Trampoline (OSEK/VDX OS) Test Implementation -
Version 1.0

Florent PAVIN ; Jean-Luc BECHENNEC
June 11, 2010

Contents
1 Introductionl 1
2 Tests implementation| 1
2.1 FEmbedded Unitl. 2
[2.1.1 Embedded Unit explanation|. 2
212 Addsto Embedded Unifl 3
2.2 Test code organisation and distribution| 4
2.2.1 Send Interrupts|. o 4
2.2.2 Alarm Test Sequences| Lo 4
2.3 Tests portage : configuration file - IN PROGRESS| 5
[2.3.1 Interrupts trigger|. L)
2.3.2 mbedded Unit output| 6
BT — | 6
3.1 ...from ‘functional® directoryl. Lo 6
|A Test sequence example : alarms_s11| 8

1 Introduction

This document describes the test implementation of the Trampoline test procedure [2].
It is based on Guide de mise en oeuvre des tests de non régression [1].

2 Tests implementation

To implement the tests sequences of the Trampoline test procedure [3], Embedded Unit
[4] is used.

The first section is thus what is Embedded Unit, how to use it to check if a variable has
the right value, and what we add to the software to check the scheduling of our tests.
The second section will define the test code organisation and distribution with a test

sequence example.
To conclue the tests implementation, a configuration file has to be created in order to
garantee the portage of the tests from every operating system (Unix, Windows...).

2.1 Embedded Unit
2.1.1 Embedded Unit explanation

To check a test sequence with Embedded Unit, three functions has to be called. The
first is to start a new Embedded Unit check with TestRunner_start(), the second is to
call the test sequence by TestRunner_runTest(function_to_call()) and the last one is to
finish Embedded Unit check and display information about the tests which have just been
tested with TestRunner_end().

You should create function_-to_call() as below to respect EmbUnit syntax :

/*create the test suite with all the test casesx/
TestRef function_to_call(void)

EMB_UNIT_TESTFIXTURES(fixtures) {
new_TestFixture (” Instance_Namel_of_task1l” ,Instance_Namel_of_taskl)
new_TestFixture (”Instance_-Name2_of_task1l” ,Instance_-Name2_of_taskl)
}s
EMB_UNIT_TESTCALLER (Test_-Sequence_Name ,” Test_Sequence_Name” ,NULL,NULL
,fixtures);

return (TestRef)&Test_Sequence_Name;

}

You can create as many ”"new_TestFixture” as you want, with differents Instance_Names()
and make your tests with TEST_ASSERT_EQUAL_INT macro as shown below :

/*test case:test the reaction of the system called with an activation of
a taskx/
static void Instance_Namel_of_taskl (void)
{
int result_inst_1, result_inst_2;
result_inst_1 = ActivateTask(t0);
TEST_ASSERT_EQUALINT (E_OS_.ID , result_inst_-1);
result_inst_2 = ActivateTask(t2);
TEST_-ASSERT_EQUALINT(E.OK , result_inst_2);
}

You can call different TestRunner_runTest(function_to_call()) with different function_to_call.
If all your tests are good, Embedded Unit should display

(0K n tests)

n is TestRunner_runTest() call number.
If one of your test is wrong, Embedded Unit should display

([Test_Sequence_Name] . [Instance_Namel_of_taskl] ([file].c [line]) exp [value_expected]
was [value_was])
run n failure x

telling you exactly which is the wrong TEST_ASSERT_EQUAL_INT and what the value
should be equal to ([value_expected] instead of [value_was]).
The number of failed tests (x) and the total sequence number (n) are displayed too.

2.1.2 Adds to Embedded Unit

As Embedded Unit can’t tell the user about the scheduling of a test sequence, we decided
to add an upstrem macro to TEST_ASSERT_EQUAL_TIME.

