS415, OS436

55 In the first expiry point of an EXPLICIT
schedule table, MaxAdvance is lower than the
maximum value allowed

56 In the first expiry point of an EXPLICIT
schedule table, MaxAdvance is greater than
the maximum value allowed

In first expiry point, MaxAdvance should be in-
ferior to duration minus the first delay.

OS416, OS437

57 In an expiry point of an EXPLICIT schedule
table, MaxRetard is lower than the maximum
value allowed

58 In an expiry point of an EXPLICIT schedule
table, MaxRetard is greater than the maxi-
mum value allowed

In expiry point at offset X, MaxRetard should be
inferior to the previous delay minus MINCYCLE
of the counter.

OS415, OS436

59 In an expiry point of an EXPLICIT schedule
table, MaxAdvance is lower than the maxi-
mum value allowed

60 In an expiry point of an EXPLICIT schedule
table, MaxAdvance is greater than the maxi-
mum value allowed

In expiry point at offset X, MaxAdvance should
be inferior to duration minus the previous delay.

OS416, OS4337

2.12 AUTOSAR - OS-Application

2.12.1 API Service Calls for OS objects

OS Requirements : 016, 017, 256, 258, 261, 262, 271, 272, 273, 274, 287, 318, 319, 346, 423, 445, 447, 450, 459
OS288* is in the sequence which test all the API service calls from wrong context.

Test
Case
No.

Action Expected Result OS Require-
ments

1 Call CheckObjectAccess() with <AppID> in-
valid

Service returns NO ACCESS OS423

2 Call CheckObjectAccess() with
<ObjectType> invalid

Service returns NO ACCESS OS423

3 Call CheckObjectAccess() for a task object
type with <ObjectID> invalid

Service returns NO ACCESS OS423

4 Call CheckObjectAccess() for a task object
type, running task/ISR2 has access to the ob-
ject

Service returns ACCESS OS256, OS271,
OS450

5 Call CheckObjectAccess() for a task object
type, running task/ISR2 has NO access to the
object

Service returns NO ACCESS OS272

36

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

ta
sk

ex
ec

ut
io

n
le

ve
l Ch

ec
kO

bj
ec

t
Ac

ce
ss

ca
lle

d
O

S
se

rv
ice

<O
bj

ec
tT

yp
e>

va
lid<A

pp
lID

>

AC
CE

SSre
tu

rn

NO
_A

CC
ES

S

pa
ra

m
et

er
s

AU
TO

SA
R_

Ap
pl

ica
tio

n_
AP

I_
Se

rv
ice

_C
al

ls

Ch
ec

k
O

bj
ec

t
O

wn
er

sh
ip

<O
bj

ec
tID

>

in
va

lid
in

va
lid

va
lid

in
va

lid RE
S_

SC
HE

DU
LE

R

Sy
st

em
Co

un
te

r

IN
VA

LI
D_

O
SA

PP
LI

CA
TI

O
N

ta
sk

al
ar

m
re

so
ur

ce sc
he

du
le

 ta
bl

e
co

un
te

r

O
bj

ec
t

Ac
ce

ss

ye
s

no

IS
R2

G
et

Ap
pl

ica
tio

n
ID

Te
rm

in
at

e
Ap

pl
ica

tio
n

Ap
pl

ica
tio

n
Ta

sk
/O

sI
sr

nu
m

be
r

0
>0

E_
O

S_
VA

LU
E

<R
es

ta
rtO

pt
io

n>

in
va

lid
RE

ST
AR

T
NO

RE
ST

AR
T

no
ap

pl
ica

tio
n

ru
nn

in
g

37

Test
Case
No.

