
The Trampoline
Handbook

release 2.0

Jean-Luc Béchennec
Mikaël Briday

Sébastien Faucou
Pierre Molinaro

Florent Pavin

2

CONTENTS

I The Real-Time Operating System 13

1 Getting started 15

1.1 Setting up the environment . 16

1.1.1 Compiling goil . 16

1.1.2 Compiling ViPer (POSIX target only) . 16

1.2 First Application: one_task . 16

1.2.1 Application source . 17

1.2.2 Build and run . 19

2 Operating System Execution 21

2.1 Configuration Options . 21

2.2 System Services . 21

2.2.1 StartOS . 21

2.2.2 ShutdownOS . 22

2.3 Application Modes Declarations . 22

2.4 Application Modes Services . 23

2.4.1 DeclareApplicationMode . 23

2.4.2 GetActiveApplicationMode . 23

2.5 Implementation . 24

3 Tasks 25

3.1 States a task . 25

3.2 The scheduling . 25

3

4 CONTENTS

3.3 Writing the code of a task . 28

3.4 Tasks services . 28

3.4.1 DeclareTask . 28

3.4.2 ActivateTask . 28

3.4.3 ChainTask . 29

3.4.4 TerminateTask . 30

3.4.5 Schedule . 31

3.4.6 GetTaskID . 31

3.4.7 GetTaskState . 32

3.5 Inside Task management . 33

3.5.1 Static attributes . 33

3.5.2 Dynamic attributes . 33

3.5.3 Additional task states . 34

3.6 The idle task . 35

4 Alarms 37

4.1 States a task . 37

4.2 The scheduling . 38

4.3 Writing the code of a task . 39

4.4 Tasks services . 40

4.4.1 DeclareTask . 40

4.4.2 ActivateTask . 40

4.4.3 ChainTask . 42

4.4.4 TerminateTask . 42

4.4.5 Schedule . 43

4.4.6 GetTaskID . 43

4.4.7 GetTaskState . 44

4.5 Inside Task management . 44

4.5.1 Static attributes . 44

4.5.2 Dynamic attributes . 45

4.5.3 Additional task states . 45

4.6 The idle task . 46

5 Resources 47

CONTENTS

CONTENTS 5

5.1 OSEK Priority Ceiling Protocol . 47

5.2 The RES SCHEDULER resource . 47

5.3 Standard and Internal Resources . 50

5.4 Nested resources accesses . 50

5.5 OIL description . 51

5.6 Resources services . 51

5.6.1 DeclareResource . 51

5.6.2 GetResource . 52

5.6.3 ReleaseResource . 52

6 Events 53

6.1 OIL description . 53

6.2 Events services . 54

6.2.1 SetEvent . 54

6.2.2 WaitEvent . 55

6.2.3 GetEvent . 55

7 OS Applications 57

7.1 Execution of the OS Applications startup and shutdown hooks 57

8 Timing Protection Implementation 59

8.1 Low Level Functions . 59

8.1.1 FRT related functions . 59

8.1.2 TPT related functions . 60

9 Schedule Table Implementation 61

9.1 The States of a Schedule Table . 62

9.2 Processing a Schedule Table . 64

10 The communication library 67

10.1 Implementation . 67

10.1.1 Sending Message Objects . 67

10.1.2 Receiving Message Objects . 68

11 The Inter OS-application Communication Library 71

CONTENTS

6 CONTENTS

11.1 IOC declaration in OIL . 71

11.2 Implementation . 73

12 Memory mapping 75

12.1 Memory mapping directives . 75

12.2 The memory sections . 76

13 Tracing the execution 79

13.1 Traced events . 79

13.2 OIL declaration . 80

13.2.1 Generic part . 80

13.2.2 Target specific part . 81

13.3 Using the tracing subsystem . 82

13.4 Implementation . 83

13.4.1 Implementing target specific backends . 83

13.4.2 Binary format . 83

13.4.3 How to port trace to another target . 85

14 Debugging an application 87

14.1 Command generation . 87

14.2 Examining the tasks . 87

14.3 Examining the resources . 89

14.4 Examining the alarms . 90

14.5 Examining the counters . 90

14.6 Examining the tpl_kern structure . 91

14.7 Examining the tpl_ready_list structure . 91

15 Building a Trampoline application 93

15.1 Main OIL file . 94

15.2 Build system . 95

15.2.1 Python build . 95

15.2.2 CMake build system . 96

15.3 Goil related features . 98

15.3.1 Compilation flags . 98

15.3.2 Additionnal files . 98

CONTENTS

CONTENTS 7

15.3.3 Libraries . 98

15.3.4 Additionnal build target . 98

II Trampoline RTOS internals 99

16 System generation and compilation 101

16.1 The generated files . 101

16.2 The Configuration Macros . 104

16.2.1 Number of objects macros . 104

16.2.2 Error Handling Macros . 104

16.2.3 Protection Macros . 105

16.2.4 Hook call macros . 106

16.2.5 Miscellaneous macros . 106

16.3 Application configuration . 108

16.3.1 Counter related constants declaration . 108

16.3.2 Events definition . 108

16.3.3 Standard resources definition . 109

16.3.4 Tasks definition . 110

17 Kernel Implementation 113

17.1 The tpl_kern structure . 113

17.2 Ready list implementation . 113

18 Porting Trampoline 115

18.1 Adding files to the directory structure . 115

18.2 Using a target with goil . 116

18.3 Target specific code . 116

18.3.1 Functions called by Trampoline . 116

18.3.2 Service call . 117

18.3.3 Interrupt management . 118

18.4 Target specific structures . 118

18.5 Code templates . 120

18.6 Structures initialization templates . 120

18.7 The memory mapping and the link script templates 121

CONTENTS

8 CONTENTS

19 Ports details 123

19.1 Posix . 123

19.1.1 Overview . 123

19.1.2 Monocore . 123

19.1.3 Multicore . 123

19.2 PowerPC . 123

19.2.1 System services . 123

19.2.2 Dispatching the service call . 124

19.2.3 Interrupt handler . 129

19.2.4 The CallTrustedFunction service . 129

19.2.5 The ExitTrustedFunction service . 132

19.2.6 Execution of the OS Applications startup and shutdown hooks 133

19.2.7 The MPC5510 Memory Protection Unit 134

19.3 ARM – Common conventions . 135

19.3.1 File hierarchy . 135

19.3.2 Common definitions . 135

19.3.3 Bootstraping . 135

19.3.4 Stacks . 136

19.3.5 Interrupt management . 136

19.4 ARM – ARM926 chip support . 136

19.4.1 Memory protection . 136

19.4.2 CPU cache support . 137

19.5 ARM – Armadeus APF27 board . 137

19.5.1 Debugging with Abatron BDI2000 or BDI3000 JTAG probe 137

19.5.2 Configuration . 138

19.5.3 Memory mapping . 138

19.5.4 Memory protection . 138

19.6 ARM – Simtec EB675001 board . 138

19.6.1 Memory map and hardware resources . 138

19.6.2 Booting . 139

19.6.3 Internal kernel drivers . 139

19.6.4 Hardware interrupts handling . 139

19.6.5 Idle task . 139

CONTENTS

CONTENTS 9

19.6.6 Exceptions handling . 139

19.6.7 Kernel sleep service . 139

19.7 ARM - Cortex . 139

19.7.1 Overview . 139

19.7.2 System services . 142

19.7.3 Dispatching the service call . 144

19.7.4 Interrupt handler . 150

19.7.5 The CallTrustedFunction service . 150

19.7.6 The ExitTrustedFunction service . 150

19.7.7 Execution of the OS Applications startup and shutdown hooks 150

19.7.8 Memory protection . 150

19.7.9 Monocore . 150

19.7.10 Multicore . 150

19.8 AVR8 . 150

19.8.1 System services . 150

19.8.2 Dispatching the service call . 151

19.8.3 Context . 152

19.8.4 Context switch . 152

19.8.5 Context init . 153

19.8.6 Interrupts . 153

19.9 Arduino Port . 154

19.9.1 Main adaptation . 155

19.9.2 Goil adaptation . 155

19.9.3 System Counter . 156

III The Goil system generator 157

20 The Goil templates 159

20.1 The configuration data . 160

20.1.1 The PROCESSES, TASKS, BASICTASKS, EXTENDEDTASKS, ISRS1 and ISRS2 lists160

20.1.2 The COUNTERS, HARDWARECOUNTERS and SOFTWARECOUNTERS lists 161

20.1.3 The EVENTS list . 162

20.1.4 The ALARMS list . 162

CONTENTS

10 CONTENTS

20.1.5 The REGULARRESOURCES and INTERNALRESOURCES lists 162

20.1.6 The MESSAGES, SENDMESSAGES and RECEIVEMESSAGES lists 163

20.1.7 The SCHEDULETABLES list . 164

20.1.8 The OSAPPLICATIONS list . 165

20.1.9 The TRUSTEDFUNCTIONS list . 166

20.1.10 The READYLIST list . 167

20.1.11 The SOURCEFILES, CFLAGS, CPPFLAGS, ASFLAGS, LDFLAGS and
TRAMPOLINESOURCEFILES lists . 167

20.1.12 The INTERRUPTSOURCES list . 168

20.1.13 Scalar data . 168

20.2 The Goil template language (or GTL) . 170

20.3 GTL types . 170

20.3.1 string readers . 170

20.3.2 boolean readers . 171

20.3.3 integer readers . 171

20.3.4 list readers . 172

20.4 GTL operators . 172

20.4.1 Unary operators . 172

20.4.2 Binary operators . 172

20.4.3 Constants . 173

20.5 GTL instructions . 173

20.5.1 The let instruction . 173

20.5.2 The if instruction . 174

20.5.3 The foreach instruction . 174

20.5.4 The for instruction . 175

20.5.5 The loop instruction . 175

20.5.6 The ! instruction . 175

20.5.7 The ? instruction . 176

20.5.8 The template instruction . 176

20.5.9 The write instruction . 176

20.5.10 The error and warning instructions . 177

20.6 Examples . 177

20.6.1 Computing the list of process ids . 177

CONTENTS

CONTENTS 11

20.6.2 Computing an interrupt table . 178

20.6.3 Generation of all the files . 179

CONTENTS

12 CONTENTS

CONTENTS

Part I

The Real-Time Operating System

13

CHAPTER

ONE

GETTING STARTED

This chapter shows how to compile and run your first application. We are going to use the Posix
port of Trampoline, Trampoline/Posix, that runs over a Linux or Mac OS X operating system.
So it is assumed you are using a Linux or Mac OS X computer since Trampoline/Posix does not
run over Windows1. It is also assumed that you have a basic knowledge of using the command
line and the Unix shell.

OSEK/VDX and Autosar os are static operating systems. That means the objects of the
application, tasks, events, resources, . . . , cannot be created or deleted during the execution of
the application. All objects are statically defined and instead of forcing the user to instantiate
the OS objects related to the application in C language, a work that can be error prone, a
specific language is used, OIL or XML2. A compiler, goil, is used to translate the description in
the equivalent C structures. goil performs verifications too (Figure 1.1).

Kernel C
sources

OS infrastructure
C sources
and ASM

OIL application
description

application
sources (C)

static data
structures

(C sources)

OIL
Compiler
GOIL v2 C compiler

+ linker

binary
file

Figure 1.1: Trampoline Application: from source to binary

1An API working like Unix signals is missing on Windows.
2for Autosar

15

16 1.1. Setting up the environment

In addition to the generation of static data structures, goil is able to generate other files, in-
cluding those for the definition of memory mampping (link script), tools for debugging (see 13),
or tools to build the application.

1.1 Setting up the environment

Before compiling and running the first application, a few tools are required. The first tool
needed is a development chain, compiler and linker, for the target platform. In our case, the
native development chain, gcc under Linux, clang under Mac OS X will be used. The two other
tools are respectively goil and viper that we will compile. In the following, all paths are relative
to the Trampoline root directory. When setting up path environment variables, complete the
relative path with the installation path of Trampoline.

1.1.1 Compiling goil

goil is located in the ‘goil’ subdirectory. Binaries are available on GitHub3. To compile goil

from sources, go in the directory corresponding to your operating system, ‘goil/makefile-macosx’
for Mac OS X or ‘goil/makefile-unix’ for Linux. Then type ./build.py release . If everything
went well, a goil executable is generated. You can test it by typing ./goil --version . At the
time of writing, the command should output:

% goil --version

goil : 3.1.12, build with GALGAS 3.4.2

No warning, no error.

You can install goil in ‘/usr/local/bin’ by typing sudo ./build.py install-release or you
can add to your PATH environment variable the location where goil has been compiled.

In addition you may want to set up the GOIL TEMPLATES environment variable in your ‘.profile’ or
‘.bashrc’ so that you don’t always have to set the --templates= option when calling goil. This
variable stores the path to the templates directory used by goil and shall be ‘goil/templates’.

1.1.2 Compiling ViPer (POSIX target only)

Under Posix, Trampoline requires a runtime support that mimics the minimum behavior of a
hardware, mainly timers. viper is a separate application used by Trampoline for this purpose. Go
in the ‘viper’ directory. Type make to compile viper. You must also set the environment variable
VIPER PATH to contain the path ‘viper’. For instance: export VIPER_PATH=/opt/trampoline/viper

1.2 First Application: one_task

Go into the ‘examples/posix/one_task’ directory.

3https://github.com/TrampolineRTOS/trampoline

Chapter 1. Getting started

https://github.com/TrampolineRTOS/trampoline

1.2. First Application: one_task 17

1.2.1 Application source

In this directory, two files are available: ‘one_task.oil’ and ‘one_task.c’. Start by opening
‘one_task.oil’. The content of this file is reproduced below.

1 OIL_VERSION = "2.5";

2
3 CPU only_one_task {

4 OS config {

5 STATUS = EXTENDED;

6 BUILD = TRUE {

7 APP_SRC = "one_task.c";

8 TRAMPOLINE_BASE_PATH = "../../..";

9 LDFLAGS="-lrt -lpthread ";

10 APP_NAME = "one_task_exe ";

11 LINKER = "gcc";

12 SYSTEM = PYTHON;

13 };

14 };

15
16 APPMODE stdAppmode {};

17
18 TASK my_only_task {

19 PRIORITY = 1;

20 AUTOSTART = TRUE { APPMODE = stdAppmode; };

21 ACTIVATION = 1;

22 SCHEDULE = FULL;

23 };

24 };

OIL_VERSION = "2.5"; at line 1 specifies which kind of application we are designing. Here it is
an OSEK application. For an AUTOSAR application, OIL_VERSION = "4.0"; would be used.

OIL files consist of two sections, an IMPLEMENTATION section that is not used here and a CPU

section that appears in the line 3. The objects describing the application are located inside the
CPU section.

The first is the OS object at the line 4. This object is used to configure the operating system and,
in the case of Trampoline, to specify how to compile it. The first attribute, STATUS, indicates
the fineness of verification of error conditions by the operating system services. Two values are
possible: STANDARD and EXTENDED. Here, EXTENDED is used.

The BUILD attribute at line 6 is used to generate a build script. This attribute is specific to
Trampoline, it contains several sub-attributes to build the application (cross-compiler, flags,
source files, . . .):

� APP_SRC gives the C source code file of your application. If the application is split into
several C files, use has many APP_SRC as needed.

� TRAMPOLINE_BASE_PATH gives the path to the Trampoline root directory.

� LDFLAGS is additional flags to pass to the linker. Here we add the rt and pthread libraries
that are needed for multitasking and communication with viper.