In order to check scheduling, we decided to create a global variable. Before each service
call, a Macro is called to check if the service number (in parameter), is equal to the global
variable incremented. After each service call, an other Macro is called to check if the
service number (in parameter), is equal to the global variable. The second Macro is here
to check a switch context and the first Macro to check the creation of a new task. The
two macros code are (from SchedulingCheck.h) :

#define SCHEDULING_CHECK_INIT (number)
{
extern unsigned char test_number;
if ((number) != (++test_number)){
assertImplementationInt ((number) ,(test_.number), LINE__, _FILE__);

}
#define SCHEDULING_.CHECK_AND_EQUAL.INT (number, expected, actual)
if ((number) =— (test_number)){
TEST-ASSERT_EQUALINT ((expected) ,(actual))
}else{
assertImplementationInt ((number) ,(test-number) ,__.LINE__, __FILE__);
}

- -

}

test_number is previously declared and set to zero (see Scheduling.c). If sereval tests
are needed, SCHEDULING_CHECK_AND_EQUAL_INT_FIRST (see below) is used to
check the first variable(s) but the last macro has to be SCHEDULING_CHECK_AND_
EQUAL_NT to close the ”bracket”.

#define SCHEDULING_CHECK_AND_EQUALINT_FIRST (number, expected, actual) \
if ((number) = (test_number)){ \
TEST-ASSERT_EQUAL_INT ((expected) ,(actual)) \
telse{ \
assertImplementationInt ((number) ,(test_.number),_ _LINE__, __FILE__);\

}

An other macro is created to check the scheduling without testing a service call, it is
SCHEDULING_CHECK_STEP :

#define SCHEDULING_CHECK_STEP (number) \
{ \
extern unsigned char test_number; \
if ((number) != (++test_number)){ \
assertImplementationInt ((number) ,(test_.number),_ _LINE__, __FILE__);\
} \

}

Instance_Namel_of-task1() became :

/xtest case:test the reaction of the system called with an activation of

a taskx/

static void Instance_Namel_of_taskl (void)

{
int result_inst_1, result_inst_2;
SCHEDULING_CHECK_NIT (1) ;
result_inst_1 = ActivateTask(t0);
SCHEDULING_CHECK_AND_EQUALINT(1 , E.OS_ID , result_inst_1);
SCHEDULING_CHECK_INIT(2) ;
result_inst_2 = ActivateTask(t2);
SCHEDULING_.CHECK_AND_EQUAL.INT(3 , EOK , result_inst_2);
SCHEDULING_CHECK_STEP (4) ;

}

with
/*test case:test the reaction of the system called with an activation of
a taskx/

static void Instance_Namel_of_task2 (void)

{
int result_inst_1;
SCHEDULING_CHECK_INIT(3) ;
result_inst_-1 = TerminateTask () ;
SCHEDULING_CHECK_AND_EQUAL.INT(3 , EOK , result_inst_1);

}

As task2 has a priority higher than taskl, its activation in taskl should preempt taskl (if
the mode is preemptive). Scheduling tests have to check that task2 is executed after Ac-
tivateTask(t2). The returned value of TerminateTask() can’t be tested if the service goes
well, it is just here in case the service doesn’t go properly. In Instance_Namel_of taskl,
SCHEDULING_CHECK_STEP(4) is not useful because the previous macro check that
task2 has preempted taskl, but it is here to show how to use it.

2.2 Test code organisation and distribution

As EmbUnit is described above, this section explains functions (see config.c) we have
created to make tests easier to understand and implement with a test sequence example
in Annexe [Al

2.2.1 Send Interrupts
We have created a function to send interrupt to Trampoline. As this function is not
portable, it is explained later in [2.3

2.2.2 Alarm Test Sequences

As we discovered that the computer runs the program too fast and the alarm expiration
is hardware dependant, we decided to create a synchronization between the task which
creates the alarm and the activation of this alarm. We did that in two different maner,

depending on a periodic alarm or a one shot alarm.