Action Expected Result OS Require-
ments

6 Call CheckObjectAccess() for an ISR2 object
type with <ObjectID> invalid

Service returns NO ACCESS

7 Call CheckObjectAccess() for an ISR2 object
type, running task/ISR2 has access to the ob-
ject

Service returns ACCESS

8 Call CheckObjectAccess() for an ISR2 object
type, running task/ISR2 has NO access to the
object

Service returns NO ACCESS

9 Call CheckObjectAccess() for an alarm object
type with <ObjectID> invalid

Service returns NO ACCESS

10 Call CheckObjectAccess() for an alarm object
type, running task/ISR2 has access to the ob-
ject

Service returns ACCESS

11 Call CheckObjectAccess() for an alarm object
type, running task/ISR2 has NO access to the
object

Service returns NO ACCESS

12 Call CheckObjectAccess() for a resource ob-
ject type with <ObjectID> invalid

Service returns NO ACCESS

13 Call CheckObjectAccess() for a resource ob-
ject type, running task/ISR2 has access to the
object

Service returns ACCESS

14 Call CheckObjectAccess() for a resource ob-
ject type, running task/ISR2 has NO access
to the object

Service returns NO ACCESS

15 Call CheckObjectAccess() for a resource ob-
ject type (RES SCHEDULER)

Service returns ACCESS OS318

16 Call CheckObjectAccess() for a schedule table
object type with <ObjectID> invalid

Service returns NO ACCESS

17 Call CheckObjectAccess() for a schedule table
object type, running task/ISR2 has access to
the object

Service returns ACCESS

18 Call CheckObjectAccess() for a schedule table
object type, running task/ISR2 has NO access
to the object

Service returns NO ACCESS

19 Call CheckObjectAccess() for a counter object
type with <ObjectID> invalid

Service returns NO ACCESS

20 Call CheckObjectAccess() for a counter object
type, running task/ISR2 has access to the ob-
ject

Service returns ACCESS

21 Call CheckObjectAccess() for a counter object
type, running task/ISR2 has NO access to the
object

Service returns NO ACCESS

22 Call CheckObjectAccess() for a counter object
type (SystemCounter)

Service returns NO ACCESS

23 Call CheckObjectOwnerShip() with
<ObjectType> invalid

Service returns INVALID OSAPPLICATION OS274, OS017

24 Call CheckObjectOwnerShip() for a task ob-
ject type with <ObjectID> invalid

Service returns INVALID OSAPPLICATION OS274

25 Call CheckObjectOwnerShip() for a task ob-
ject type

Service returns the identifier of the OS-
Application to which the object belongs

OS273

38

Test
Case
No.

Action Expected Result OS Require-
ments

26 Call CheckObjectOwnerShip() for an ISR2
object type with <ObjectID> invalid

Service returns INVALID OSAPPLICATION

27 Call CheckObjectOwnerShip() for an ISR2
object type

Service returns the identifier of the OS-
Application to which the object belongs

28 Call CheckObjectOwnerShip() for an alarm
object type with <ObjectID> invalid

Service returns INVALID OSAPPLICATION

29 Call CheckObjectOwnerShip() for an alarm
object type

Service returns the identifier of the OS-
Application to which the object belongs

30 Call CheckObjectOwnerShip() for a resource
object type with <ObjectID> invalid

Service returns INVALID OSAPPLICATION

31 Call CheckObjectOwnerShip() for a resource
object type

Service returns the identifier of the OS-
Application to which the object belongs

32 Call CheckObjectOwnerShip() for a resource
object type (RES SCHEDULER)

Service returns INVALID OSAPPLICATION OS319

33 Call CheckObjectOwnerShip() for a schedule
table object type with <ObjectID> invalid

Service returns INVALID OSAPPLICATION

34 Call CheckObjectOwnerShip() for a schedule
table object type

Service returns the identifier of the OS-
Application to which the object belongs

35 Call CheckObjectOwnerShip() for a counter
object type with <ObjectID> invalid

Service returns INVALID OSAPPLICATION

36 Call CheckObjectOwnerShip() for a counter
object type

Service returns the identifier of the OS-
Application to which the object belongs

37 Call CheckObjectOwnerShip() for a counter
object type (SystemCounter)

Service returns INVALID OSAPPLICATION

38 Call TerminateApplication() with
<RestartOption> invalid

Service returns E OS VALUE OS459

39 Call TerminateApplication() with
<RestartOption> equals NO RESTART

The OS shall terminate the calling OS-
Application (i.e. to kill all tasks, disable the
interrupt sources of those OsIsrs which belong
to the OS-Application and free all other OS re-
sources associated with the application)

OS258, OS287,
OS447

40 Call TerminateApplication() with
<RestartOption> equals RESTART

The OS shall terminate the calling OS-
Application (i.e. to kill all tasks, disable the
interrupt sources of those OsIsrs which belong
to the OS-Application and free all other OS
resources associated with the application) and
shall activate the configured OsRestartTask of
the terminated OS-Application

OS258, OS346,
OS447

41 Call GetApplicationID() and no OS-
Application is running

Service returns INVALID OSAPPLICATION OS262

42 Call GetApplicationID() and one OS-
Application is running

Service returns the application identifier to
which the executing Task/OsIsr/hook belongs