Chapter 1. Getting started

18 1.2. First Application: one_task

� APP_NAME is the name of the resulting binary file that is directly executable for the Posix
target.

� LINKER specifies which command is used to invoke the linker.

� SYSTEM specifies which build system is used. Here Python build scripts.

The second is the object APPMODE at line 16. It is a way to define several versions of an application
from the same code base. In some versions, some objects (task, alarms, . . .) will be active and
not others. The standard requires to define at least one application mode.

The third object TASK at line 18 defines a task and its properties, as defined in the OIL standard
(see 3). Here, it defines:

� PRIORITY: Trampoline is a fixed priority RTOS, the higher the value, the higher the priority.

� AUTOSTART: The task will be in the READY state at startup (Competing for access to the
CPU)

� ACTIVATION: defines the number of instances of the task that can be defined in the ready
list. If a task is activated when it has reached its maximum number of activations, the
activation is not taken into account.

� SCHEDULE: can be FULL (preemptable task) or NON (non-preemtable task)

These properties are defined in the OSEK/VDX language. A copy of the norm is available on
GitHub. The task defined here performs only one job, at startup.

The implementation is defined in C:

1 #include <stdio.h>

2 #include "tpl_os.h"

3
4 int main(void)

5 {

6 StartOS(OSDEFAULTAPPMODE);

7 return 0;

8 }

9
10 TASK(my_only_task)

11 {

12 printf("Hello World\r\n");

13 TerminateTask ();

14 }

The application first includes tpl_os.h line 2, that contains a definition of the objects that has
been declared in the oil file. This include is mandatory.

The main function simply starts the RTOS (line 6). This is a non-return system call. It will
start the RTOS and call the scheduler.

The macro TASK is used to defined the task implementation (line 10). This code is a task job.
The identifier is the task name, defined in the oil file). The task body should call the system call
TerminateTask() at the end. This system call terminates the task and performs a re-scheduling.

Chapter 1. Getting started

1.2. First Application: one_task 19

System calls in Trampoline always start with an uppercase.

1.2.2 Build and run

Goil is able to generate tools to build the application. The first time, we need to call goil directly
(bootstrap):

% goil --target=posix/linux --templates=../../../goil/templates/ one_task.oil

Created ’one_task/tpl_os.c’.

Created ’one_task/tpl_os.h’.

Created ’build.py’.

Created ’make.py’.

Created ’one_task/tpl_app_custom_types.h’.

Created ’one_task/tpl_app_config.c’.

Created ’one_task/tpl_app_config.h’.

Created ’one_task/tpl_app_define.h’.

Created ’one_task/tpl_static_info.json’.

Created ’one_task/stm_structure.c’.

executing plugin gdb_commands.goilTemplate

Created ’/home/mik/prog/trampoline/examples/posix/one_task/build/one_task.oil.dep’.

No warning, no error.

Goil arguments are the --target (here either posix/linux for GNU/Linux or posix/darwin for
OSX) and --templates that defines the path to the goil template directory:

% ls

build build.py make.py one_task one_task.c one_task.oil README.md

A directory one_task}has been created, with the name of the main oil file, but without any
extension. All data structures generated by goil are located in this folder.

The build system that has been defined in the OIL file was PYTHON. As a result, 2 python files
are created ‘build.py’ and ‘make.py’. We now have just to call the ‘make.py’ script to generate
the binary.

The script will take into account all the dependancies. For example, modifying an object in the
oil file will result in calling goil (and generating again the ‘build.py’ file again), before doing
the rest of the build step. As a result, goil should be called only once (bootstrap), and then
./make.py will do all the stuff:

% ./make.py

Nothing to make.

Making "build/os" directory

[5%] Compiling ../../../os/tpl_os_kernel.c

[10%] Compiling ../../../os/tpl_os_timeobj_kernel.c

[15%] Compiling ../../../os/tpl_os_action.c

[20%] Compiling ../../../os/tpl_os_error.c

Chapter 1. Getting started

20 1.2. First Application: one_task

[25%] Compiling ../../../os/tpl_os_os_kernel.c

[30%] Compiling ../../../os/tpl_os_os.c

[35%] Compiling ../../../os/tpl_os_interrupt_kernel.c

[40%] Compiling ../../../os/tpl_os_task_kernel.c

[45%] Compiling ../../../os/tpl_os_resource_kernel.c

[50%] Compiling one_task.c

Making "build/one_task" directory

[55%] Compiling one_task/tpl_app_config.c

[60%] Compiling one_task/tpl_os.c

Making "build/machines/posix" directory

[65%] Compiling ../../../machines/posix/tpl_machine_posix.c

[70%] Compiling ../../../machines/posix/tpl_viper_interface.c

[75%] Compiling ../../../machines/posix/tpl_posix_autosar.c

[80%] Compiling ../../../machines/posix/tpl_posix_irq.c

[85%] Compiling ../../../machines/posix/tpl_posix_context.c

[90%] Compiling ../../../machines/posix/tpl_posixvp_irq_gen.c

[95%] Compiling ../../../machines/posix/tpl_trace.c

[100%] Linking one_task_exe

The binary file is created (with name defined in oil file): ./one_task_exe :

% ./one_task_exe

Hello World

Exiting virtual platform.

The execution does not return. When the job of the task is done, the scheduler choose the idle
task, as an embedded target never return. To exit the virtual environment of the POSIX target,
use the ”q” keystroke.

Chapter 1. Getting started

CHAPTER

TWO

OPERATING SYSTEM
EXECUTION

This chapter presents how to start and shutdown the operating system as well as the con-
figuration options and the Application Modes. Application Modes are used to start the

operating system in different configurations. Usually, the configuration is read from hardware
switches. The current Application Mode is passed to the StartOS service and cannot be changed
once the operating system is started.

2.1 Configuration Options

2.2 System Services

2.2.1 StartOS

StartOS starts the OS in the AppModeID Application Mode. First the OS does some initializa-
tions, then the Startup Hook, if configured, is called. At last the scheduling is started and the
highest priority task runs.

When called from outside a task or an ISR, typically from the main(), StartOS does not returns.
When called from a task or an ISR, a case which is forbidden, StartOS returns and the Error
Hook (if configured) is called.

! If AppModeID does not correspond to any Application Mode, no error occurs but none of the
AUTOSTART objects is started.

Prototype of StartOS:

void StartOS(AppModeType AppModeID);

21

22 2.3. Application Modes Declarations

Arguments of StartOS:

AppModeID The Application Mode.

2.2.2 ShutdownOS

ShutdownOS shuts down the OS and notify the Error error code. If it is configured, the Shutdown
Hook is called with Error as argument. The behavior may depends on the target platform. On
embedded platforms interrupts are disabled and an infinite loop or a halt is executed. On
POSIX the application exits.

Prototype of ShutdownOS:

void ShutdownOS(StatusType Error);

Arguments of ShutdownOS:

Error The error that occurred.

2.3 Application Modes Declarations

Application Mode are used to specify which AUTOSTART objects (tasks, alarms or schedule tables)
are started when StartOS is called. Application Modes are declared in OIL using the APPMODE

object. goil accepts the DEFAULT boolean attribute. When TRUE, this attributes specifies the
default Application Mode. DEFAULT is implicitly FALSE.

When only one Application Mode is defined, the constant OSDEFAULTAPPMODE is set to this Ap-
plication Mode. When more than one Application Mode are defined, one and only one of the
Application Modes DEFAULT attribute must be set to TRUE and the constant OSDEFAULTAPPMODE is
set to this one.

At most 32 application modes may be declared in the current implementation. We believe it is
far enough.

In the following example, 2 Application Modes are declared:

APPMODE normal { DEFAULT = TRUE; };

APPMODE diag { };

Let’s consider 2 tasks and one alarm. The first task, command, is AUTOSTART in any case, the
second one, logging is not AUTOSTART and the alarm, trigger logging, is AUTOSTART in Application
Mode diag only. The goal is to have a periodic task doing some logging when the OS is started
in Application Mode diag:

TASK command {

AUTOSTART = TRUE {

APPMODE = normal;

APPMODE = diag;

};

...

};

Chapter 2. Operating System Execution

2.4. Application Modes Services 23

TASK logging {

AUTOSTART = FALSE;

...

};

ALARM trigger_logging {

AUTOSTART = TRUE {

APPMODE = diag;

ALARMTIME = 10;

CYCLETIME = 10;

};

ACTION = ACTIVATETASK {

TASK = logging;

};

...

};

If StartOS is called with argument normal or OSDEFAULTAPPMODE, the alarm trigger logging is not
started by StartOS and task logging does not run. If StartOS is called with argument diag, the
alarm is started and task logging runs. In both cases task command is started.

2.4 Application Modes Services

2.4.1 DeclareApplicationMode

On the C side, each declared Application Mode is available as a constant of type AppModeType.
However, before using one of the constants, you have to put it in the current scope with the
DeclareApplicationMode service 1 as follow:

DeclareApplicationMode(normal);

DeclareApplicationMode(diag);

An exception is the constant OSDEFAULTAPPMODE which is in the scope as long as file ‘tpl_os.h’ is
included.

DeclareApplicationMode is a C macro

Prototype of DeclareApplicationMode:

DeclareApplicationMode(AppModeType AppModeID);

Arguments of DeclareApplicationMode:

AppModeID The Application Mode.

2.4.2 GetActiveApplicationMode

GetActiveApplicationMode returns the Application Mode that was used to start the OS.

1This macro is not part of [6] but has been added for convenience purpose

Chapter 2. Operating System Execution

24 2.5. Implementation

AppModeType currentAppMode;

currentAppMode = GetActiveApplicationMode ();

If GetActiveApplicationMode is called before the OS is started, OSNOAPPMODE is returned.

Prototype of GetActiveApplicationMode:

AppModeType GetActiveApplicationMode(void);

2.5 Implementation

At system generation time, an identifier AppModeID of type AppModeType is attributed to each Ap-
plication Mode. Identifiers range from 0 to number of application modes−1 and are attributed
by goil in their order of appearance in the OIL file.

For each AppModeID, goil computes a mask: AppModeMask = 1 << AppModeID. For each task, alarm
and schedule table, a table indexed by the object id is computed by goil. Each element of these
tables is the bitwise or of the AppModeMask in which the object is AUTOSTART. If there is no task,
alarm or schedule table defined, the corresponding table is not generated.

StartOS iterates over the tasks, alarms and schedule tables Application Mode mask tables. It
does a bitwise and with the mask stored in the table and the mask computed from the Application
Mode. If the result is not 0 then the corresponding object is AUTOSTART in this Application Mode
and is started.

Using the example of section 2.3 we have

CONST(tpl_application_mode , OS_CONST) diag = 0; /* mask = 1 */

CONST(tpl_application_mode , OS_CONST) normal = 1; /* mask = 2 */

AppModeType is an alias of tpl_application_mode.

CONST(tpl_appmode_mask , OS_CONST) tpl_task_app_mode[TASK_COUNT] = {

3 /* task command : normal | diag */ ,

0 /* task logging : */

};

CONST(tpl_appmode_mask , OS_CONST) tpl_alarm_app_mode[ALARM_COUNT] = {

1 /* alarm trigger_logging : diag */

};

The tpl_appmode_mask type is computed according to the number of Application Modes.

Table 2.1: Size of tpl_appmode_mask type.

Number of Application Modes tpl_appmode_mask type
[1, 8] u8

[9, 16] u16

[17, 32] u32

Chapter 2. Operating System Execution

CHAPTER

THREE

TASKS

Atask is an execution framework for the functions of the application 1. A task is a kind of
process. Tasks are executed concurrently and asynchronously, see 4.2. 2 kinds of task exist:

basic tasks and extended tasks. A basic task cannot block (i.e. it cannot use a service that may
block) while an extended task can. The tasks and their properties are declared in the OIL file,
see ??. Their functions are defined in a C file.

3.1 States a task

A task may be in different states. A basic task may be currently executing (in the RUNNING state),
ready to execute (in the READY state) or not active at all (in the SUSPENDED state). Figure 4.1
shows the states of a basic task. An extended task has an additional WAITING state. Figure 4.2
shows the states of an extended task. See section 4.5.3 for additional informations about the
states of a task.

A task goes from one state to the other according to various conditions as shown in table 4.1.

A system service may do more than one transition at a time. For instance, if a task is activated
by calling ActivateTask and its priority is higher than the priority of the current running task,
the new task will go from SUSPENDED to RUNNING and the intermediate state READY will not be
observable.

3.2 The scheduling

Trampoline schedules the tasks dynamically during the execution of the application. A task is
scheduled according to its priority and whether it is preemptable or not. The priority of a task

1The term Application is also used in AUTOSAR to designate a set of object, this manual uses OS Application
to name the AUTOSAR applications and Application to name the user level software.

25

26 3.2. The scheduling

SUSPENDED

RUNNING

READY
activate

startpreempt

terminate

Figure 3.1: States of a BASIC task.

SUSPENDED

RUNNING

READY
activate

startpreempt

terminate

WAITING

wait

release

Figure 3.2: States of an EXTENDED task.

Table 3.1: Transition from state to state of a task.

transition former state new state description
activate SUSPENDED READY the task is set in the READY state on one of the

following occurrences: services ActivateTask
or ChainTask, activation notification coming
from an alarm, a schedule table or a message.

start READY RUNNING the task is set to the running state and begin
to execute because it has the highest prior-
ity in the system and has been elected by the
scheduler.

terminate RUNNING SUSPENDED the task is set to the SUSPENDED state when
it calls the TerminateTask or ChainTask ser-
vice.

preempt RUNNING READY the task is set to the READY state when the
scheduler starts a higher priority task.

wait RUNNING WAITING the task may be set to the WAITING state when
it calls the service WaitEvent.

release WAITING READY the task is set to the READY state when it gets
one of the events it is waiting for.

Chapter 3. Tasks

3.2. The scheduling 27

is given at design stage, and indicated in the OIL file using the PRIORITY attribute, see ??,
and may change during execution when the task gets or release a resource. The preemptability
of a task may be set too. It is also indicated in the OIL file using the SCHEDULE attribute, see
??.

A tasks continues to run until it is preempted because a task having a higher priority is put in
the READY state, or it blocks because it is waiting for an event. Only extended tasks may block.
If more than one task have the same priority, tasks are run one after the other because a task
may not preempt an other task having the same priority. So there is no round robin among tasks
of the same priority level.

A non-preemptable task runs until it calls Schedule and a higher priority task is in the READY

state or until it blocks. More informations about priority and preemptability may be found in
chapter 5.

In the following examples, the horizontal axis is the time. The state of the task is indicated in a
rectangle that spans a period of time. When the task is running the rectangle is grayed. An up
arrow indicates a task activation and a down arrow a task termination.

RUNNING SUSPENDED

SUSPENDEDRUNNINGREADYRUNNING

SUSPENDED
T2

PRIORITY = 10

T1
PRIORITY = 5

A B C

Figure 3.3: Scheduling of preemptable tasks. During A period, T1 is running and T2 is suspended.
Then T2 is activated. Since Prio(T2) > Prio(T1), T1 is preempted and T2 runs (B period). T2 terminates
and T1 becomes running again (C period) until it terminates.