Indeed, in order to wait the activation of a periodic alarm we check the number of ticks
left before this activation, save this value, and when the number of ticks is higher than
the old one, it means the counter restart from ”cycle” and the alarm has been activated.
We have to fix "cycle” at more than 1’ otherwise it’s always '1’ and we don’t know when
the alarm has been activated. We fix '2” in every test sequences. We have then to ”force
scheduling”.

If it’s a one shot alarm, a call to SetRelAlarm() returns E_OS_STATE because the alarm is
already active, but when it returns E_OK, it means the previous alarm has been activated.
We have to cancel the last alarm and ”force scheduling”.

Those functions should be called from every test sequences thus, they are in an uppstream
file (see ./config.c). The functions are below :

void WaitActivationPeriodicAlarm (AlarmType Alarm){
u32 temp, result_inst_;
TickType result_inst_tt;
result_inst_tt = 0;

do{

temp = result_inst_tt;

result_inst. = GetAlarm (Alarm,&result_inst_tt);
}while((temp >= result_inst_tt) || (temp==(0)));

}

void WaitActivationOneShotAlarm (AlarmType Alarm){
int result_inst_;
TickType result_inst_tt;
do{
GetAlarm (Alarm,&result_inst_tt);
}while ((SetRelAlarm (Alarm, 1, 0)

E.OSSTATE)) ;

result_inst. = CancelAlarm (Alarm) ;
TEST_-ASSERT_EQUALINT (E.OK, result_inst_);

The incrementation of the counter on Unix System is a random bit. Sometimes, it is
incremented three or four times in a row so in preemptive mode, if TICKPERBASE is
equal to '1’, the alarm is activated several times in a row and the number of ticks can
always be ’2’ (if TICKPERBASE=2 in the OIL file) and never ’1’. The activation of the
alarm is thus not detected by the function and the test sequence goes wrong. To correct
this problem, we fix TICKPERBASE to '10’ in every test sequences.

2.3 Tests portage : configuration file - IN PROGRESS

As we said above, we have to be careful not to create OS dependent function to ensure the
tests portage. Like interrupts functions which is different weather the tests are executed
in Unix, Window... operating system. This section goes all over the portable functions.

2.3.1 Interrupts trigger

On Unix systems, interrupts are trigged using the kill function and can be done as showed
below :

void tpl_send_itl (void){
int ipid;
ipid = getpid();
kill (ipid ,SIGUSR1);

}

On Windows systems (use different fonction or a software to translate Unix functions on
Windows ones ?) :

windows function ..

2.3.2 Embedded Unit output

As we said earlier, Embedded Unit displays on the screen weather the tests are good or
wrong. embUnit/config.h contains a macro which calls the display function according to
the machine :

e printf on Unix systems

o windows print on Windows systems

3 Tests automatisation...

3.1 ...from ‘functional‘ directory

In order to make all the tests and to be able to tell to the user if they’ve been executed
correctly, we have created a shell script. This shell script build and execute all the test
sequences and compare the results (saved in a file) to the expected ones (an other file).
The shell script is below. The names of the test sequences are in ‘testSequences.txt‘. The
”clean” case deletes all the files that have been created to generated the executable file
and the embUnit library (because it is OS dependent).

#!/bin/sh
HHATAH

performs all the functional tests.

args:

(nothing): performs tests

clean : call make clean for each tests folders
#

Vilaiaiaiaid

#check target
parameters=false
while [$# —gt 0]

do
#echo "param tres : $1”
if [7‘echo $1 | grep —c =7 ="1"]
then
#echo "param tre with ="
option=‘echo $1 | awk —F”=" ’{print $1}¢

#echo ”option : $option”

case " $option” in
—t) target=‘echo $1 | awk —F”=" ’{print $2}°;
echo ”"Target $target selected” ;;
esac
else
case "$1” in
clean) target="clean” ;;
x) echo "Wrong parameters!”;
echo ”"Waited :7;

echo 7 —t=[target],”;
echo 7 clean or”;
echo 7 NULL (posix target selected)”; exit 1;
esac
fi
parameters=true
shift
done
if [”$parameters” = ”false” |
then