OS016, OS261

43 No Task nor ISR2 in an application error : An application should have at least one
Task OR ISR2.

OS445

44 At least one Task or OsIsr in an application OS445

2.12.2 Access Rights for objects in API services

OS Requirements : 56, 448

39

ye
sac

ce
ss

rig
ht

s

no

X

re
tu

rn
st

at
us

E_
O

S_
AC

CE
SS

AU
TO

SA
R_

Ap
pl

ica
tio

n_
Ac

ce
ss

_R
ig

ht
s

Ac
tiv

at
eT

as
k

Ca
lle

d
O

S
Se

rv
ice

Ch
ai

nT
as

k
G

et
Ta

sk
St

at
e

G
et

Re
so

ur
ceRe

le
as

eR
es

ou
rc

e
Se

tE
ve

nt G
et

Ev
en

tG
et

Al
ar

m
Ba

se
G

et
Al

ar
m Se

tR
el

Al
ar

m

Se
tA

bs
Al

ar
m

Ca
nc

el
Al

ar
m St

ar
tS

TR
elSt

ar
tS

TA
bs St

op
ST

Ne
xt

ST
St

ar
tS

TS
yn

ch
ro

n Sy
nc

ST Se
tS

TA
sy

nc
G

et
ST

St
at

us
In

cr
em

en
tC

ou
nt

er
G

et
Co

un
te

rV
al

ue
G

et
El

ap
se

dC
ou

nt
er

Va
lu

e

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46

40

Test
Case
No.

Action Expected Result OS Require-
ments

1 Call ActivateTask() for a task which can be
accessed by the running task/ISR2

Service returns E OK if no error OS448

2 Call ActivateTask() for a task which can’t be
accessed by the running task/ISR2

Service returns E OS ACCESS OS056, OS448

3 Call ChainTask() for a task which can be ac-
cessed by the running task/ISR2

Service returns E OK if no error

4 Call ChainTask() for a task which can’t be
accessed by the running task/ISR2

Service returns E OS ACCESS

5 Call GetTaskState() for a task which can be
accessed by the running task/ISR2

Service returns E OK if no error

6 Call GetTaskState() for a task which can’t be
accessed by the running task/ISR2

Service returns E OS ACCESS

7 Call GetResource() for a task which can be
accessed by the running task/ISR2

Service returns E OK if no error

8 Call GetResource() for a task which can’t be
accessed by the running task/ISR2

Service returns E OS ACCESS

9 Call ReleaseResource() for a task which can
be accessed by the running task/ISR2

Service returns E OK if no error

10 Call ReleaseResource() for a task which can’t
be accessed by the running task/ISR2

Service returns E OS ACCESS

11 Call SetEvent() for a task which can be ac-
cessed by the running task/ISR2

Service returns E OK if no error

12 Call SetEvent() for a task which can’t be ac-
cessed by the running task/ISR2

Service returns E OS ACCESS

13 Call GetEvent() for a task which can be ac-
cessed by the running task/ISR2

Service returns E OK if no error

14 Call GetEvent() for a task which can’t be ac-
cessed by the running task/ISR2

Service returns E OS ACCESS

15 Call GetAlarmBase() for a task which can be
accessed by the running task/ISR2

Service returns E OK if no error

16 Call GetAlarmBase() for a task which can’t
be accessed by the running task/ISR 2

Service returns E OS ACCESS

17 Call GetAlarm() for a task which can be ac-
cessed by the running task/ISR2

Service returns E OK if no error

18 Call GetAlarm() for a task which can’t be ac-
cessed by the running task/ISR2

Service returns E OS ACCESS

19 Call SetRelAlarm() for a task which can be
accessed by the running task/ISR2

Service returns E OK if no error

20 Call SetRelAlarm() for a task which can’t be
accessed by the running task/ISR2

Service returns E OS ACCESS

21 Call SetAbsAlarm() for a task which can be
accessed by the running task/ISR2

Service returns E OK if no error

22 Call SetAbsAlarm() for a task which can’t be
accessed by the running task/ISR2

Service returns E OS ACCESS

23 Call CancelAlarm() for a task which can be
accessed by the running task/ISR2

Service returns E OK if no error

24 Call CancelAlarm() for a task which can’t be
accessed by the running task/ISR2

Service returns E OS ACCESS

41

Test
Case
No.