RUNNINGREADY

RUNNING SUSPENDEDRUNNING

SUSPENDED
T2

PRIORITY = 10

T1
PRIORITY = 5

SUSPENDED

A B C

Figure 3.4: Scheduling of non-preemptable tasks. During A period, T1 is running and T2 is
suspended. Then T2 is activated. Even if Prio(T2) > Prio(T1), T1 is non-preemptable and continues
to run until it terminates (B period). In the meantime, T2 is ready. T1 terminates and T2 runs (C
period) until it terminates.

Chapter 3. Tasks

28 3.3. Writing the code of a task

3.3 Writing the code of a task

Trampoline provides a TASK macro to define a task in a C source file. The macro takes one
argument which is the identifier of the task:

TASK(MyTask)

{

/* code of the task */

TerminateTask ();

}

The code of the task is plain C.

The task should always end with a call to the TerminateTask service. See 4.4.4.

3.4 Tasks services

3.4.1 DeclareTask

Each task has an identifier of type TaskType. This identifier is declared in the OIL file and is used
in system calls to refer to a particular task. Before using such an identifier in your program, you
have to declare it:

DeclareTask(MyTask);

This makes the MyTask identifier available in the current scope.

DeclareTask is a C macro. When the task has been define above using the macro TASK, the
identifier of the task is already in the scope and DeclareTask is not needed.

Prototype of DeclareTask:

DeclareTask(TaskType TaskID);

Arguments of DeclareTask:

TaskID The id of the task to declare.

3.4.2 ActivateTask

This service does a rescheduling

Activates a new instance of a task. If activation counter has reached the maximum activation
count or the task cannot be activated for timing protection purpose, the service fails. Otherwise
if an instance is already active (RUNNING or READY), the state does not change and the activation
is recorded to be done later. If no instance is active, the state of the task is changed to READY.

Figures 4.5, 4.6 and 4.8 show 2 examples of task activation.

Chapter 3. Tasks

3.4. Tasks services 29

Prototype of ActivateTask:

StatusType ActivateTask(TaskType TaskID);

Arguments of ActivateTask:

TaskID The id of the task to activate.

Status codes returned by ActivateTask:

E_OK No error, the task has been successfully activated (extended and standard).

E_OS_ID Invalid TaskID. No task with such an id exists (extended only).

E_OS_LIMIT Too many activations of the task (extended and standard).

SUSPENDEDRUNNINGREADY

RUNNING SUSPENDEDRUNNING

SUSPENDEDT2

T1

A B C

TASK(T2) {

... /* C period */

TerminateTask ();

}

TASK(T1) {

... /* A period */

ActivateTask(T2);

... /* B period */

TerminateTask ();

}

Figure 3.5: Activation of a lower priority task. Prio(T1) ≥ Prio(T2). During A period, T1 is
running and T2 is suspended. Then T1 calls ActivateTask(T2);. Since T2 does not have a higher
priority, it becomes ready (B period). T1 terminates and T2 runs (C period) until it terminates.

SUSPENDED

RUNNING

READY RUNNING

SUSPENDED

RUNNING

SUSPENDEDT2

T1

A B C

TASK(T2) {

... /* B period */

TerminateTask ();

}

TASK(T1) {

... /* A period */

ActivateTask(T2);

... /* C period */

TerminateTask ();

}

Figure 3.6: Activation of a higher priority task. Prio(T1) < Prio(T2). During A period, T1 is
running and T2 is suspended. Then T1 calls ActivateTask(T2);. Since T2 has a higher priority, it
becomes running (B period). T2 terminates and T1 resumes (C period) until it terminates.

3.4.3 ChainTask

This service does a rescheduling

Chapter 3. Tasks

30 3.4. Tasks services

RUNNING RUNNINGREADY

SUSPENDED

RUNNING

RUNNINGRUNNING

SUSPENDEDT2

T1

A B C C C

TASK(T2) {

... /* C period */

TerminateTask ();

}

TASK(T1) {

... /* A period */

ActivateTask(T2);

ActivateTask(T2);

ActivateTask(T2);

... /* B period */

TerminateTask ();

}

Figure 3.7: Multiple activations of a lower priority task. Prio(T1) ≥ Prio(T2). During A period,
T1 is running and T2 is suspended. Then T1 calls ActivateTask(T2); 3 times. Since T1 has a higher
priority, T2 does not run immediately and the 3 activations are recorded provided the ACTIVATION
attribute in the OIL description of the task is a least 3 (B period). When T1 terminates, the scheduler
executes T2 3 times (C periods).

This service puts task TaskID in READY state, and the calling task in the SUSPENDED state. It acts
as the TerminateTask service for the calling task.

Prototype of ChainTask:

StatusType ChainTask(TaskType TaskID);

Arguments of ChainTask:

TaskID The id of the task to activate.

Status codes returned by ChainTask:

E_OK No error, the task TaskID has been successfully activated and the calling task has been
successfully terminated. Note in this case ChainTask does not return so actually E OK is
never returned (extended and standard).

E_OS_ID Invalid TaskID. No task with such an id exists (extended only).

E_OS_LIMIT Too many activations of the task (extended and standard).

E_OS_RESOURCE The calling task still held a resource (extended only).

E_OS_CALLEVEL Called outside of a task (extended only).

3.4.4 TerminateTask

This service does a rescheduling

This service stops the calling task and puts it in SUSPENDED state.

Chapter 3. Tasks

3.4. Tasks services 31

SUSPENDEDRUNNING

SUSPENDEDRUNNING

SUSPENDEDT2

T1

A B

TASK(T2) {

... /* B period */

TerminateTask ();

}

TASK(T1) {

... /* A period */

ChainTask(T2);

}

Figure 3.8: Chaining of tasks. During A period, T1 is running and T2 is suspended. Then T1 calls
ChainTask(T2);. T1 terminates and T2 is activated. Then T2 runs (B periods).

Prototype of TerminateTask:

StatusType TerminateTask(void);

Status codes returned by TerminateTask:

E_OK No error, the calling task has been successfully terminated. Note in this case TerminateTask
does not return so actually E OK is never returned (extended and standard).

E_OS_RESOURCE The calling task still held a resource (extended only).

E_OS_CALLEVEL Called outside of a task (extended only).

3.4.5 Schedule

This service does a rescheduling. Schedule does not deal directly with tasks but since it is a call
to the scheduler, it is presented here.

If called from a preemptable task that does not use an internal resource, Schedule has not effect.
If called from a preemptable or a task that uses an internal resource, the priority of the task
revert to its base priority and a rescheduling occurs.

Schedule allows to implement cooperative multitasking to insure synchronous rescheduling.

Prototype of Schedule:

StatusType Schedule(void);

Status codes returned by Schedule:

E_OK No error. (extended and standard).

E_OS_RESOURCE The calling task still held a resource (extended only).

E_OS_CALLEVEL Called outside of a task (extended only).

3.4.6 GetTaskID

GetTaskID writes in the TaskID variable passed as reference the identifier of the task currently
RUNNING. If no task is currently RUNNING because GetTaskID was called from an ISR of before

Chapter 3. Tasks

32 3.4. Tasks services

Trampoline is started, INVALID_TASK is got.

!
The argument is a pointer. Do not pass an uninitialized pointer. Proper use of this service
supposes a TaskType variable is instantiated, then its address is passed to GetTaskID as shown
in the example below:

TaskType runningTaskID;

GetTaskID (& runningTaskID);

Prototype of GetTaskID:

StatusType GetTaskID(TaskRefType TaskID);

Arguments of GetTaskID:

TaskID Reference to the task.

Status codes returned by GetTaskID:

E_OK No error. (extended and standard).

E_OS_PROTECTION_MEMORY The caller does not have access to the addresses of TaskID reference
(extended + AUTOSAR scalability class 3 and scalability class 4 only).

3.4.7 GetTaskState

GetTaskState writes in the variable passed as reference in State the state of the task given in
TaskID.

!
The State argument is a pointer. Do not pass an uninitialized pointer. Proper use of this
service supposes a TaskState variable is instantiated, then its address is passed to GetTaskState

as shown in the example below:

TaskStateType T1State;

GetTaskState(T1 , &T1State);

Prototype of GetTaskState:

StatusType GetTaskState(TaskType TaskID, TaskStateRefType State);

Arguments of GetTaskState:

TaskID The id of the task..

State Reference to the state..

Status codes returned by GetTaskState:

E_OK No error. (extended and standard).

E_OS_ID Invalid TaskID. No task with such an id exists (extended only).

E_OS_PROTECTION_MEMORY The caller does not have access to the addresses of State reference
(extended + AUTOSAR scalability class 3 and scalability class 4 only).

Chapter 3. Tasks

3.5. Inside Task management 33

3.5 Inside Task management

3.5.1 Static attributes

A task has the following static attributes:

The entry point of the task. A pointer to the code of the task. When the scheduler start a
task instance the first time, it uses this pointer to begin the execution.

The internal resource the task uses if any. An internal resource is automatically taken when
a task enters the RUNNING state and automatically released when the task leaves the RUNNING

state. See ?? for more informations.

The base priority of the task as specified in the OIL file. This priority is used to reset the
current priority when the task is activated.

The maximum activation count of the task as specified in the OIL file.

The kind of task, BASIC or EXTENDED.

The task id. Used for internal checking.

The id of the OS Application the tasks belong to (only available in AUTOSAR scalability
class 3 and scalability class 4).

The timing protection configuration if any (only available in AUTOSAR scalability class 2
and scalability class 4).

3.5.2 Dynamic attributes

A task has also the following dynamic attributes:

The context. This is the chunk of RAM where the current execution context of a task is stored
when the task is in the READY or WAITING state. The execution context is the value of the
microprocessor’s registers (program counter, stack pointer, other working registers). So
the context depends on the target on which Trampoline runs.

The stack(s). This is the chunk of RAM where registers are pushed for function call. This
attributes depends on the target architecture. For instance, the C166 micro-controller uses
2 stacks.

The current activation count. When a task is activated while not in SUSPENDED state, the
activation is recorded and is actually done when the task returns to the SUSPENDED state.
Many activation may be recorded according to the value given to the ACTIVATION task
OIL attribute. When a task is activated, the current activation count is compared to the
maximum activation count and if ≥, the activation fails.

The list of resources the task currently owns.

The current priority of the task. This priority starts equal to the basic priority and may
increase when the task get a resource.

Chapter 3. Tasks

34 3.5. Inside Task management

The state of the task as defined in sections 4.1 and 4.5.3.

The trusted counter. If = 0, the task is non-trusted. If > 0 the task is trusted. See chapter
?? for more informations. This counter is available if Trampoline is compiled with memory
protection support.

The activation allowed flag. If true, the task may be activated. If false, it cannot be acti-
vated. This flag is set by the timing protection facility. It is available if Trampoline is
compiled with timing protection support. See chapter ??.

3.5.3 Additional task states

In addition to states presented in section 4.1, 2 extra states are used for internal management:

AUTOSTART This state is used to indicate what task should be started automatically when StartOS

is called. An AUTOSTART task is in this initial state but no task is in this state once the
application code is running. StartOS iterates through the tasks and activates those that
are in the AUTOSTART state.

READY_AND_NEW This state is used to flag a task that is ready but has its context uninitialized.
This happens when the task has just been activated. The kernel initializes the context of
the task the first time it goes to the RUNNING state.

Figure 4.9 show a complete task state automaton for both basic and extended tasks with these
states added.

AUTOSTART

SUSPENDED

RUNNING

WAITING

READY

activate at start

terminate

first
time
start

start

preempt

wait
(extended tasks only)

release
activate

READY_AND_NEW

Figure 3.9: States of a task in Trampoline. AUTOSTART is the initial state of autostart tasks. SUSPENDED

is the initial state of both non autostart tasks.

Chapter 3. Tasks

3.6. The idle task 35

3.6 The idle task

The idle task is activated by StartOS. It is a BASIC task with a priority of 0 (i.e. the lowest
priority in the system, the lowest priority of tasks defined in the application is 1). So when no
other task is currently running, the idle task run.

To be able to use specific platform capabilities (to put the micro-controller in stand by mode for
example), this task calls repetitively a hardware specific function called tpl_sleep (defined in
machines/). The tasks is then able to quantify the microprocessor occupation.

GOIL doesn’t produce anything about this idle task (unlike application(s) task(s)). The idle
task descriptor is defined in ‘tpl_os_kernel.c’.

Chapter 3. Tasks

36 3.6. The idle task

Chapter 3. Tasks

CHAPTER

FOUR

ALARMS

Alarms are used to perform an action after an interval of time for a single shot alarm and
periodically for a periodic alarm. The action may be the activation of a task, the setting of

an event to a task or the execution of an alarm callback function1.

4.1 States a task

A task may be in different states. A basic task may be currently executing (in the RUNNING state),
ready to execute (in the READY state) or not active at all (in the SUSPENDED state). Figure 4.1
shows the states of a basic task. An extended task has an additional WAITING state. Figure 4.2
shows the states of an extended task. See section 4.5.3 for additional informations about the
states of a task.

SUSPENDED

RUNNING

READY
activate

startpreempt

terminate

Figure 4.1: States of a BASIC task.

SUSPENDED

RUNNING

READY
activate

startpreempt

terminate

WAITING

wait

release

Figure 4.2: States of an EXTENDED task.

A task goes from one state to the other according to various conditions as shown in table 4.1.

1This third action is not available in AUTOSAR

37

38 4.2. The scheduling

Table 4.1: Transition from state to state of a task.

transition former state new state description
activate SUSPENDED READY the task is set in the READY state on one of the

following occurrences: services ActivateTask
or ChainTask, activation notification coming
from an alarm, a schedule table or a message.

start READY RUNNING the task is set to the running state and begin
to execute because it has the highest prior-
ity in the system and has been elected by the
scheduler.

terminate RUNNING SUSPENDED the task is set to the SUSPENDED state when
it calls the TerminateTask or ChainTask ser-
vice.

preempt RUNNING READY the task is set to the READY state when the
scheduler starts a higher priority task.

wait RUNNING WAITING the task may be set to the WAITING state when
it calls the service WaitEvent.

release WAITING READY the task is set to the READY state when it gets
one of the events it is waiting for.

A system service may do more than one transition at a time. For instance, if a task is activated
by calling ActivateTask and its priority is higher than the priority of the current running task,
the new task will go from SUSPENDED to RUNNING and the intermediate state READY will not be
observable.

4.2 The scheduling

Trampoline schedules the tasks dynamically during the execution of the application. A task is
scheduled according to its priority and whether it is preemptable or not. The priority of a task
is given at design stage, and indicated in the OIL file using the PRIORITY attribute, see ??,
and may change during execution when the task gets or release a resource. The preemptability
of a task may be set too. It is also indicated in the OIL file using the SCHEDULE attribute, see
??.

A tasks continues to run until it is preempted because a task having a higher priority is put in
the READY state, or it blocks because it is waiting for an event. Only extended tasks may block.
If more than one task have the same priority, tasks are run one after the other because a task
may not preempt an other task having the same priority. So there is no round robin among tasks
of the same priority level.

A non-preemptable task runs until it calls Schedule and a higher priority task is in the READY

state or until it blocks. More informations about priority and preemptability may be found in
chapter 5.

In the following examples, the horizontal axis is the time. The state of the task is indicated in a

Chapter 4. Alarms

4.3. Writing the code of a task 39

rectangle that spans a period of time. When the task is running the rectangle is grayed. An up
arrow indicates a task activation and a down arrow a task termination.