#default target = posix
target="posix”
echo ”"Target $target selected”

fi
#GOIL tests
cd ./GOIL

./ GOIL _tests.sh $target

#functional tests
cd ../ functional
./ functional_tests.sh $target

cd

if [”$target” != 7clean” |
then
#Compare results
echo ”Compare results with the expected ones...”
if [‘diff functional/functional_results_expected.log functional/

functional_results.log | wec =1 —eq 0]
then
echo ”Functional tests Succeed!!”
else

echo ”Functional tests Failed! Results are stored in ‘pwd‘/functional

/functional_results.log”

fi
if [‘diff GOIL/GOIL_results_expected.log GOIL/GOIL_results.log | wc —1°¢
—eq 0]
then
echo "GOIL tests Succeed!!”
else
echo "GOIL tests Failed! Results are stored in ‘pwd‘/GOIL/
GOIL_results.log”
fi

fi

A Test sequence example : alarms_sl11

VAT

* @file alarms_s11. oil

*

x @section desc File description

*

x @section copyright Copyright

*

* Trampoline Test Suite

*

x Trampoline Test Suite is copyright (c) IRCCyN 2005—2007

x Trampoline Test Suite is protected by the French intellectual property
law .

*

x This program is free software; you can redistribute it and/or

* modify 1t under the terms of the GNU General Public License

* as published by the Free Software Foundation; wversion 2

* of the License.

*

* This program is distributed in the hope that it will be useful,

* but WITHOUT ANY WARRANTY; without even the implied warranty of

x* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

* GNU General Public License for more details.

*

* You should have received a copy of the GNU General Public License

* along with this program; if not, write to the Free Software

x Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110—1301, USA.

*

x @section infos File informations

*

x $Date$

* Rev

x $Author$

x $URLS

*/

OIL_.VERSION = ”72.5” : ”alarms_sl11” ;

IMPLEMENTATION trampoline {

TASK {
UINT32 STACKSIZE = 32768 ;
UINT32 [1..10] PRIORITY = 1 ;

I
CPU test {

OS config {
STATUS = STANDARD;
APPSRC = ”alarms_sl11.c”;
APPSRC = ”"taskl_instance.c”;
APPSRC = ”task2_instance.c”;
APPSRC = ”task3_instance.c”;
APP_SRC 7 ../ config.c”;

TRAMPOLINE BASEPATH = 7 .. /../..7;
APPNAME = ”alarms_sl1l_exe”;

CFLAGS = "—1../../embUnit”;
CFLAGS = "—Werror —Wall —pedantic”;
CFLAGS ?—Wmissing—field —initializers”;
LDFLAGS = 7-L../../lib —lembUnit”;

SHUTDOWNHOOK = TRUE;
s

APPMODE std {};

TASK t1 {
AUTOSTART = TRUE { APPMODE = std ; } ;
PRIORITY = 1;
ACTIVATION = 1;
SCHEDULE = FULL;

}s

TASK t2 {
AUTOSTART = FALSE ;
PRIORITY = 2;
ACTIVATION = 1;
SCHEDULE = FULL;

s

TASK t3 {
AUTOSTART = FALSE ;
PRIORITY = 2;
ACTIVATION = 1;
SCHEDULE = FULL;

s

COUNTER Counterl{
MAXALLOWEDVALUE = 15;
TICKSPERBASE = 10;
MINCYCLE = 1;

};

ATARM Alarm1{

COUNTER = Counterl;
ACTION = ACTIVATETASK {
TASK = t2;

AUTOSTART = TRUE {
ALARMTIME = 7;
CYCLETIME = 0;
APPMODE = std ;

IS
b
ALARM Alarm2{
COUNTER = Counterl;

ACTION = ACTIVATETASK {
TASK = t3;

AUTOSTART = TRUE {
ALARMTIME = 15;
CYCLETIME = 15;
APPMODE = std ;

‘/* End of file alarms_s11.oil %/

*

/

Q@file alarms-s11/alarms_s11.c
@section desc File description
@section copyright Copyright

Trampoline Test Suite

Trampoline Test Suite is copyright (c) IRCCyN 2005—2007

¥ X X X X ¥ X ¥ X ¥ ¥

law .