Action Expected Result OS Require-
ments

25 Call StartScheduleTableRel() for a task which
can be accessed by the running task/ISR2

Service returns E OK if no error

26 Call StartScheduleTableRel() for a task which
can’t be accessed by the running task/ISR2

Service returns E OS ACCESS

27 Call StartScheduleTableAbs() for a task which
can be accessed by the running task/ISR2

Service returns E OK if no error

28 Call StartScheduleTableAbs() for a task which
can’t be accessed by the running task/ISR2

Service returns E OS ACCESS

29 Call StopScheduleTable() for a task which can
be accessed by the running task/ISR2

Service returns E OK if no error

30 Call StopScheduleTable() for a task which
can’t be accessed by the running task/ISR2

Service returns E OS ACCESS

31 Call NextScheduleTable() for a task which can
be accessed by the running task/ISR2

Service returns E OK if no error

32 Call NextScheduleTable() for a task which
can’t be accessed by the running task/ISR2

Service returns E OS ACCESS

33 Call StartScheduleTableSynchron() for a task
which can be accessed by the running
task/ISR2

Service returns E OK if no error

34 Call StartScheduleTableSynchron() for a task
which can’t be accessed by the running
task/ISR2

Service returns E OS ACCESS

35 Call SyncScheduleTable() for a task which can
be accessed by the running task/ISR2

Service returns E OK if no error

36 Call SyncScheduleTable() for a task which
can’t be accessed by the running task/ISR2

Service returns E OS ACCESS

37 Call SetScheduleTableAsync() for a task
which can be accessed by the running
task/ISR2

Service returns E OK if no error

38 Call SetScheduleTableAsync() for a task
which can’t be accessed by the running
task/ISR2

Service returns E OS ACCESS

39 Call GetScheduleTableStatus() for a task
which can be accessed by the running
task/ISR2

Service returns E OK if no error

40 Call GetScheduleTableStatus() for a task
which can’t be accessed by the running
task/ISR2

Service returns E OS ACCESS

41 Call IncrementCounter() for a task which can
be accessed by the running task/ISR2

Service returns E OK if no error

42 Call IncrementCounter() for a task which
can’t be accessed by the running task/ISR2

Service returns E OS ACCESS

43 Call GetCounterValue() for a task which can
be accessed by the running task/ISR2

Service returns E OK if no error

44 Call GetCounterValue() for a task which can’t
be accessed by the running task/ISR2

Service returns E OS ACCESS

45 Call GetElapsedCounterValue() for a task
which can be accessed by the running
task/ISR2

Service returns E OK if no error

42

Test
Case
No.

Action Expected Result OS Require-
ments

46 Call GetElapsedCounterValue() for a task
which can’t be accessed by the running
task/ISR2

Service returns E OS ACCESS

2.12.3 Access Rights for objects from OIL file

OS Requirements: 056

1
2
3
4
5
6
7

AUTOSAR_Application_Access_Rights_from_OIL_file

Activate
Task

Object ACTION

Schedule
Table

Set
Event

Increment
CounterAlarm

Object Wrong parameter

Task
Counter

object
Counter

Test
Case
No.

Action Expected Result OS Require-
ments

1 Alarm’s Counter doesn’t belong to the same
application of the alarm and the alarm has no
access rights to the counter’s application

error : Counter C doesn’t belong to the same
application of alarm A

2 Action of an alarm results in a ActivateTask.
Action’s Task doesn’t belong to the same ap-
plication of the alarm and the alarm has no
access rights to the task’s application

error : Task T doesn’t belong to the same appli-
cation of alarm A

3 Action of an alarm results in a SetEvent. Ac-
tion’s Task doesn’t belong to the same applica-
tion of the alarm and the alarm has no access
rights to the task’s application

error : Task T doesn’t belong to the same appli-
cation of alarm A

4 Action of an alarm results in a Increment-
Counter. Action’s Counter doesn’t belong to
the same application of the alarm and the
alarm has no access rights to the counter’s ap-
plication

error : Counter C doesn’t belong to the same
application of alarm A

5 Schedule table’s Counter doesn’t belong to the
same application of the schedule table and
the schedule table has no access rights to the
counter’s application

error : Counter C doesn’t belong to the same
application of schedule table S

6 Action of an expiry point of a schedule ta-
ble results in a ActivateTask. Action’s Task
doesn’t belong to the same application of the
schedule table and the schedule table has no
access rights to the task’s application

error : Task T doesn’t belong to the same appli-
cation of schedule table S

43

Test
Case
No.

Action Expected Result OS Require-
ments

7 Action of an expiry point of a schedule table
results in a SetEvent. Action’s Task doesn’t
belong to the same application of the sched-
ule table and the schedule table has no access
rights to the task’s application

error : Task T doesn’t belong to the same appli-
cation of schedule table S

2.13 AUTOSAR - Service Protection

OS Requirements : 52, 69, 70, 71, 92, 93, 239, 368, 369
Test case 11 can’t be tested because enabling/resuming API service call doesn’t return.
As specified in AUTOSAR OS Specifications, when an API service call happens when interrupts are disabled, the
service should be ignored and should return E OS DISABLEDINT when the service return a StatusType (OS093,
Test Case 10). The ErrorHook(s) is(are) called.
As nothing is described for API services which doesn’t return a StatusType, we decide executing the service
correctly, calling the Errorhook(s) with E OS DISABLEDINT as sequence 5 in the procedure (See GetActiveAp-
plicationMode(), GetApplicationID(), GetISRID(), CheckObjectAccess(), CheckObjectOwnership()).