RUNNING SUSPENDED

SUSPENDEDRUNNINGREADYRUNNING

SUSPENDED
T2

PRIORITY = 10

T1
PRIORITY = 5

A B C

Figure 4.3: Scheduling of preemptable tasks. During A period, T1 is running and T2 is suspended.
Then T2 is activated. Since Prio(T2) > Prio(T1), T1 is preempted and T2 runs (B period). T2 terminates
and T1 becomes running again (C period) until it terminates.

RUNNINGREADY

RUNNING SUSPENDEDRUNNING

SUSPENDED
T2

PRIORITY = 10

T1
PRIORITY = 5

SUSPENDED

A B C

Figure 4.4: Scheduling of non-preemptable tasks. During A period, T1 is running and T2 is
suspended. Then T2 is activated. Even if Prio(T2) > Prio(T1), T1 is non-preemptable and continues
to run until it terminates (B period). In the meantime, T2 is ready. T1 terminates and T2 runs (C
period) until it terminates.

4.3 Writing the code of a task

Trampoline provides a TASK macro to define a task in a C source file. The macro takes one
argument which is the identifier of the task:

TASK(MyTask)

{

/* code of the task */

TerminateTask ();

}

The code of the task is plain C.

The task should always end with a call to the TerminateTask service. See 4.4.4.

Chapter 4. Alarms

40 4.4. Tasks services

4.4 Tasks services

4.4.1 DeclareTask

Each task has an identifier of type TaskType. This identifier is declared in the OIL file and is used
in system calls to refer to a particular task. Before using such an identifier in your program, you
have to declare it:

DeclareTask(MyTask);

This makes the MyTask identifier available in the current scope.

DeclareTask is a C macro. When the task has been define above using the macro TASK, the
identifier of the task is already in the scope and DeclareTask is not needed.

Prototype of DeclareTask:

DeclareTask(TaskType TaskID);

Arguments of DeclareTask:

TaskID The id of the task to declare.

4.4.2 ActivateTask

This service does a rescheduling

Activates a new instance of a task. If activation counter has reached the maximum activation
count or the task cannot be activated for timing protection purpose, the service fails. Otherwise
if an instance is already active (RUNNING or READY), the state does not change and the activation
is recorded to be done later. If no instance is active, the state of the task is changed to READY.

Figures 4.5, 4.6 and 4.8 show 2 examples of task activation.

Prototype of ActivateTask:

StatusType ActivateTask(TaskType TaskID);

Arguments of ActivateTask:

TaskID The id of the task to activate.

Status codes returned by ActivateTask:

E_OK No error, the task has been successfully activated (extended and standard).

E_OS_ID Invalid TaskID. No task with such an id exists (extended only).

E_OS_LIMIT Too many activations of the task (extended and standard).

Chapter 4. Alarms

4.4. Tasks services 41

SUSPENDEDRUNNINGREADY

RUNNING SUSPENDEDRUNNING

SUSPENDEDT2

T1

A B C

TASK(T2) {

... /* C period */

TerminateTask ();

}

TASK(T1) {

... /* A period */

ActivateTask(T2);

... /* B period */

TerminateTask ();

}

Figure 4.5: Activation of a lower priority task. Prio(T1) ≥ Prio(T2). During A period, T1 is
running and T2 is suspended. Then T1 calls ActivateTask(T2);. Since T2 does not have a higher
priority, it becomes ready (B period). T1 terminates and T2 runs (C period) until it terminates.

SUSPENDED

RUNNING

READY RUNNING

SUSPENDED

RUNNING

SUSPENDEDT2

T1

A B C

TASK(T2) {

... /* B period */

TerminateTask ();

}

TASK(T1) {

... /* A period */

ActivateTask(T2);

... /* C period */

TerminateTask ();

}

Figure 4.6: Activation of a higher priority task. Prio(T1) < Prio(T2). During A period, T1 is
running and T2 is suspended. Then T1 calls ActivateTask(T2);. Since T2 has a higher priority, it
becomes running (B period). T2 terminates and T1 resumes (C period) until it terminates.

RUNNING RUNNINGREADY

SUSPENDED

RUNNING

RUNNINGRUNNING

SUSPENDEDT2

T1

A B C C C

TASK(T2) {

... /* C period */

TerminateTask ();

}

TASK(T1) {

... /* A period */

ActivateTask(T2);

ActivateTask(T2);

ActivateTask(T2);

... /* B period */

TerminateTask ();

}

Figure 4.7: Multiple activations of a lower priority task. Prio(T1) ≥ Prio(T2). During A period,
T1 is running and T2 is suspended. Then T1 calls ActivateTask(T2); 3 times. Since T1 has a higher
priority, T2 does not run immediately and the 3 activations are recorded provided the ACTIVATION
attribute in the OIL description of the task is a least 3 (B period). When T1 terminates, the scheduler
executes T2 3 times (C periods).

Chapter 4. Alarms

42 4.4. Tasks services

4.4.3 ChainTask

This service does a rescheduling

This service puts task TaskID in READY state, and the calling task in the SUSPENDED state. It acts
as the TerminateTask service for the calling task.

Prototype of ChainTask:

StatusType ChainTask(TaskType TaskID);

Arguments of ChainTask:

TaskID The id of the task to activate.

Status codes returned by ChainTask:

E_OK No error, the task TaskID has been successfully activated and the calling task has been
successfully terminated. Note in this case ChainTask does not return so actually E OK is
never returned (extended and standard).

E_OS_ID Invalid TaskID. No task with such an id exists (extended only).

E_OS_LIMIT Too many activations of the task (extended and standard).

E_OS_RESOURCE The calling task still held a resource (extended only).

E_OS_CALLEVEL Called outside of a task (extended only).

SUSPENDEDRUNNING

SUSPENDEDRUNNING

SUSPENDEDT2

T1

A B

TASK(T2) {

... /* B period */

TerminateTask ();

}

TASK(T1) {

... /* A period */

ChainTask(T2);

}

Figure 4.8: Chaining of tasks. During A period, T1 is running and T2 is suspended. Then T1 calls
ChainTask(T2);. T1 terminates and T2 is activated. Then T2 runs (B periods).

4.4.4 TerminateTask

This service does a rescheduling

This service stops the calling task and puts it in SUSPENDED state.

Prototype of TerminateTask:

StatusType TerminateTask(void);

Chapter 4. Alarms

4.4. Tasks services 43

Status codes returned by TerminateTask:

E_OK No error, the calling task has been successfully terminated. Note in this case TerminateTask
does not return so actually E OK is never returned (extended and standard).

E_OS_RESOURCE The calling task still held a resource (extended only).

E_OS_CALLEVEL Called outside of a task (extended only).

4.4.5 Schedule

This service does a rescheduling. Schedule does not deal directly with tasks but since it is a call
to the scheduler, it is presented here.

If called from a preemptable task that does not use an internal resource, Schedule has not effect.
If called from a preemptable or a task that uses an internal resource, the priority of the task
revert to its base priority and a rescheduling occurs.

Schedule allows to implement cooperative multitasking to insure synchronous rescheduling.

Prototype of Schedule:

StatusType Schedule(void);

Status codes returned by Schedule:

E_OK No error. (extended and standard).

E_OS_RESOURCE The calling task still held a resource (extended only).

E_OS_CALLEVEL Called outside of a task (extended only).

4.4.6 GetTaskID

GetTaskID writes in the TaskID variable passed as reference the identifier of the task currently
RUNNING. If no task is currently RUNNING because GetTaskID was called from an ISR of before
Trampoline is started, INVALID_TASK is got.

!
The argument is a pointer. Do not pass an uninitialized pointer. Proper use of this service
supposes a TaskType variable is instantiated, then its address is passed to GetTaskID as shown
in the example below:

TaskType runningTaskID;

GetTaskID (& runningTaskID);

Prototype of GetTaskID:

StatusType GetTaskID(TaskRefType TaskID);

Arguments of GetTaskID:

TaskID Reference to the task.

Chapter 4. Alarms

44 4.5. Inside Task management

Status codes returned by GetTaskID:

E_OK No error. (extended and standard).

E_OS_PROTECTION_MEMORY The caller does not have access to the addresses of TaskID reference
(extended + AUTOSAR scalability class 3 and scalability class 4 only).

4.4.7 GetTaskState

GetTaskState writes in the variable passed as reference in State the state of the task given in
TaskID.

!
The State argument is a pointer. Do not pass an uninitialized pointer. Proper use of this
service supposes a TaskState variable is instantiated, then its address is passed to GetTaskState

as shown in the example below:

TaskStateType T1State;

GetTaskState(T1 , &T1State);

Prototype of GetTaskState:

StatusType GetTaskState(TaskType TaskID, TaskStateRefType State);

Arguments of GetTaskState:

TaskID The id of the task..

State Reference to the state..

Status codes returned by GetTaskState:

E_OK No error. (extended and standard).

E_OS_ID Invalid TaskID. No task with such an id exists (extended only).

E_OS_PROTECTION_MEMORY The caller does not have access to the addresses of State reference
(extended + AUTOSAR scalability class 3 and scalability class 4 only).

4.5 Inside Task management

4.5.1 Static attributes

A task has the following static attributes:

The entry point of the task. A pointer to the code of the task. When the scheduler start a
task instance the first time, it uses this pointer to begin the execution.

The internal resource the task uses if any. An internal resource is automatically taken when
a task enters the RUNNING state and automatically released when the task leaves the RUNNING

state. See ?? for more informations.

The base priority of the task as specified in the OIL file. This priority is used to reset the
current priority when the task is activated.

Chapter 4. Alarms

4.5. Inside Task management 45

The maximum activation count of the task as specified in the OIL file.

The kind of task, BASIC or EXTENDED.

The task id. Used for internal checking.

The id of the OS Application the tasks belong to (only available in AUTOSAR scalability
class 3 and scalability class 4).

The timing protection configuration if any (only available in AUTOSAR scalability class 2
and scalability class 4).

4.5.2 Dynamic attributes

A task has also the following dynamic attributes:

The context. This is the chunk of RAM where the current execution context of a task is stored
when the task is in the READY or WAITING state. The execution context is the value of the
microprocessor’s registers (program counter, stack pointer, other working registers). So
the context depends on the target on which Trampoline runs.

The stack(s). This is the chunk of RAM where registers are pushed for function call. This
attributes depends on the target architecture. For instance, the C166 micro-controller uses
2 stacks.

The current activation count. When a task is activated while not in SUSPENDED state, the
activation is recorded and is actually done when the task returns to the SUSPENDED state.
Many activation may be recorded according to the value given to the ACTIVATION task
OIL attribute. When a task is activated, the current activation count is compared to the
maximum activation count and if ≥, the activation fails.

The list of resources the task currently owns.

The current priority of the task. This priority starts equal to the basic priority and may
increase when the task get a resource.

The state of the task as defined in sections 4.1 and 4.5.3.

The trusted counter. If = 0, the task is non-trusted. If > 0 the task is trusted. See chapter
?? for more informations. This counter is available if Trampoline is compiled with memory
protection support.

The activation allowed flag. If true, the task may be activated. If false, it cannot be acti-
vated. This flag is set by the timing protection facility. It is available if Trampoline is
compiled with timing protection support. See chapter ??.

4.5.3 Additional task states

In addition to states presented in section 4.1, 2 extra states are used for internal management:

Chapter 4. Alarms

46 4.6. The idle task

AUTOSTART This state is used to indicate what task should be started automatically when StartOS

is called. An AUTOSTART task is in this initial state but no task is in this state once the
application code is running. StartOS iterates through the tasks and activates those that
are in the AUTOSTART state.

READY_AND_NEW This state is used to flag a task that is ready but has its context uninitialized.
This happens when the task has just been activated. The kernel initializes the context of
the task the first time it goes to the RUNNING state.

Figure 4.9 show a complete task state automaton for both basic and extended tasks with these
states added.

AUTOSTART

SUSPENDED

RUNNING

WAITING

READY

activate at start

terminate

first
time
start

start

preempt

wait
(extended tasks only)

release
activate

READY_AND_NEW

Figure 4.9: States of a task in Trampoline. AUTOSTART is the initial state of autostart tasks. SUSPENDED

is the initial state of both non autostart tasks.

4.6 The idle task

The idle task is activated by StartOS. It is a BASIC task with a priority of 0 (i.e. the lowest
priority in the system, the lowest priority of tasks defined in the application is 1). So when no
other task is currently running, the idle task run.

To be able to use specific platform capabilities (to put the micro-controller in stand by mode for
example), this task calls repetitively a hardware specific function called tpl_sleep (defined in
machines/). The tasks is then able to quantify the microprocessor occupation.

GOIL doesn’t produce anything about this idle task (unlike application(s) task(s)). The idle
task descriptor is defined in ‘tpl_os_kernel.c’.

Chapter 4. Alarms

CHAPTER

FIVE

RESOURCES

Aresource is an object used to protect a critical section in a task or in an ISR and to insure
mutual exclusion. By using a resource to protect the use of a shared piece of data or a

shared hardware device, the programmer avoids race conditions. Figure 5.1 shows an example
of race condition.

5.1 OSEK Priority Ceiling Protocol

OSEK uses a modified version of the Priority Ceiling Protocol [7]. A priority is assigned to each
resource. This priority is computed to be at least equal to the highest priority of the tasks and
ISRs that use the resource. So let T1, T2, . . . , Tn a set of tasks sharing the same resource R and
P1, P2, . . . , Pn their priorities so that Pi = P (Ti). We have P (R) = maxi=1,n(Pi).

When a task gets a resource, its priority is raised to the priority of the resource. That way,
the task will run with the priority of the highest priority task and will insure the release of the
resource is not delayed by a lower priority task. In addition, since every other tasks that use
the same resource have now a priority ≤, they cannot preempt the running task and mutual
exclusion is insured. Figure 5.2 show an example of resource use.

The priority of a resource is computed by goil according to the priorities of the tasks and ISRs
that use the resource.

5.2 The RES SCHEDULER resource

Trampoline provides a predefined standard resource called RES_SCHEDULER. This resource has a
priority ≥ to the maximum priority of the tasks but < to the minimum priority of the ISR.
When a task gets RES_SCHEDULER, it becomes non preemptable. To make RES_SCHEDULER available
to the application, the USERESCHEDULER attribute must be set to TRUE within the OS object in the

47

48 5.2. The RES SCHEDULER resource

int val = 0;

int actCount = 0;

TASK(bgTask)

{

while (1) {

val++;

val --;

}

}

TASK(periodicTask)

{

activationCount ++;

if ((actCount % 2) == 1) {

val ++;

}

else {

val --;

}

TerminateTask ();

}

TASK(displayTask)

{

printf("val=%d count =%d\n",

val ,

activationCount);

TerminateTask ();

}

val=2 count =10

val=3 count =20

val=4 count =30

val=5 count =40

val=2 count =50

val=2 count =60

val=0 count =70

val=-2 count =80

val=-1 count =90

val=-1 count =100

val=-2 count =110

val=0 count =120

val=0 count =130

val=0 count =140

val=0 count =150

val=-2 count =160

val=-1 count =170

val=-2 count =180

val=-4 count =190

val=-4 count =200

val=-6 count =210

val=-4 count =220

val=-5 count =230

val=-6 count =240

val=-7 count =250

val=-6 count =260

val=-3 count =270

val=-3 count =280

val=-5 count =290

val=-5 count =300

Figure 5.1: Shared data access. In this example 3 preemptable tasks are used. bgTask increments
and decrements the global integer variable shared in an infinite loop. periodicTask runs every 100ms
and increments the global integer variable activateCount. If activateCount is odd, periodicTask

increments shared otherwise it is decremented. A third task, displayTask runs every second and displays
both variables. On the left, the corresponding program, on the right one of the possible outputs

Chapter 5. Resources

5.2. The RES SCHEDULER resource 49

READY

SUSPENDED READY

RUNNING T1

READY

RUNNING T3READY

SUSPENDED

RUNNING

T2

T3

A B C D E

RUNNINGSUSPENDEDT1

RUNNING T3R

RUNNINGSUSPENDEDT0

F G H

Figure 5.2: Scheduling with a resource used by 3 tasks and a fourth task having a higher
priority. P (T0) > P (T1) > P (T2) > P (T3). R is used by T1, T2 and T3 so P (T0) > P (R) ≥ P (T1).
During A period, T3 is running and other tasks are suspended. Then T3 gets R and P (T3) ← P (R)
(B to F periods). T1 is activated and becomes ready; since P (T3) ≥ P (T1), T1 does not run (C to F
periods). T2 is activated and becomes ready; for the same reason it does not run (D to H periods). T0

is activated and because P (T0) > P (R) it runs (E period). T0 terminates and T3 continues its execution
(F period). Then T3 releases R and P (T3) reverts to its base priority; so since P (T1) > P (T2) > P (T3),
T1 runs (G period). T1 gets R and P (T1)← P (R) (H period).