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; wversion 2

of the License.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program; if mot, write to the Free Software

Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110—-1801, USA.

¥ X X X X X X X X X ¥ X ¥ ¥

@section infos File informations

$Date$
Rev
$Author$
$URLS$

* ¥ ¥ X ¥ X *

*/

#include 7 tpl_os.h”
#include ”embUnit.h”

TestRef ALARMSTest_seqll_tl_instance(void);
TestRef ALARMSTest_seqll_t2_instance(void);
TestRef ALARMSTest_seqll_t3_instance(void);
StatusType instance_-t3 = 0;

int main(void)

StartOS (OSDEFAULTAPPMODE) ;
return 0;

}

void ShutdownHook (StatusType error)

{
}

TestRunner_end () ;

10

Trampoline Test Suite is protected by the French intellectual property

TASK(t1)
{

TestRunner_start () ;
TestRunner_runTest (ALARMSTest_seqll_tl_instance());
ShutdownOS (E_OK) ;

}

TASK(t2)
{

}

TASK(t3)
{

}

/* End of file alarms_s11/alarms_s11.c x/

TestRunner_runTest (ALARMSTest_seqll_t2_instance());

TestRunner_runTest (ALARMSTest_seqll_t3_instance());

*

/

@file alarms_s11/taskl_instance.c

@section desc File description

@section copyright Copyright

Trampoline Test Suite

Trampoline Test Suite is copyright (c) IRCCyN 2005—2007

Trampoline Test Suite is protected by the French intellectual property
law .

* X X X X X X X ¥ ¥ ¥

This program 1is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; wversion 2

of the License.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program; if not, write to the Free Software

Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110—1301, USA.

¥ ¥ X X X X X X X X ¥ X ¥ X

@section infos File informations

$Date$
Rev
$Author$
URL

* X ¥ X ¥ X ¥

*/
/*Instance of task tlx/

#include ”"embUnit.h”

11

#include " tpl_os.h”

DeclareAlarm (Alarml) ;
DeclareAlarm (Alarm2) ;

void WaitActivationOneShotAlarm (AlarmType Alarm) ;
void WaitActivationPeriodicAlarm (AlarmType Alarm) ;

/xtest case:test the reaction of the system called with
an activation of a taskx/
static void test_tl_instance (void)

{ StatusType result_inst_1;
SCHEDULING_CHECK STEP (1) ;
WaitActivationOneShotAlarm (Alarml) ;
SCHEDULING_CHECK_STEP (3) ;
WaitActivationPeriodicAlarm (Alarm2) ;
SCHEDULING_CHECK_NIT(5) ;
result_inst_-1 = CancelAlarm (Alarm2) ;

SCHEDULING_CHECK_AND_EQUAL_INT (5 ,E.OK, result_inst_1);

SCHEDULING_CHECK_STEP (6) ;

}

/xcreate the test suite with all the test casesx/
TestRef ALARMSTest_seqll_tl_instance(void)

EMB_UNIT_TESTFIXTURES(fixtures) {
new_TestFixture(”test_tl_instance” ,test_tl_instance)

};
EMB_UNIT_-TESTCALLER (ALARMSTest,” ALARMSTest_sequencell” ,NULL,NULL,
fixtures);

return (TestRef)&ALARMSTest;
}

/x End of file alarms_s11/taskl_instance.c =/

/%

@file alarms_s11/task2_instance.c

@section desc File description

Trampoline Test Suite

Trampoline Test Suite is copyright (c) IRCCyN 2005—2007
Trampoline Test Suite is protected by the French intellectual property
law .