Enable/
ResumeAll
Interrupts

ShutdowsOS

"Call" Task/OSIsr state

AUTOSAR_Service_Protection

OS
Service

Call
task
end

OSIsr
end

return
status

E_OS_DISABLEINT

interrupts
Resources
held by..

..that
task ..an other

task

E_OS_MISSINGEND

E_OS_RESOURCESdisabled
enabled

1

>11

2
3
4
5
6
7
8
9

10
11
12

Test
Case
No.

Action Expected Result OS Require-
ments

1 Ending a task without making a Terminate-
Task() or ChainTask() call

The OS shall terminate the task, call
the errorhook (if configured) with status
E OS MISSINGEND before leaving RUNNING
state and call the posttaskhook (is configured)

OS052, OS069

2 Ending a task without making a Terminate-
Task() with interrupts disabled

The OS shall terminate the task, call
the errorhook (if configured) with status
E OS MISSINGEND and enabling interrupts

OS239

3 Ending a task without making a Terminate-
Task(), holding 1 resource

The OS shall terminate the task, call
the errorhook (if configured) with status
E OS MISSINGEND and release the resource

OS070

4 Ending a task without making a Terminate-
Task(), holding several resources

The OS shall terminate the task, call
the errorhook (if configured) with status
E OS MISSINGEND and release resources

OS070

44

Test
Case
No.

Action Expected Result OS Require-
ments

5 Ending a task without making a Terminate-
Task(), an other task holding resource(s)

The OS shall terminate the task, call
the errorhook (if configured) with status
E OS MISSINGEND

OS070

6 Ending an ISR2 with interrupts disabled The OS shall call the errorhook (if configured)
with status E OS DISABLEDINT and enabling
interrupts

OS368

7 Ending an ISR2, holding 1 resource The OS shall call the errorhook (if configured)
with status E OS RESOURCE and release the
resource

OS369

8 Ending an ISR2, holding several resources The OS shall call the errorhook (if configured)
with status E OS RESOURCE and release re-
sources

OS369

9 Ending an ISR2, an other task holding re-
source(s)

The OS shall call the errorhook (if configured)
with status E OS RESOURCE

OS369

10 Call an OS service when interrupts are dis-
abled

Service (which can) returns
E OS DISABLEDINT, ignoring the service

OS093

11 Enabling/Resuming ingterrupts when inter-
rupts are already enabled

Service ignored OS092

12 Call ShutdownOS() PostTaskHook is not performed (even if Post-
TaskHook is configured)

OS071

2.14 AUTOSAR - Memory Protection

OS Requirements : 26, 27, 44, 81, 83, 86, 87, 195, 196, 198, 207, 208, 209, 355, 356.
Test case 14, 15, 16, 18 (the own peripheral part) are not tested yet.

1

Task/OsIsr
data

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

action
from

OS application...

AUTOSAR_Memory_Protection

execute
read write

result

trusted ok
call

protectionhook

non-trusted

to
OS application...

non-trusted

trusted

the
same

access to...

Task/OsIsr
stack

common
code

peripherals

OSApplication
data

OS
data OS

stack

own other

code
protected

As you can see above, the test case 1 correspond to two test cases : a Read test case (1a) and a Write test case
(1b). Moreover, the test case 7 (and some others) correspond to six test cases as described in the table below.

45

action

read write

to
OS application...

non-trusted

trusted

the
same

a
b
c
d
e
f

Test
Case
No.

Action Expected Result OS Require-
ments

1a Read OS datas from non-trusted OS applica-
tion

The OS shall call the protection-
hook (if configured) with status
E OS PROTECTION MEMORY

OS198

1b Write OS datas from non-trusted OS applica-
tion

The OS shall call the protection-
hook (if configured) with status
E OS PROTECTION MEMORY

OS198

2a Read OS datas from trusted OS application Access allowed OS198
2b Write OS datas from trusted OS application Access allowed OS198
3a Read OS stack from non-trusted OS applica-

tion
The OS shall call the protection-
hook (if configured) with status
E OS PROTECTION MEMORY

OS198

3b Write OS stack from non-trusted OS applica-
tion

The OS shall call the protection-
hook (if configured) with status
E OS PROTECTION MEMORY