Chapter 5. Resources

50 5.3. Standard and Internal Resources

OIL file. Unlike resources defined by the application, there is no need to declare RES_SCHEDULER

is used by a task in the OIL file.

5.3 Standard and Internal Resources

Standard resources are got and released explicitly by tasks and ISRs using the ad-hoc services.
Internal resources are got implicitly when the task enters the RUNNING state and released implicitly
when the task calls Schedule or blocks when using WaitEvent.

At most one internal resource may be used by a task.

Standard resources are dedicated to the protection of critical sections around the access to a
shared data or to a device. Internal resources are used to implement non preemptable tasks
within a task group. A task group is a set of task that are non preemptable by each other but
remain preemptable by higher priority tasks in the application. A task group priority is the
priority of its internal resource.

Trampoline provides a predefined internal RES_SCHEDULER resource with the same priority. This
internal resource is used to implement non preemptable tasks in the whole application as if all
the non preemptable tasks belong to an implicit task group. When a task is non preemptable
by setting the SCHEDULE attribute to NON in its OIL description, the task is assigned the internal
RES_SCHEDULER resource.

5.4 Nested resources accesses

Resources may be accessed in a nested way. That is once a resource is got, another one may be
got before releasing the first one and so on. However resources must be released in the reverse
order they have been got as if they were pushed on a stack. The following example shows the
good usage of resources:

TASK(MyTask)

{

GetResource(rez1);

...

/* critical section protected by rez1 */

...

GetResource(rez2);

...

/* critical section protected by rez2 and rez1 */

...

ReleseResource(rez2);

...

/* more critical section protected by rez1 */

...

ReleaseResource(rez1);

TerminateTask ();

}

Chapter 5. Resources

5.5. OIL description 51

5.5 OIL description

A resource is described using a RESOURCE object. RESOURCEPROPERTY is the single attribute of this
object. A standard resource is defined with the following code:

RESOURCE res {

RESOURCEPROPERTY = STANDARD;

};

And an internal resource is defined with the following code:

RESOURCE other_res {

RESOURCEPROPERTY = INTERNAL;

};

A third kind of declaration exists for LINKED resources. A linked resource may be linked to a
linked resource or a standard resource but a link tree of resources must have a standard resource
at the root. A linked resource has the same priority as the standard resource it is linked to and is
a kind of reference. Linked resources are provided to replace nested access to the same resource
(which is prohibited) and are rarely used.

RESOURCE l_res {

RESOURCEPROPERTY = LINKED { LINKEDRESOURCE = res };

};

!
Every task and ISR that uses a resource in the C code must declare it in the OIL file. Otherwise
goil will compute a wrong priority for the resource and the scheduling of tasks and the execution
of ISR will not be as expected.

5.6 Resources services

5.6.1 DeclareResource

Each resource has an identifier of type ResourceType. This identifier is declared in the OIL file
and is used in system calls to refer to a particular resource. DeclareResource declares a resource
exists. The result is to make the id of the resource available and allows to use it in services’ calls.

DeclareResource is a C macro

Prototype of DeclareResource:

DeclareResource(ResourceType ResourceID);

Arguments of DeclareResource:

ResourceID The id of the resource.

Chapter 5. Resources

52 5.6. Resources services

5.6.2 GetResource

GetResource enters the critical section protected by the resource. For each call to GetResource,
a corresponding call to ReleaseResource must be made in the control flow of the task or ISR.
Nested calls are allowed, see 5.4 for nested resource accesses.

Prototype of GetResource:

StatusType GetResource(ResourceType ResourceID);

Arguments of GetResource:

ResourceID The id of the resource to get.

Status codes returned by GetResource:

E_OK No error (extended and standard).

E_OS_ID Invalide resource id. No resource with such an id exists (extended and standard).

E_OS_ACCESS The resource is already taken by a task or an ISR or has a priority lower than
the base priority of the calling task or ISR. This should not happen if the application is
configured correctly except if the same task or ISR try to get the same resource twice
(extended only).

5.6.3 ReleaseResource

ReleaseResource leaves the critical section protected by the resource. For each call to ReleaseRe-
source, a corresponding call to GetResource must have been made in the control flow of the task
or ISR. Nested calls are allowed, see 5.4 for nested resource accesses.

This service does a rescheduling

Prototype of ReleaseResource:

StatusType ReleaseResource(ResourceType ResourceID);

Arguments of ReleaseResource:

ResourceID the id of the resource.

Status codes returned by ReleaseResource:

E_OK No error (extended and standard).

E_OS_ID Invalide resource id. No resource with such an id exists (extended and standard).

Chapter 5. Resources

CHAPTER

SIX

EVENTS

Events are used to synchronize an extended task to a condition external to the task. Each
extended task has a private set of events (it owns the event) and an event is explicitly sent

to a task. Having the same event attributed to many tasks does not mean the tasks share the
event. They share only the value (or mask) associated to the event.

Events may be set by any other task, by an ISR2, by an alarm, by a schedule table or by the
arrival of a message. Any task or ISR may read the events of a task but only the extended task
owning the event is able to wait for it or to clear it.

If you use AUTOSAR OS Applications, involved objects must belong to the same OS Application
or must have an access right to the OS Application of the target task.

A RUNNING task that wait for an event is put in the WAITING state if the event has not occured or
stay in the RUNNING state if it has already occured.

A WAITING task is put in the READY state if one of the events it is waiting for occurs. See chapter
3 for more informations.

! Events must be explicitly cleared once read. If a tasks does not clear the previous occurrence of
an event, it will be seen as “already occurred” the next time the task will wait for it.

6.1 OIL description

An event is described using a EVENT object. MASK is the single attribute of this object. MASK may
be set to a literal value:

EVENT ev {

MASK = 0x1;

};

53

54 6.2. Events services

RUNNING

RUNNING READY

T2

T1

A B

WAITING

E1

READY

RUNNING

C D

RUNNING

wait E1 release clear E1

WAITING

wait E1

E

set E1

Figure 6.1: Scheduling with an event. T2 is an extended task. During A period, T2 is running and
T1 is ready. Then T2 wait for E1 and blocks. T2 runs (B period) and sets E1. T2 is released and since
P (T2) > P (T1), T2 runs (C period), clears E1 and continues to run (D period). Then T2 wait for E1

again and blocks, T1 runs (E period).

The literal value should have only 1 bit set. Goil emits a warning when this is not the case.

Or MASK may be set to AUTO. In this case, the system generation tool computes the event mask:

EVENT ev {

MASK = AUTO;

};

6.2 Events services

6.2.1 SetEvent

Events of task TaskID are set according to the Mask passed as 2nd argument. This service is
non blocking and may be called from a task or an ISR2.

SetEvent may do a rescheduling if the target task is unblocked and goes to the READY state.

Prototype of SetEvent:

StatusType SetEvent(TaskType TaskID, EventMaskType Mask);

Arguments of SetEvent:

TaskID the id of the task.

Mask the event mask.

Chapter 6. Events

6.2. Events services 55

Status codes returned by SetEvent:

E_OK No error (extended and standard).

E_OS_ID Invalid TaskID (extended only).

E_OS_ACCESS TaskID is not an extended task (not able to manage events) (extended only).

E_OS_STATE Events cannot be set because the target task is in the SUSPENDED state (extended
only).

6.2.2 WaitEvent

The calling task waits for event(s) Mask. If one the events are already set, the task continues its
execution. If none of the events are set, the task is put in the WAITING state and blocks.

WaitEvent may do a rescheduling if the calling task blocks.

Prototype of WaitEvent:

StatusType WaitEvent(EventMaskType Mask);

Arguments of WaitEvent:

Mask The event(s) to wait for.

Status codes returned by WaitEvent:

E_OK No error (extended and standard).

E_OS_ACCESS The calling task is not an extended task (not able to manage events) (extended
only).

E_OS_RESOURCE The calling task holds a resource (extended only).

E_OS_CALLEVEL The caller is not a task (extended only).

6.2.3 GetEvent

Events of task TaskID are copied in Mask argument passed as reference.

GetEvent does not reset the event mask. ClearEvent should be used to clear, in the event mask,
the events that have been processed.

!
The Mask argument is a pointer. Do not pass an uninitialized pointer. Proper use of this service
supposes a EventMask variable is instantiated, then its address is passed to GetEvent as shown
in the example below:

EventMaskType myEventMask;

GetEvent(aTask , &myEventMask);

Prototype of GetEvent:

StatusType GetEvent(TaskType TaskID, EventMaskRefType Mask);

Chapter 6. Events

56 6.2. Events services

Arguments of GetEvent:

TaskID the id of the task.

Mask the reference of the event mask where the TaskID event mask is copied.

Status codes returned by GetEvent:

E_OK No error (extended and standard).

E_OS_ID Invalid TaskID (extended only).

E_OS_ACCESS The task identified by TaskID is not an extended task (not able to manage events)
or, in AUTOSAR, the caller cannot access the task (extended only).

E_OS_STATE The task identified by TaskID is in SUSPENDED state (extended only).

Chapter 6. Events

CHAPTER

SEVEN

OS APPLICATIONS

OS Applications are a set of objects managed by Trampoline and sharing common data and
access rights.

7.1 Execution of the OS Applications startup and shut-
down hooks

These hooks are executed from the kernel but with the access right of a task belonging to the OS
Application. The system generation tool should choose one of the tasks of the OS Application
to be used as context to execute the OS Application startup and shutdown hooks. Execution of
an OS Application startup hook is done by the tpl_call_startup_hook_and_resume function.
The argument of this function is a function pointer to the hook. Similarly execution of an
OS Application shutdown hook is done by the tpl_call_shutdown_hook_and_resume function.
These functions end by a call to NextStartupHook and NextShutdownHook services respectively
to cycle through the hooks.

57

58 7.1. Execution of the OS Applications startup and shutdown hooks

Chapter 7. OS Applications

CHAPTER

EIGHT

TIMING PROTECTION
IMPLEMENTATION

The Timing Protection Implementation uses 2 timers. The first one is a Free Running Timer
(FRT) which is used for Time Frame. The second one is a classical timer called Timing Protection
Timer (TPT) which is used for Execution Time Budget, Resource Locking Budget and Interrupt
Disabling Budget.

8.1 Low Level Functions

These functions are provided by the Board Support Package and are used to manage the timers
needed by the Timing Protection.

8.1.1 FRT related functions

tpl_status tpl_start_frt(void) starts the FRT. On a microcontroller having a FRT that
starts automatically when the system is powered on, this function does nothing but must be
present since it is called by Trampoline in initialization stage. An error code is returned: E OK
means no error, E OS NOFUNC means the FRT could not be started.

tpl_status tpl_read_frt(tpl_tp_tick *out_value) write the current value of the FRT
in out_value. An error code is returned: E OK means no error, E OS NOFUNC means the
FRT could not be read.

tpl_status tpl_elapsed_frt(tpl_tp_tick last_tick, tpl_tp_tick *out_value) write
the number of ticks elapsed since last_tick in out_value. If the FRT has overflown/underflown

59

60 8.1. Low Level Functions

between the time last_tick was get and the time tpl_elapsed_frt is called, tpl_elapsed_frt
gives a correct value. An error code is returned: E OK means no error, E OS NOFUNC means
the FRT could not be read.

8.1.2 TPT related functions

tpl_status tpl_init_tpt(???) initializes the TPT. An error code is returned: E OK means
no error, E OS NOFUNC means the TPT could not be initialized.

tpl_status tpl_deinit_tpt(void) deinitializes the TPT. An error code is returned: E OK
means no error, E OS NOFUNC means the TPT could not be deinitialized.

tpl_status tpl_start_tpt(tpl_tp_tick delay) starts the TPT with an expiration delay
equal to delay ticks. At that time, the tpl_tpt_handler function is called. An error code is
returned: E OK means no error, E OS NOFUNC means the TPT could not be started because
it is not initialized.

tpl_status tpl_read_tpt(tpl_tp_tick *out_value) write the current value of the TPT
in out_value. An error code is returned: E OK means no error, E OS NOFUNC means the TPT
could not be read.

tpl_status tpl_elapsed_tpt(tpl_tp_tick last_tick, tpl_tp_tick *out_value) write
the number of ticks elapsed since last_tick in out_value. An error code is returned: E OK
means no error, E OS NOFUNC means the TPT could not be read.

Chapter 8. Timing Protection Implementation

CHAPTER

NINE

SCHEDULE TABLE
IMPLEMENTATION

Here is the files list :

� ‘tpl_as_schedtable.c’ contains the API services.

� ‘tpl_as_st_kernel.c’ contains the kernel API services, tpl_process_schedtable() and
tpl_adjust_next_expiry_point()

� ‘tpl_as_action.c’ contains tpl_action_finalize_schedule_table()

� ‘tpl_as_definitions.h’ contains the schedule table’s states (SCHEDULETABLE STOPPED,
SCHEDULETABLE BOOTSTRAP, SCHEDULETABLE AUTOSTART ABSOLUTE...)

� ‘tpl_os_timeobj_kernel.c’ contains tpl_remove_time_obj() which has been modified for
the schedule table object.

The schedule table class diagram is shown in Figure 9.1 below.

61

62 9.1. The States of a Schedule Table

1..*

1..*

+ first

+ next

counter

time_object

+StartScheduleTableRel() : void
+StartScheduleTableAbs() : void
+StartScheduleTableSynchron() : void
+StopScheduleTable() : void
+NextScheduleTable() : void
+GetScheduleTableStatus() : void
+SyncScheduleTable() : void
+SetScheduleTableAsync() : void

- expiry : tpl_expiry_point
- count : tpl_expiry_count
- sync_strat : tpl_sync_strategy
- periodic : tpl_bool
- length : tpl_tick
- precision : tpl_tick

- next : tpl_schedule_table
- index : tpl_expiry_count
- deviation : tpl_tick

schedule_table

- offset : tpl_tick
- count : tpl_action_count
- actions : tpl_action

- sync_offset : tpl_tick
- max_advance : tpl_tick
- max_retard : tpl_tick

tpl_expiry_point

tpl_task_activation_action
tpl_setevent_action
tpl_increment_counter_action
tpl_finalize_schedule_table_action

tpl_action

dynamic part

dynamic part

static part
static part

Figure 9.1: Schedule table class diagram

9.1 The States of a Schedule Table

A schedule table always has a defined state. States include those found at page 42 of the
AUTOSAR specifications 3.1 and others states used for internal management.