*
*
*
*
*
* @section copyright Copyright
*
*
*
*
*

12

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; wversion 2

of the License.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have recetved a copy of the GNU General Public License

along with this program; if mnot, write to the Free Software

Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110—1301, USA.

¥ X X X X X X X X X X X ¥

@section infos File informations

$Date$
Rev
$Author$
URL

* ¥ ¥ ¥ ¥ X *

*/
/*Instance of task t2x/

#include ”embUnit.h”
#include 7 tpl_os.h”

/*test case:test the reaction of the system called with
an activation of a taskx/
static void test_t2_instance (void)

{
StatusType result_inst_1;
SCHEDULING_CHECKNIT(2) ;
result_inst.1 = TerminateTask();
SCHEDULING_.CHECK_AND_EQUALINT (2 ,E.OK, result_inst_1);
}

/*create the test suite with all the test casesx/
TestRef ALARMSTest_seqll_t2_instance(void)

{
EMB_UNIT_TESTFIXTURES(fixtures) {

new_TestFixture (”test_t2_instance” ,test_t2_instance)
}i

EMB_UNIT_TESTCALLER (ALARMSTest,” ALARMSTest_sequencell” ,NULL,NULL,
fixtures);

return (TestRef)&ALARMSTest;
}

/* End of file alarms_s11/task2_instance.c */

VEx:
* @file alarms_-sl1/task3_instance.c
*

13

@section desc File description

@section copyright Copyright

Trampoline Test Suite

Trampoline Test Suite is copyright (c) IRCCyN 2005—2007

Trampoline Test Suite is protected by the French intellectual property
law .

* ¥ ¥ X ¥ ¥ X ¥

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; wversion 2

of the License.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program; if mot, write to the Free Software

Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110—-1301, USA.

¥ X X X ¥ X X X X X ¥ X * ¥

@section infos File informations

$Date$
Rev
$Author$
URL

* ¥ ¥ ¥ ¥ ¥ *

*/
/xInstance of task t3x/

#include ”embUnit.h”
#include ”tpl_os.h”

/xtest case:test the reaction of the system called with
an activation of a taskx/
static void test_t3_instance (void)

{

StatusType result_inst_1;
SCHEDULING_CHECK_NIT (4) ;

result_inst_-1 = TerminateTask () ;
SCHEDULING_CHECK_AND_EQUAL_INT (4 ,E.OK, result_inst_1);

}

/*create the test suite with all the test casesx/
TestRef ALARMSTest_seqll_t3_instance(void)

EMB_UNIT.TESTFIXTURES (fixtures) {
new_TestFixture(” test_t3_instance” ,test_t3_instance)
b

14

EMB_UNIT_TESTCALLER (ALARMSTest, ” ALARMS Test_sequencell” ,NULL, NULL,
fixtures);

return (TestRef)&ALARMSTest;
}

/* End of file alarms_sl1/task3_instance.c */

References

[1] Guillaume N. and Jonathan I. Guide de mise en oeuvre des tests de non-régression.
Master’s thesis, IUT Angers, June 2008.

[2] Florent PAVIN and Jean-Luc BECHENNEC. Trampoline (OSEK/VDX) Test Plan.
IRCCYN, 1.0 edition, February 2009.

[3] Florent PAVIN and Jean-Luc BECHENNEC. Trampoline (OSEK/VDX) Test Proce-
dure. IRCCYN, 1.0 edition, February 2009.

[4] Embedded Unit Project. EmbUnit. http://embunit.sourceforge.net/, 2003.

15

	Introduction
	Tests implementation
	Embedded Unit
	Embedded Unit explanation
	Adds to Embedded Unit

	Test code organisation and distribution
	Send Interrupts
	Alarm Test Sequences

	Tests portage : configuration file - IN PROGRESS
	Interrupts trigger
	Embedded Unit output

	Tests automatisation...
	...from `functional` directory

	Test sequence example : alarms_s11