OS198

4a Read OS stack from trusted OS application Access allowed OS198
4b Write OS stack from trusted OS application Access allowed OS198
5a Read its own OS application’s datas from non-

trusted OS application
Access allowed OS086

5b Write its own OS application’s datas from
non-trusted OS application

Access allowed OS086

6c Read non-trusted OS application’s datas from
non-trusted OS application

The OS shall call the protection-
hook (if configured) with status
E OS PROTECTION MEMORY

OS026

6d Write non-trusted OS application’s datas from
non-trusted OS application

The OS shall call the protection-
hook (if configured) with status
E OS PROTECTION MEMORY

OS207

6e Read trusted other OS application’s datas
from non-trusted OS application

The OS shall call the protection-
hook (if configured) with status
E OS PROTECTION MEMORY

OS026

6f Write trusted other OS application’s datas
from non-trusted OS application

The OS shall call the protection-
hook (if configured) with status
E OS PROTECTION MEMORY

OS207

7a Read its own OS application’s datas from
trusted OS application

Access allowed According to
OS026

7b Write its own OS application’s datas from
trusted OS application

Access allowed OS086

7c Read non-trusted OS application’s datas from
trusted OS application

Access allowed According to
OS026

46

Test
Case
No.

Action Expected Result OS Require-
ments

7d Write non-trusted OS application’s datas from
trusted OS application

Access allowed According to
OS207

7e Read trusted OS application’s datas from
trusted OS application

Access allowed According to
OS026

7f Write trusted OS application’s datas from
trusted OS application

Access allowed According to
OS207

8a Read Task/OsIsr’s datas of the same non-
trusted OS application

The OS shall call the protection-
hook (if configured) with status
E OS PROTECTION MEMORY

OS195

8b Write Task/OsIsr’s datas of the same non-
trusted OS application

The OS shall call the protection-
hook (if configured) with status
E OS PROTECTION MEMORY

OS195

8c Read Task/OsIsr’s datas of an other non-
trusted OS application from non-trusted OS
application

The OS shall call the protection-
hook (if configured) with status
E OS PROTECTION MEMORY

OS356

8d Read Task/OsIsr’s datas of an other non-
trusted OS application from non-trusted OS
application

The OS shall call the protection-
hook (if configured) with status
E OS PROTECTION MEMORY

OS356

8e Read Task/OsIsr’s datas of a trusted OS ap-
plication from non-trusted OS application

The OS shall call the protection-
hook (if configured) with status
E OS PROTECTION MEMORY

OS356

8f Write Task/OsIsr’s datas of a trusted OS ap-
plication from non-trusted OS application

The OS shall call the protection-
hook (if configured) with status
E OS PROTECTION MEMORY

OS356

9a Read Task/OsIsr’s datas of the same trusted
OS application

Access allowed OS087

9b Write Task/OsIsr’s datas of the same trusted
OS application

Access allowed OS087

9c Read Task/OsIsr’s datas of a non-trusted OS
application from trusted OS application

Access allowed OS087

9d Write Task/OsIsr’s datas of a non-trusted OS
application from trusted OS application

Access allowed OS087

9e Read Task/OsIsr’s datas of an other trusted
OS application from trusted OS application

Access allowed OS087

9f Write Task/OsIsr’s datas of an other trusted
OS application from trusted OS application

Access allowed OS087

10a Read Task/OsIsr’s stack of the same non-
trusted OS application

The OS shall call the protection-
hook (if configured) with status
E OS PROTECTION MEMORY

OS208

10b Write Task/OsIsr’s stack of the same non-
trusted OS application

The OS shall call the protection-
hook (if configured) with status
E OS PROTECTION MEMORY

OS208

10c Read Task/OsIsr’s stack of an other non-
trusted OS application from non-trusted OS
application

The OS shall call the protection-
hook (if configured) with status
E OS PROTECTION MEMORY

OS355

10d Write Task/OsIsr’s stack of an other non-
trusted OS application from non-trusted OS
application

The OS shall call the protection-
hook (if configured) with status
E OS PROTECTION MEMORY

OS355

47

Test
Case
No.