Indeed, bit 1 is the ”autostart” bit. It’s used when autostarted schedule tables have been declared
in the OIL file. Goil generates schedule tables with SCHEDULETABLE AUTOSTART X (X
can be RELATIVE, ABSOLUTE or SYNCHRON) state. At startup (in tpl_init_os()), the
system starts autostarted schedule tables and resets the bit 1.

bit 4 is the ”bootstrap” bit. It’s used when the first expiry point of a schedule table is dated in
more than OsCounterMaxAllowedValue ticks from the current date1. It can happen when :

� the schedule table start (<tick val>) is after the current date and the first expiry point

1As the <offset> parameter of StartScheduleTableRel() cannot be greater than OsCounterMaxAllowed-
Value minus the InitialOffset of the schedule table (OS276), the first expiry point cannot be in more than
OsCounterMaxAllowedValue ticks from the current date. Thus the ”bootstrap” bit can set by StartSched-
uleTableAbs() only.

Chapter 9. Schedule Table Implementation

9.1. The States of a Schedule Table 63

comes between the current date and <tick val>

� <tick val> is before the current date and the first expiry point comes after the current date

Figure 9.2 below shows a bootstrap example for the first item.

Duration

InitialOffset FinalOffset

0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2

StartScheduleTableAbs(Tbl,6)

Schedule Table Tbl
InitialOffset = 5
FinalDelay = 1
Duration = 7

EP1 finalizeEP2

STOPPED RUNNING
&

BOOTSTRAP

STOPPED

EP1

RUNNING

(<tick_val> + InitialOffset) % OsMaxAllowedValue
= (6 + 5) % 7 = 4

0 1 2 3 4 5 6 0
Drive Counter
Synchronization

Counter

Tbl's state

Figure 9.2: Bootstrap example

bit 5 is the ”asynchronous” bit. It tells the system that the schedule table is in asynchronous
mode.
Thus, the different states of a schedule table are described in Table ?? below.

Table 9.1: qStates of a schedule table

State code Binary code Associated constant
0 000000 SCHEDULETABLE STOPPED
1 000001 SCHEDULETABLE RUNNING
5 000101 SCHEDULETABLE NEXT
9 001001 SCHEDULETABLE WAITING
13 001101 SCHEDULETABLE RUNNING AND SYNCHRONOUS
6 000110 SCHEDULETABLE AUTOSTART ABSOLUTE
10 001010 SCHEDULETABLE AUTOSTART RELATIVE
14 001110 SCHEDULETABLE AUTOSTART SYNCHRON
16 010000 SCHEDULETABLE BOOTSTRAP
32 100000 SCHEDULETABLE ASYNC

Figure 9.3 shows how a schedule table goes from state to state.

Chapter 9. Schedule Table Implementation

64 9.2. Processing a Schedule Table

first expiry point date - current date <=
OsMaxAllowedValue

SCHEDULETABLE_STOPPED

SCHEDULETABLE_WAITING

StopScheduleTable()

StartScheduleTableSync()

SCHEDULETABLE_RUNNING_
AND_SYNCHRONOUS

SyncScheduleTable()

StopScheduleTable()

SCHEDULETABLE_NEXTNextScheduleTable()

StopScheduleTable()

SCHEDULETABLE_RUNNING

StopScheduleTable()
OU terminaison de la table

previous schedule
table ends

synchronisation counter - pilot counter < PRECISION

StartScheduleTableRel()

SCHEDULETABLE_RUNNING |
SCHEDULETABLE_ASYNC

SetScheduleTableAsync()

SyncScheduleTable()

first expiry point date - current date >
OsMaxAllowedValue

schedule table start

synchronisation counter - pilot counter > PRECISION

StartScheduleTableAbs()

SCHEDULETABLE_RUNNING |
SCHEDULETABLE_BOOTSTRAP

Figure 9.3: States of a schedule table in Trampoline.

9.2 Processing a Schedule Table

In the same time of producing the schedule tables expiry points, GOIL adds one expiry point
more than the number of expiry point delared in the OIL file : the ”finalize” expiry point (see
Figure 9.2). Indeed, the RUNNING state of a ”nexted” schedule table should be set at the
finalize expiry point, thus, this expiry point has to be inserted. Moreover, for a periodic schedule
table, the ”finalize” expiry point helps to launch the first expiry point of the next period.

To process a synchronized schedule table, the schedule table’s state has to be updated each
expiry point and the next expiry point has to be adjusted according to the schedule table’s
deviation each epiry point too.

A schedule table is a time object, like an alarm. tpl_processing_scheduletable() is called
by each expiry point (before activating a task, setting an event or finalizing a schedule table via
tpl_finalize_expiry_point()) . The state machine of this function is shown in the Figure
9.4.

Chapter 9. Schedule Table Implementation

9.2. Processing a Schedule Table 65

next = next schedule table
sched = actual schedule table
cycle = delay before the next expiry point
date = date
count = static sched expiry point number
index = dynamic expiry point number (∈ [0..count-1])
 after launching expiry points
index_temp = dynamic expiry point number before
 launching expiry points
finalize = finalize expiry point
deviation = sched's deviation
sync_offset = delta ticks to wait before this expiry
 point (sync_offset is modified if deviation != 0)
offset = delta ticks to wait before this expiry point
adjustment = temporary sched's adjustment

launch actions (ActivateTask(), SetEvent(), tpl_finalize_expiry_point())
reset sync_offset of previous expiry point (index_temp) to offset

tpl_process_scheduletable

finalize &&
(state = STOP || next exists)

else

change sched's state according to deviation

explicit schedule table and not asynchronous

adjust next expiry point

else

increment index for the next expiry point
set cycle to the sync_offset of the next expiry point

finalize on its own (index = -1) else

Figure 9.4: tpl process scheduletable’s state machine.

sched's strategy is synchronized

change sched's state according to deviation

sched's strategy is asynchron

set sched's state to
RUNNING_AND_SYNCHRONOUS

else

deviation < precision else

set sched's state to
RUNNING | ASYNC

set sched's state to
RUNNING

else

Chapter 9. Schedule Table Implementation

66 9.2. Processing a Schedule Table

tpl_adjust_next_expiry_point

last expiry point else

deviation <= 0 else

set adjustment to min(-deviation,first_ep's retard)

adjustment > InitialOffset

decrement FinalDelay by adjustement
 minus InitialOffset

else

decrement first_ep's sync_offset
 by adjustement

increment deviation
 by adjustment

set adjustment to min(deviation,first_ep's advance)
increment first_ep's sync_offset by adjustement

decrement deviation by adjustment

deviation <= 0 else

set adjustment to min(-deviation,next_ep's retard)
decrement next_ep's sync_offset
 by adjustement
increment deviation by adjustment

set adjustment to min(deviation,next_ep's advance)
increment next_ep's sync_offset by adjustement

decrement deviation by adjustment

tpl_finalize_expoiry_point() state machine is shown in Figure 9.5 below.

tpl_finalize_expiry_point

next exists

set sched's state to STOP
set next_ep as next first expiry point

next has an InitialOffset equals to zero

sched is periodic

launch next expiry points at offset = 0
set index to 1
set next_ep as next second expiry point

else

set next_ep's date to current_date plus
 next_ep's offset
set next_ep's state to RUNNING
insert next_ep into the object list

sched has an InitialOffset equal to zeroelse

launch sched expiry points at offset = 0
reset sync_offset of the first expiry point
 to offset
set index to 0

set sched's state to STOP

else

reset the sched's cycle to zero (because if one-shot or next exists, sched should be stopped)
set index to 0

set index to -1

Figure 9.5: tpl finalize expiry point’s state machine.

Chapter 9. Schedule Table Implementation

CHAPTER

TEN

THE COMMUNICATION LIBRARY

An OSEK/COM compliant library is part of Trampoline. This chapter presents the communi-
cation configuration and API. Implementation details as well as examples of extension are

provided at the end of the chapter.

10.1 Implementation

10.1.1 Sending Message Objects

In the following paragraphs, acronyms are widely used. Here is the meaning of these acronyms:

MO Message Object

SMO Sending Message Object

RMO Receiving Message Object

Base Sending Message Object

The Base SMO is an abstract class that is the common part of all SMOs. Since a SMO may be
wired to an IPDU for external communication or a RMO for internal communication, the BSMO
type is only a structure with one member: sender, a function pointer to a function doing the
actual work according to the kind of SMO.

It is easy to extend the communication library by providing a sending function that will manage
message sending to a different kind of destination than the standard OSEK/COM one.

The BSMO is declared as follow:

struct TPL_BASE_SENDING_MO {

67

68 10.1. Implementation

tpl_sending_func sender; /* pointer to the sending function */

};

typedef struct TPL_BASE_SENDING_MO tpl_base_sending_mo;

The sending function has the following prototype:

typedef tpl_status (* tpl_sending_func)(

P2CONST(void , AUTOMATIC , OS_CODE),

CONSTP2CONST(tpl_com_data , AUTOMATIC , OS_VAR));

The first argument is a pointer to the SMO and the second argument is a pointer to the data to
be sent.

Internal Sending Message Object

The first concrete subclass of tpl_base_sending_mo is the tpl_internal_sending_mo structure.
This structure adds internal_target, a pointer to a tpl_base_receiving_mo (see 10.1.2) which is
the first RMO of a chained list of RMOs:

struct TPL_INTERNAL_SENDING_MO {

/* common to all sending mo */

tpl_base_sending_mo base_mo;

/* pointer to the internal receiving message object */

struct TPL_BASE_RECEIVING_MO *internal_target;

};

10.1.2 Receiving Message Objects

Base Receiving Message Object

The root type is the tpl_base_receiving_mo structure. This structure contains two members,
notification and next_mo:

struct TPL_BASE_RECEIVING_MO {

/*! notification structure */

tpl_action *notification;

/*! message objects chaining */

struct TPL_BASE_RECEIVING_MO *next_mo;

};

notification is a pointer to a notification descriptor and is used to perform the notification
associated to the receiving message object. next_mo is a pointer to another RMO which allows
to chain RMOs 1.

Data Receiving Message Object

An abstract subclass of tpl_base_receiving_mo exists: tpl_data_receiving_mo. This subclass
extends tpl_base_receiving_mo and adds the following data related members:

1In OSEK/COM a sending message may have more than one RMO

Chapter 10. The communication library

10.1. Implementation 69

struct TPL_DATA_RECEIVING_MO {

/* common part of the receiving message objects */

tpl_base_receiving_mo base_mo;

/* pointer to the receiving function */

tpl_receiving_func receiver;

/* pointer to the data copy function */

tpl_data_copy_func copier;

/* filter descriptor */

tpl_filter_desc *filter;

};

receiver is a pointer to a receiving function (ie the function that will copy the data from a source
to the destination message object). This function has the following prototype:

typedef tpl_status (* tpl_receiving_func)(

void *,

tpl_com_data *

);

The first argument is a pointer to the RMO and the second one is a pointer to the data to copy
in the RMO.

copier is a pointer to a function that is used to copy the data from the receiving message object
to the application. It is called by the ReceiveMessage system service. This function has the
following prototype:

typedef tpl_status (* tpl_data_copy_func)(

tpl_com_data *,

void *

);

The first argument is a pointer to the data to copy from the RMO and the second one is a pointer
to the RMO.

filter is a pointer to a filter descriptor.

Chapter 10. The communication library

70 10.1. Implementation

Chapter 10. The communication library

CHAPTER

ELEVEN

THE INTER OS-APPLICATION
COMMUNICATION LIBRARY

Inter OS-application Communication library is an API initially dedicated to communications
between tasks from different OS-applications in multicore systems. However, it could also be

used for communications between tasks from a same OS-Application. In the fallowing, Inter OS-
application Communication will be denoted IOC. This chapter presents the IOC configuration
and API. Implementation details as well as examples of utilization are provided.

11.1 IOC declaration in OIL

The IOC configuration is performed using OIL. Parameters such as IOC name, the type of
manipulated data, the kind of communication (queued or last is best) and informations about
sender/receiver are mandatory. The syntax is presented below using tow example.

Let us consider the case where a task A (as part of OS-application os-app1) sends a data to a
task B (as part of OS-application os-app2). In the first case, we consider a last is best semantic
communication where only one data of type u8 is sent. In the second case, we consider a queued
semantic communication where a data of type u8 and a data of type mytype (defined by user)
are sent. It is worth noting that this type have to be defined by user un the file ioc types.h at
the root of the project directory.

mytype can be defined like this:

struct mytype {

u8 a;

u8 b,

}

/* LAST_IS_BEST semantic */

71

72 11.1. IOC declaration in OIL

IOC com_A_to_B_last_is_best {

DATATYPENAME u8 {

DATATYPEPROPERTY = DATA;

};

SEMANTICS = LAST_IS_BEST {

INIT_VALUE_SYMBOL = AUTO;

};

RECEIVER rcv {

RCV_OSAPPLICATION = os -app2;

RECEIVER_PULL_CB = AUTO;

ACTION = NONE;

};

SENDER sender0 {

SENDER_ID = 0;

SND_OSAPPLICATION = os -app1;

};

};

/* QUEUED semantic */

IOC com_A_to_B_queued {

DATATYPENAME u8 {

DATATYPEPROPERTY = DATA;

};

DATATYPENAME mytype {

DATATYPEPROPERTY = REFERENCE;

};

SEMANTICS = QUEUED {

BUFFER_LENGTH = 2;

};

RECEIVER rcv {

RCV_OSAPPLICATION = os-app2;

RECEIVER_PULL_CB = AUTO;

ACTION = NONE;

};

SENDER sender0 {

SENDER_ID = 0;

SND_OSAPPLICATION = os-app1;

};

};

The DATATYPENAME parameter defines the name of the data type to be transferred. A
file named ioc types.h should be created by user in order to defined new types, if any. The
associated property specifies if the data is passed to sending functions by reference or by value.
It is worth noting that it is possible to specify many DATATYPENAME as illustrated with the
second example. In that case, the applicative sending function should have as many parameters
as the number of DATATYPE specify in the OIL file. In case of a last is best semantic, the
INIT VALUE SUMBOL defines the initial data value. It can be set to AUTO is there are
no initial value. Otherwise, the INIT VALUE SYMBOL is a string type defined by user and
the function IOC init() has to be called at the beginning of application. In case of a queued
semantic, only a BUFFER LENGTH has to be specified. The receiver configuration requires

Chapter 11. The Inter OS-application Communication Library

11.2. Implementation 73

the setting of the target OS-application (RCV OSAPPLICATION), the king of task notification
used when the message has arrived (ACTION = ACTIVATETASK, SETEVENT or NONE)
(not functional at the moment) and the callback function to call (not functional at the moment).
The sender configuration require the SENDER ID, as an integer, and the sender OS-application
(SND OSAPPLICATION).

11.2 Implementation

The IOC is divided in two set of source files. First, the APIs (part of the OS) containing kernel
functions are generic. They can be found in ioc/ directory. Second, specific files for the IOC
configuration are generated. The IOC API is very closed to internal communication library and
will not be detailed here. Let us now detailed what is generated in tpl ioc api config.c.

In case of the last is best communication (example 1), the sending operation is performed by
the call of IocWrite IocName() function and the receiving operation, by the call of the function
IocRead IocName(). These functions have to be called directly by user in applicative functions.
The generated part of the API transmit the request to the kernel. Let us now illustrated the
generated code for the first example.

FUNC(Std_ReturnType , OS_CODE) IocWrite_com_A_to_B_last_is_best(

VAR(u8 , AUTOMATIC) IN0 /* one data is send */

)

{

/* only one data implies only one element in the message table */

VAR(tpl_ioc_message , AUTOMATIC) message [1];

VAR(Std_ReturnType , AUTOMATIC) result;

/* Fill in the message structure with the data address and its size */

message [0]. data=(tpl_ioc_data *)& IN0;

message [0]. length=sizeof(u8);

/* Call the kernel function */

result = IOC_Write (0, message);

return result;

}

FUNC(Std_ReturnType , OS_CODE) IocRead_com_A_to_B_last_is_best(

P2VAR(u8 , AUTOMATIC , OS_APPL_DATA) IN0

)

{

VAR(tpl_ioc_message , AUTOMATIC) message [1];

VAR(Std_ReturnType , AUTOMATIC) result;

message [0]. data=(tpl_ioc_data *)IN0;

message [0]. length=sizeof(u8);

/* Call the kernel function */

result = IOC_Read(0, message);

Chapter 11. The Inter OS-application Communication Library

74 11.2. Implementation

return result;

}

In the case of a queued communication, the sending and receiving operations are performed
by the call of IocSend IocName() and IocReceive IocName() respectively. Generated functions
would be of the same form that in last is best case.

Finally, it is possible that several senders send a same data. In that case, many senders can
be defined during the OIL configuration. In the applicative functions, user have to call API
functions of type IocWrite IocName SenderName() or IocSend IocName SenderName() when
sending a message.

Chapter 11. The Inter OS-application Communication Library

CHAPTER

TWELVE

MEMORY MAPPING

The AUTOSAR consortium has defined a set of macros [4] in order to adapt the memory
mapping directives to the different existing compilers. Indeed, memory mapping directives

are not part of the C language and it is therefore impossible to write portable code between
different compilers without going through this set of macros. In addition, some MCUs have a
segmented memory model and require additional pointer directives to specify whether the pointer
is to data in the same segment or to data in a different segment. In the first case, it is a near
pointer (usually stored in a 16 bits word). In the second case it is a far pointer (usually stored
in a 24 bits word).

It remains that these macros are not particularly intuitive in their use and require some expla-
nations that we will give here.

12.1 Memory mapping directives

Memory mapping consists in assigning to each object of the application (variables, constants,
functions) and of the operating system a named memory area where the object will be stored.
Memory mapping directives take various forms depending on the compiler. For example, putting
a function named f in the memory area .osCode when using gcc is done as follows:

void __attribute__ ((section (".osCode"))) f() { ... }

while doing the same thing using Freescale’s CodeWarrior compiler (previously Metrowerks)
requires the following directive:

#pragma section code_type ".osCode"

void f() { ... }

AUTOSAR defines several macros to encapsulate these directives and these macros work with
the declarations of the memory sections.

75

76 12.2. The memory sections

12.2 The memory sections

For each task and ISR declared in the OIL file, Goil generates several memory sections. These
sections are selected via macro definitions with names of the form APP_Task_<name>_START_SEC_-

<section_type> and APP_Task_<name>_STOP_SEC_<section_type> for tasks and APP_ISR_<name>_-

START_SEC_<section_type> and APP_ISR_<name>_STOP_SEC_<section_type> for ISRs. <name> is the
name of the task or ISR and <section_type> is the type of section. The section types are as
follows:

CODE is the section used for the process code and for the functions called by the process. If, for
example, the task t1 is declared in the OIL file, its code will be written in C as follows:

#define APP_Task_t1_START_SEC_CODE

#include "MemMap.h"

TASK(t1)

{

...

TerminateTask ();

}

#define APP_Task_t1_STOP_SEC_CODE

#include "MemMap.h"

STACK is the section used for the process stack. This section is used in the files generated by
goil.

VAR_<init_policy>_<alignment> are the sections used for process globals or static variables.
<init_policy> can take the following values:

NOINIT for uninitialized variables.

POWER_ON_INIT for variables initialized at MCU startup.

<alignment> can take the following values:

32BIT for 4 bytes alignment.

16BIT for 2 bytes alignment.

8BIT for 1 byte alignment.

UNSPECIFIED for data sizes that do not fit into any of the other categories.

CONST_<alignment> are the sections used for process globals constants.

For example, if task t1 uses two 8-bit constants, c1 and c2, and one 32-bit variable, v1, unini-
tialized, they will be declared as follows:

#define APP_Task_t1_START_SEC_CONST_8BIT

#include "MemMap.h"

CONST(uint8 , AUTOMATIC) c1 = 3;

CONST(uint8 , AUTOMATIC) c2 = 7;

#define APP_Task_t1_STOP_SEC_CONST_8BIT

#include "MemMap.h"

#define APP_Task_t1_START_SEC_VAR_NOINIT_32BIT

Chapter 12. Memory mapping

12.2. The memory sections 77

#include "MemMap.h"

VAR(uint8 , AUTOMATIC) v1;

#define APP_Task_t1_STOP_SEC_VAR_NOINIT_32BIT

#include "MemMap.h"

Table 12.1: Sections generated for task t1

APP Task toto START SEC CODE APP Task toto STOP SEC CODE
APP Task toto START SEC STACK APP Task toto STOP SEC STACK

APP Task toto START SEC VAR NOINIT 32BIT APP Task toto STOP SEC VAR NOINIT 32BIT
APP Task toto START SEC VAR NOINIT 16BIT APP Task toto STOP SEC VAR NOINIT 16BIT
APP Task toto START SEC VAR NOINIT 8BIT APP Task toto STOP SEC VAR NOINIT 8BIT

APP Task toto START SEC VAR NOINIT BOOLEAN APP Task toto STOP SEC VAR NOINIT BOOLEAN
APP Task toto START SEC VAR NOINIT UNSPECIFIED APP Task toto STOP SEC VAR NOINIT UNSPECIFIED
APP Task toto START SEC VAR POWER ON INIT 32BIT APP Task toto STOP SEC VAR POWER ON INIT 32BIT
APP Task toto START SEC VAR POWER ON INIT 16BIT APP Task toto STOP SEC VAR POWER ON INIT 16BIT
APP Task toto START SEC VAR POWER ON INIT 8BIT APP Task toto STOP SEC VAR POWER ON INIT 8BIT

APP Task toto START SEC VAR POWER ON INIT BOOLEAN APP Task toto STOP SEC VAR POWER ON INIT BOOLEAN
APP Task toto START SEC VAR POWER ON INIT UNSPECIFIED APP Task toto STOP SEC VAR POWER ON INIT UNSPECIFIED

APP Task toto START SEC VAR FAST 32BIT APP Task toto STOP SEC VAR FAST 32BIT
APP Task toto START SEC VAR FAST 16BIT APP Task toto STOP SEC VAR FAST 16BIT
APP Task toto START SEC VAR FAST 8BIT APP Task toto STOP SEC VAR FAST 8BIT

APP Task toto START SEC VAR FAST BOOLEAN APP Task toto STOP SEC VAR FAST BOOLEAN
APP Task toto START SEC VAR FAST UNSPECIFIED APP Task toto STOP SEC VAR FAST UNSPECIFIED

APP Task toto START SEC VAR 32BIT APP Task toto STOP SEC VAR 32BIT
APP Task toto START SEC VAR 16BIT APP Task toto STOP SEC VAR 16BIT
APP Task toto START SEC VAR 8BIT APP Task toto STOP SEC VAR 8BIT

APP Task toto START SEC VAR BOOLEAN APP Task toto STOP SEC VAR BOOLEAN
APP Task toto START SEC VAR UNSPECIFIED APP Task toto STOP SEC VAR UNSPECIFIED

APP Task toto START SEC CONST 32BIT APP Task toto STOP SEC CONST 32BIT
APP Task toto START SEC CONST 16BIT APP Task toto STOP SEC CONST 16BIT
APP Task toto START SEC CONST 8BIT APP Task toto STOP SEC CONST 8BIT

APP Task toto START SEC CONST BOOLEAN APP Task toto STOP SEC CONST BOOLEAN
APP Task toto START SEC CONST UNSPECIFIED APP Task toto STOP SEC CONST UNSPECIFIED

APP Task toto START SEC CALIB 32BIT APP Task toto STOP SEC CALIB 32BIT
APP Task toto START SEC CALIB 16BIT APP Task toto STOP SEC CALIB 16BIT
APP Task toto START SEC CALIB 8BIT APP Task toto STOP SEC CALIB 8BIT

APP Task toto START SEC CALIB BOOLEAN APP Task toto STOP SEC CALIB BOOLEAN
APP Task toto START SEC CALIB UNSPECIFIED APP Task toto STOP SEC CALIB UNSPECIFIED

APP Task toto START SEC CARTO 32BIT APP Task toto STOP SEC CARTO 32BIT
APP Task toto START SEC CARTO 16BIT APP Task toto STOP SEC CARTO 16BIT
APP Task toto START SEC CARTO 8BIT APP Task toto STOP SEC CARTO 8BIT

APP Task toto START SEC CARTO BOOLEAN APP Task toto STOP SEC CARTO BOOLEAN
APP Task toto START SEC CARTO UNSPECIFIED APP Task toto STOP SEC CARTO UNSPECIFIED
APP Task toto START SEC CONFIG DATA 32BIT APP Task toto STOP SEC CONFIG DATA 32BIT
APP Task toto START SEC CONFIG DATA 16BIT APP Task toto STOP SEC CONFIG DATA 16BIT
APP Task toto START SEC CONFIG DATA 8BIT APP Task toto STOP SEC CONFIG DATA 8BIT

APP Task toto START SEC CONFIG DATA BOOLEAN APP Task toto STOP SEC CONFIG DATA BOOLEAN

Chapter 12. Memory mapping

78 12.2. The memory sections

Chapter 12. Memory mapping

CHAPTER

THIRTEEN

TRACING THE EXECUTION

Introduction

The code of Trampoline RTOS embeds a tracing subsystem that can be activated at system con-
figuration time. This toolkit sends a stream of events describing the execution of the application
to a target specific backend. The resulting data can then be exploited to compute statistics on
some performance figures of the system (such as execution times, jitters, etc.) and/or to feed a
visualization tool. Please notice that, in the current implementation, the tracing toolkit has a
small, albeit non null, overhead so the system from which traces are computed is not exactly the
same than the system without traces.

13.1 Traced events

Events that can be traced during an execution are given below. Each event is described by its
name and a set of attributes. These attributes are made available by the kernel to the platform
specific backend (see section 13.4.1 below).

TRACE PROC : state of a process (task or ISR) is changed.

� proc_id: identifier of the process.

� target_state: new state of the proc.

TRACE RES : state of a resource is changed.

� res_id: identifier of the resource.

� target_state: new state of the resource.

TRACE EVENT : a process set/reset one or more event to another process.

79

80 13.2. OIL declaration

� proc_id: owner of the events (when event is set)

� ev_id: list of events that have been set.

TRACE ALARM : state of a timeobj (alarm, schedule table expiry point) is changed.

� timeobj_id: identifier of the timeobj.

� kind: change state or expire.

TRACE MESSAGE : a message is sent or received.

� msg_id: identifier of the message

� kind: kind of message (receive, send, send 0 message)

TRACE IOC : **not well tested**

� mess_id: identifier of the message.

Notice that each event contains the minimal information that is needed to rebuild the whole
state of the system. Hence, the running task is never used as an attribute because it can be
deduced by analysing the sequence of TRACE PROC events.

13.2 OIL declaration

13.2.1 Generic part

Activation of tracing is done at system configuration time through the OIL file. A boolean
attribute TRACE is defined in the OS object. It has several subattributes has shown in the code
below:

TRACE = TRUE {

FORMAT = SERIAL;

PROC = TRUE;

RESOURCE = TRUE;

ALARM = TRUE;

EVENT = TRUE;

MESSAGE = TRUE;

};

FORMAT specifies the output format of the trace. This is a target dependant attribute. For
instance, the posix target allows the json output, while the msp430 allows the serial and
fram targets (with sub-attributes). See section 13.2.2.

The other sub-attributes define types of events to trace: PROC, RESOURCE, ALARM, EVENT, MESSAGE,
IOC

Chapter 13. Tracing the execution

13.2. OIL declaration 81

13.2.2 Target specific part

Posix target

The posix target is the simplest one, as there is no problem to get back the trace. The trace can
be saved in json mode only. The generated file is always called ‘trace.json’.

MSP430 target

For the MSP430 format, different methods can be implemented to retrieve the trace:

SERIAL the serial communication, using the serial over USB link on launchpad dev board;

FRAM the FRAM storage. In that case, the trace is stored directly on the FRAM and can be
read using a gdb dump. Sub-attributs are:

SIZE the size of the dump in bytes;

ADDRESS the base address.

It should not be used if the throughput is too high! (not implemented yet).

SD the embedded SD card (not implemented yet).

In all cases, a trace event should take as low room as possible, and is stored in binary format
(see section 13.4.2).

STM32 target

On STM32 (Nucleo STM32F303 and STM32L432), the Serial target is implemented. There is a
full example in examples/cortex/armv7em/stm32f303/Nucleo-32/trace

TRACE = TRUE {

FORMAT = serial;

PROC = TRUE;

RESOURCE = TRUE;

ALARM = TRUE;

EVENT = TRUE;

};

BUILD = TRUE {

//..

LIBRARY = serial {TXBUFFER = 256;};

//..

Arduino Uno target

On Arduino UNO, the Serial target is implemented (using the arduino Serial driver). There is a
full example in examples/avr/arduinoUno/trace

Chapter 13. Tracing the execution

82 13.3. Using the tracing subsystem

13.3 Using the tracing subsystem

The trace are generated by trampoline on the target. We then need to retrieve the information
on the host system.

The trace system is split in 3 steps, as defined in Figure 13.1:

TraceReader reads raw events from the target. A raw event deals only with numerical ids
from Trampoline. The reader can read events from the serial or from a file at this date. It
can store them to a file for later evaluation.

TraceEvaluate associates a name with each ids, thanks to the ‘tpl_static_info.json’ file
generated by goil. It can make some extra evaluation on the application: there is never an
event received by a suspended task, there is no critical section overlap due to bad resource
usage, a task that gets a resource has the right to do so, . . .

TraceAnalysis analysis of the trace: cpu load, event listing, . . .

trace.json

tpl_static_info.json

compressed
event list

TraceReader

TraceEvaluate

TraceAnalysis

event list with ids

id ⇔ name

event list with names

serial comm
gdb binary
dump

. . .

target

host

high level information based on event analysis (text based, gui)

Figure 13.1: Getting trace list from the target. The ‘readTrace.py’ script calls the 3 steps of the trace
: TraceReader, TraceEvaluate and TraceAnalysis, for each event.

For the serial line reader, the events are queued in a dedicated thread, so that there is no event
loss, even if evaluation/analysis are too slow.

On the posix target, trampoline generates directly the ‘trace.json’ file.

Tools are provided in the ‘extra/trace-tools/’ directory of Trampoline, and called directly by
the generated script ‘readTrace.py’. Run to have information how to use the script:

./ readTrace.py --help

Chapter 13. Tracing the execution

13.4. Implementation 83

For now, the script can read from a json file (posix or saved trace) or a serial line. It can save
a received trace to a file for later use (raw events). The analysis for now just gives the list of
events or calculate the cpu load.