Action Expected Result OS Require-
ments

10e Read Task/OsIsr’s stack of a trusted OS ap-
plication from non-trusted OS application

The OS shall call the protection-
hook (if configured) with status
E OS PROTECTION MEMORY

OS355

10f Write Task/OsIsr’s stack of a trusted OS ap-
plication from non-trusted OS application

The OS shall call the protection-
hook (if configured) with status
E OS PROTECTION MEMORY

OS355

11a Read Task/OsIsr’s stack of the same trusted
OS application

Access allowed OS196

11b Write Task/OsIsr’s stack of the same trusted
OS application

Access allowed OS196

11c Read Task/OsIsr’s stack of a non-trusted OS
application from trusted OS application

Access allowed OS196

11d Write Task/OsIsr’s stack of a non-trusted OS
application from trusted OS application

Access allowed OS196

11e Read Task/OsIsr’s stack of an other trusted
OS application from trusted OS application

Access allowed OS196

11f Write Task/OsIsr’s stack of an other trusted
OS application from trusted OS application

Access allowed OS196

12 Execute sharde library code from non-trusted
OS application

Access allowed OS081

13 Execute sharde library code from trusted OS
application

Access allowed OS081

14 Execute protected (an OS application can pro-
tect its code section) code from non-trusted
OS application

The OS shall call the protection-
hook (if configured) with status
E OS PROTECTION MEMORY

OS027

15 Execute protected (an OS application can pro-
tect its code section) code from trusted OS
application

Access allowed OS027

16a Read its own peripherals from non-trusted OS
application

Access allowed OS083

16b Write to its own peripherals from non-trusted
OS application

Access allowed OS083

17c Read other peripherals from non-trusted OS
application

The OS shall call the protection-
hook (if configured) with status
E OS PROTECTION MEMORY

according to
OS083

17d Write to other peripherals from non-trusted
OS application

The OS shall call the protection-
hook (if configured) with status
E OS PROTECTION MEMORY

according to
OS083

18a Read its own peripherals from trusted OS ap-
plication

Access allowed OS209

18b Write its own peripherals from trusted OS ap-
plication

Access allowed OS209

18c Read other peripherals from trusted OS appli-
cation

Access allowed OS209

18d Write other peripherals from trusted OS ap-
plication

Access allowed OS209

2.15 AUTOSAR - Timing Protection

OS Requirements : (28), (89), (397)

48

2.15.1 Execution Time Budget

OS Requirements : 64, 210, 473, 474

1

4

2
3

5

task

execution
level

ISR2 nothing

Operating
System call

E_OS_PROTEC
TION_TIME

(ProtectionHook)

AUTOSAR_Timing_Protection
(Execution budget)

6
7
8
9

10
11
12

Execution
time

<= Execution
Budget

> Execution
Budget

Task/ISR2
preempted

yes
no

basic

extended

13

16

14
15

Execution Time
restarted

event
received

no event

(with
WaitEvent)

with

with the
activation

Test
Case
No.

Action Expected Result OS Require-
ments

1 Execution Time of a non-preempted basic task
is less than the Execution Budget

OS473

2 Execution Time of a non-preempted basic task
reaches the Execution Budget

The OS shall call the protectionhook (if config-
ured) with status E OS PROTECTION TIME

OS064

3 Execution Time of a preempted basic task is
less than the Execution Budget

4 Execution Time of a preempted basic task
reaches the Execution Budget

The OS shall call the protectionhook (if config-
ured) with status E OS PROTECTION TIME

OS064

5 Execution Time of an extended task which has
been reset by the activation of the task until
WaitEvent API calls

6 Execution Time of an extended task which has
been reset by the activation of the task but
never comes to the WaitEvent API

The OS shall call the protectionhook (if config-
ured) with status E OS PROTECTION TIME

OS064

49

Test
Case
No.

Action Expected Result OS Require-
ments

7 Execution Time (restarted by WaitEvent
without event set) of a non-preempted ex-
tended task is less than the Execution Budget

OS473

8 Execution Time (restarted by WaitEvent
without event set) of a non-preempted ex-
tended task reaches the Execution Budget

The OS shall call the protectionhook (if config-
ured) with status E OS PROTECTION TIME

OS064

9 Execution Time (restarted by WaitEvent
without event set) of a preempted basic task
is less than the Execution Budget

OS473

10 Execution Time (restarted by WaitEvent
without event set) of a preempted basic task
reaches the Execution Budget

The OS shall call the protectionhook (if config-
ured) with status E OS PROTECTION TIME

OS064

11 Execution Time (restarted by WaitEvent with
the event(s) set) of a non-preempted extended
task is less than the Execution Budget

12 Execution Time (restarted by WaitEvent with
the event(s) set) of a non-preempted extended
task reaches the Execution Budget

The OS shall call the protectionhook (if config-
ured) with status E OS PROTECTION TIME

OS064

13 Execution Time of a preempted ISR2 is less
than the Execution Budget

OS474

14 Execution Time of a preempted ISR2 reaches
the Execution Budget

The OS shall call the protectionhook (if config-
ured) with status E OS PROTECTION TIME

OS210

15 Execution Time of a preempted ISR2 is less
than the Execution Budget

16 Execution Time of a preempted ISR2 reaches
the Execution Budget

The OS shall call the protectionhook (if config-
ured) with status E OS PROTECTION TIME

OS210

2.15.2 Time Frame

OS Requirements : 48, (465), 466, 467, 469, (470), 471, 472

Test
Case
No.

Action Expected Result OS Require-
ments

1 Basic task inter-arrival time is greater than
Time Frame

2 Basic task inter-arrival time is lower than
Time Frame (and the task activation is al-
lowed)

The OS shall call the protection-
hook (if configured) with status
E OS PROTECTION ARRIVAL

OS466

3 Basic task inter-arrival time is lower than
Time Frame (and the task activation is not
allowed)

The OS shall call the errorhook (if configured)
with status E OS LIMIT

OS469

4 Extended task inter-arrival time is greater
than Time Frame. Time from the activation
to the first release (task running directly)

5 Extended task inter-arrival time is greater
than Time Frame. Time from the activation
to the first release (task running after a pre-
emption to test the inter-arrival time is well
started at the activation and not from the run-
ning point)

50

1

4

2
3

5

task

execution
level

ISR2 nothing

Operating
System call

E_OS_PROTECT
ION_TIME

(ProtectionHook)

AUTOSAR_Timing_Protection
(Time Frame)

6
7
8
9

10
11
12

inter-arrival
time

<= Time
Frame > Time

Frame

basic

extended

between
releases

activation
allowed

yes no

from the
activation
to the first
release

through a
preemption

running
directly

E_OS_LIMIT
(ErrorHook)

Test
Case
No.

Action Expected Result OS Require-
ments

6 Extended task inter-arrival time is lower than
Time Frame. Time from the activation to the
first release (task running directly)

The OS shall call the protection-
hook (if configured) with status
E OS PROTECTION ARRIVAL

OS467

7 Extended task inter-arrival time is greater
than Time Frame. Time between two releases.

OS472

8 Extended task inter-arrival time is lower than
Time Frame. Time between two releases.

The OS shall call the protection-
hook (if configured) with status
E OS PROTECTION ARRIVAL

OS467

9 ISR2 inter-arrival time is greater than Time
Frame (ISR2 running directly)

10 ISR2 inter-arrival time is greater than Time
Frame (ISR2 running after a preemption to
test the inter-arrival time is well started at the
activation and not from the running point)

OS471

11 ISR2 inter-arrival time is lower than Time
Frame (the ISR2 is not running)

The OS shall call the protection-
hook (if configured) with status
E OS PROTECTION ARRIVAL

OS048

12 Basic task inter-arrival time is lower than
Time Frame (the ISR2 is running)

2.15.3 Resource Locking and Interrupt Disabling

OS Requirements : (33), (37)

51

A Interrupts Management

References

[1] Consortium OSEK/VDX. OSEK/VDX OS Test Plan, 2.0 edition, 16th April 1999.

[2] Consortium OSEK/VDX. OSEK/VDX Operating System, 2.2.3 edition, 17th February 2005.

[3] Consortium OSEK/VDX. OSEK/VDX Operating System, 2.0 edition, 2001.

[4] Consortium OSEK/VDX. OSEK/VDX Communication, 3.0.3 edition, 2004.

52

ISR2

TY

TX

INTERRUPTS
ENABLED

isr

INTERRUPTS DISABLED

Task(X) tpl_signal_handler()
tpl_call_counter_tick()

tpl_central_interrupt_handler()
tpl_osek_func_stub()

Task(X)

ISR2

New
ISR2

-
switchcallback

New
Task

-
switch

TerminateTask
-

switch

switch TY :
WaitEvent

TerminateTask
-

switch

TerminateISR2
-

switch

no alarm

alarm's isr

activatetask

setevent

priority➘
priority➚

(task awaken
and priority➘❩

or not
awaken

task
awaken

callback

53

	Introduction
	Test cases
	Task management
	Interrupt processing
	Event mechanism
	Resource management
	Alarm
	Error handling, hook routines (with interrupts) and OS execution control
	Internal COM
	AUTOSAR - Core OS
	AUTOSAR - Software Counter
	AUTOSAR - Schedule Table
	AUTOSAR - Schedule Table Synchronisation
	AUTOSAR - OS-Application
	API Service Calls for OS objects
	Access Rights for objects in API services
	Access Rights for objects from OIL file

	AUTOSAR - Service Protection
	AUTOSAR - Memory Protection
	AUTOSAR - Timing Protection
	Execution Time Budget
	Time Frame
	Resource Locking and Interrupt Disabling

	Interrupts Management