When receiving an endless trace (serial line for instance), you can terminate the reception with
Ctrl+C
.

13.4 Implementation

The implementation is split in 2 parts:

� the generic part is a set of macro in the ‘os/’ kernel files to captures trace events. The
file ‘os/tpl_trace.h’ list all the specific functions that should be implemented.

� the target specific part in ‘machine/.../tpl_trace.c’ implements the trace back-end.

13.4.1 Implementing target specific backends

The backend consists in a set of 7 functions that should be implemented in the target to store
events, and communicate them to an host computer for analysis. Prototypes are in the os/tpl_-
trace.h are each function is related to a trace event. For instance, the following function will be
called by the kernel internal files (in kernel mode!) each time a proc (task/isr) state is updated.

/**

* trace the execution of a task or ISR

* This function should be implemented

* in the machine dependant trace backend.

*/

FUNC(void , OS_CODE) tpl_trace_proc_change_state(

CONST(tpl_proc_id ,AUTOMATIC) proc_id ,

CONST(tpl_proc_state ,AUTOMATIC) target_state);

A new file is now generated by goil ‘tpl_static_info.oil’ that lists the objects defined in the
oil file. This file can be combined with the trace to deal with the name of an object instead of
its internal id.

13.4.2 Binary format

The binary format is defined in Figure 13.2. It is composed of:

Type 1 There are 7 events types:

� PROC TYPE: a task/isr2 changes its state (running, suspended, ready,. . .);

� RES TYPE: related to resources (getResource/ReleaseResource)

� EVENT TYPE: related to events (SetEvent/ReleaseEvent)

1defined in os/tpl_trace.h

Chapter 13. Tracing the execution

84 13.4. Implementation

� TIMEOBJ TYPE: related to alarms and schedule tables (SetRelAlarm, CancelAlarm,
. . .)

� MESSAGE TYPE: related to communication (GetMessage/ReceiveMessage)

� IOC TYPE: related to IOC (AutoSar extension)

One extra type OVERFLOW TYPE is defined if the communication medium cannot pro-
vide a sufficient bandwidth. 3 bits are required.

TimeStamp The time stamp. The overflow should be taken into account by the receiver (events
are in chronological order). Most significant byte first.

xxx This is the event dependent data (5+8 bits).

Chksum The checksum (8 bits) is the sum of the 4 previous bytes. Its goal is both to detect
errors and frame limits.

Type

3

xx

5

TimeStamp

16

xxx

8

Chksum

8

Figure 13.2: binary format of a trace event (5 bytes)

For each type, we define the specific bits:

Type format (5+8 bits) fields
PROC TYPE 00SSS PPPPPPPP S (3 bits): proc state

P (8 bits): proc id
RES TYPE 0000S RRRRRRRR S (1 bit): res state (free/taken)

R (8 bits): res id
EVENT TYPE EEEEE KTTTTTTT E (5 bits): event id

K (1 bit) : kind
T (8 bits): task id

TIMEOBJ TYPE K0SSS TTTTTTTT K (1 bit) : kind
S (3 bits): time obj. state
T (7 bits): time obj id

MESSAGE TYPE MMMMM 000000KK M (5 bits): message id
K (2 bits): kind

Table 13.2: Specific bits for each event type

Due to frame size limits, the number of events is limited to 31, the number of procs (task/isr)
to 255, as well as time objects (alarms, schedule tables) and resources.

Some types have a sub-type (kind):

EVENT TYPE kind may be 0 when an event is set or 1 when the event is reset (there is no
task id as it is the running task.

The message event type bits is used to indicate the specific type of event associated with the
message, such as send and receive.

Chapter 13. Tracing the execution

13.4. Implementation 85

13.4.3 How to port trace to another target

The tpl_trace.c is target specific. It should be defined in the machine hierarchy. A good
starting point is the stm32’s version2, with a SERIAL implementation. In the avr/arduino

version, a C++ example is provided.

Then, the goil templates should be updated. This is done in 2 steps:

� Add the new file tpl_trace.c (or .cpp) to be compiled in the project: in config/target /config.oil

PLATFORM_FILES targetTrace {

PATH = "target "; //path , starting from machine/

CFILE = "tpl_trace.c"; // file name (cpp allowed)

};

� Add the definition of the trace type to be defined in the oil file: in section IMPLEMEN-
TATION/OS in config/target /config.oil:

/* trace */

BOOLEAN [

TRUE {

ENUM [

serial

] FORMAT = serial;

},

FALSE

] TRACE = FALSE;

In this example, only the serial type is allowed. You can have a look to the msp430 version,
where other modes are available, and one have sub-attributes (for fram target).

That’s all!

2file ‘machines/cortex/armv7em/stm32f303/tpl_trace.c’

Chapter 13. Tracing the execution

86 13.4. Implementation

Chapter 13. Tracing the execution

CHAPTER

FOURTEEN

DEBUGGING AN APPLICATION

Debugging an application requires examining the internal structures of Trampoline. The infor-
mation contained in these structures can be used to find out which task is running, which tasks
are ready, which resources are held, the status of alarms, etc. Finding one’s way around these
data structures can be difficult for a user.

As GDB is the most frequently used debugger, it is possible for GDB to generate a command
file to simplify the examination of the internal structures of Trampoline.

14.1 Command generation

The OIL object OS has the boolean attribute GDBCOMMANDS which, when true, leads to the gen-
eration of a file named ‘commands.gdb’ in the same directory as the OIL file. An optionnal
sub-attribute, PORT, is used to specify the TCP/IP port on which the GDB server is listening
and to generate the commands allowing GDB to connect to the GDB server, to load the program
on the target and to set a breakpoint on the main. For example:

GDBCOMMANDS = TRUE

{

PORT = 4242;

};

may be used on STMicroelectronics MCU (port 4242 is the default port of ST-LINK debugging
system).

14.2 Examining the tasks

For each task declared in the OIL file, 2 commands named b_<task name> and _<task name>

are generated. The first command sets a breakpoint on the task. The second command displays

87

88 14.2. Examining the tasks

the name of the task, its identifier and its type (basic or extended) as well as:

� its state, SUSPENDED, READY, RUNNING or WAITING;

� its priority in the form <current priority>/<basic priority>;

� its activation count in the form <current activation>/<maximum activation>;

� its internal resource if it exists. For a non-preemptible task, INTERNAL_RES_SCHEDULER is
displayed. If the task has no internal resource, NONE is displayed.

� a list of resources that the task holds. The list is displayed between a pair of square brackets
from the most recently taken resource to the oldest taken resource. If no resource is held,
only the pair of brackets is displayed.

� if the task is extended, the events it is waiting for and those it has received are displayed.
If a numerical value is displayed, these are events that are not present in the application
and are probably related to a programming error. When no events are displayed, <NONE>

is displayed.

Suppose, for example, that the OIL file declares a task named blink as shown below.

TASK blink {

PRIORITY = 1;

AUTOSTART = FALSE;

ACTIVATION = 1;

SCHEDULE = FULL;

RESOURCE = r1;

RESOURCE = r2;

};

and that the C code of the task blink is the following:

1 TASK(blink)

2 {

3 GetResource(r1);

4 GetResource(r2);

5 ledToggle(GREEN);

6 ReleaseResource(r2);

7 ReleaseResource(r1);

8 TerminateTask ();

9 }

and that a breakpoint has been set at the line 5. The command _blink will be generated and
if invoked at the breakpoint it would display the following result:

(gdb) _blink

Task blink (id = 0, BASIC):

state = RUNNING

priority = 2/1

activate_count = 1/1

internal_resource = NONE

resources = [r2 r1]

Chapter 14. Debugging an application

14.3. Examining the resources 89

!

If the command is performed before reaching main, i.e. possibly before the copy of the initialized
variables has taken place, the variables may not be initialized yet and the state, the current
priority or the current number of activations will be wrong. In addition, the pointer to the head
of the list of resources held will be wrong, which may lead to an error message from GDB. If the
task is in the SUSPENDED state, its priority is meaningless.

14.3 Examining the resources

For each resource, a command named _<resource name> is generated. This command displays
the type (STANDARD or INTERNAL) of the resource, its name and identifier as well as for standard
resources:

� its ceiling priority;

� the name of the owning process. If the resource is not held, NONE is displayed;

� if the resource is held, the previous priority of the process holding it is displayed.

For an internal resource the following information is displayed:

� its ceiling priority;

� if the resource is held;

� if the resource is held, the previous priority of the process holding it is displayed.

Let’s continue with the previous example. The execution of the command _r2 when the execu-
tion has reached the line 5 would display:

(gdb) _r2

Resource r2 (id = 0, STANDARD):

ceiling priority = 2

owner = blink

owner prev priority = 2

After reaching the line 7, the execution of the command _r2 would display:

(gdb) _r2

Resource r2 (id = 0, STANDARD):

ceiling priority = 2

owner = NONE

The following example shows the display of internal resource oups according to whether it is not
held:

(gdb) _oups

Resource oups (INTERNAL):

ceiling priority = 4

taken = 0

or held:

Chapter 14. Debugging an application

90 14.4. Examining the alarms

(gdb) _oups

Resource oups (INTERNAL):

ceiling priority = 4

taken = 1

owner prev priority = 3

14.4 Examining the alarms

For each alarm, a command _<alarm name> is generated. The command displays the alarm
identifier as well as the following information:

� the counter to which it is linked with the current date of the counter in brackets;

� its state (SLEEP, ACTIVE or AUTOSTART1);

� if the alarm is ACTIVE, its expiry date;

� if the alarm is ACTIVE and cyclic, its cycle;

� finally its action.

The following output is an example of an alarm display:

(gdb) _blink_alarm

Alarm blink_alarm (id = 0):

counter = SystemCounter (1461)

state = ACTIVE

date = 1561

cycle = 100

action = ActivateTask(blink)

14.5 Examining the counters

For each counter used in the application, a command _<counter name> is generated. The com-
mand displays the following information:

� the ticks per base of the counter, i.e. the number of ticks coming from the interrupt source
and which are necessary to increase the counter value by 1;

� the maximum allowed value of the counter;

� the minimum cycle of the counter;

� the current number of ticks;

� the current date;

� the list of alarms that are currently scheduled by the counter. The first is the next alarm
that will expire. Between the brackets, the date on which the alarm will expire is given.

Here is for example the display of the SystemCounter:

1This state is only possible before starting the OS.

Chapter 14. Debugging an application

14.6. Examining the tpl_kern structure 91

(gdb) _SystemCounter

Counter SystemCounter:

ticks per base = 1

max allowed value = 65535

min cycle = 1

current tick = 0

current date = 1224

alarms = [blink_alarm (1324)]

14.6 Examining the tpl_kern structure

The tpl_kern structure gathers several pieces of information: the identifier of the running
process, the identifier of the process chosen by the scheduler to run, two pointers to the static
and dynamic structures of the running process, two pointers to the static and dynamic structures
of the process chosen by the scheduler to run, a boolean indicating that a rescheduling must be
done, a boolean indicating if a context switch must be done and, finally, a boolean indicating
that a context save must be done.

The p_kernel command displays the contents of the tpl_kern structure. An example of display,
made during the step-by-step execution of the blink task, is shown below:

(gdb) p_kernel

tpl_kern:

running = blink

elected = blink

need schedule = 1

need switch = 0

need save = 0

If tpl_kern is displayed when a process is running, the fields running and elected are always the
same and the fields need schedule, need switch and need save have no meaning. Conversly,
if tpl_kern is displayed while the kernel code is running, the fields running and elected may
be different when the scheduler has executed and need schedule, need switch and need save

reflect the decisions of the scheduler.

14.7 Examining the tpl_ready_list structure

The structure tpl_ready_list is a binary max heap. Each element has two fields, the dynamic
process priority and the process identifier. The dynamic priority is obtained by concatenating the
static priority and an order number per priority level. This order number starts at the maximum
value and decreases with each activation of a process for the concerned priority level.

The p_ready_list command displays the tpl_ready_list structure as a tree giving the raw
dynamic priority, the dynamic priority as a couple static priority / order number and the name
of the process. A sample display is given below:

(gdb) p_ready_list

ready_list [6]:

[45](2 ,13) read_button

Chapter 14. Debugging an application

92 14.7. Examining the tpl_ready_list structure

[29](1 ,13) t2

[15](0 ,15) IDLE

[28](1 ,12) t3

[30](1 ,14) t1

[27](1 ,11) t1

This corresponds to the tree shown in figure 14.1.

read button

[45](2, 13)

t2

[29](1, 13)

IDLE

[15](0, 15)

t3

[28](1, 12)

t1

[30](1, 14)

t1

[27](1, 11)

Figure 14.1: Binary heap tree from the example of 14.7

Chapter 14. Debugging an application

CHAPTER

FIFTEEN

BUILDING A TRAMPOLINE
APPLICATION

An application using trampoline RTOS is made of a set of source files (C/C++) and a set of
oil files (.oil). An oil file allows to define the properties of the different objects handled by the
RTOS (tasks, resources, alarms, ...).

Trampoline is a static RTOS, all objects are defined at compile time

The build phase requires a first step to read these OIL files and transform them into data
structures (.c/.h files) for the compilation step. This first operation is done with the tool goil,
provided with Trampoline (Figure 15.1).

Kernel C
sources

OS infrastructure
C sources
and ASM

OIL application
description

application
sources (C)

static data
structures

(C sources)

OIL
Compiler
GOIL v2 C compiler

+ linker

binary
file

Figure 15.1: Trampoline Application: from source to binary

In addition to the generation of static data structures, goil is able to generate other files, such

93

94 15.1. Main OIL file

as those for the definition of memory mapping (link script), tools for debugging (see 13), or tools
for the compilation of the application. This chapter deals with the generation of the application.

15.1 Main OIL file

To build the application, some additional information is needed, defined in the sub-attribute
CPU->OS->BUILD. Example for ARM Cortex-M target:

CPU blink {

OS config {

BUILD = TRUE {

TRAMPOLINE_BASE_PATH = "/opt/trampoline ";

APP_SRC = "blink.c";

APP_NAME = "blink_exe ";

CFLAGS = "-O0";

LDFLAGS = "-Map=blink.map";

COMPILER = "arm -none -eabi -gcc";

ASSEMBLER = "arm -none -eabi -as";

LINKER = "arm -none -eabi -ld";

COPIER = "arm -none -eabi -objcopy ";

SYSTEM = PYTHON;

};

..

For each target, at least one example is provided in the tree structure ‘examples/’. This is a
good starting point.

This attribute is specific to Trampoline, it contains several sub-attributes to build the application
(cross-compiler, flags, source files, . . .):

� TRAMPOLINE_BASE_PATH: The path to the root of Trampoline. Required

� APP_SRC, APP_CPPSRC give respectively the C and C++ source files of the application.

� CFLAGS, CPPFLAGS, ASFLAGS, LDFLAGS define the flags to give to the compiler for respectively
C, C++, assembly, linker phase. COMMONFLAGS gives flags for both c,C++and asm source
files.

� APP_NAME define the name of the output binary file (to flash)

� COMPILER, CPPCOMPILER, ASSEMBLER, LINKER and COPIER are the tools (cross compiler collec-
tion) related to the C compiler, C++ compiler, assembler, linker and copier (as the GNU
tool objcopy)

� SYSTEM defines the build tool in use. It can be either PYTHON (default) to generate a set of
python scripts, or CMAKE to use the CMake build tool. See section 15.2.

As this description is in OIL language, if a sub-attribute is defined twice, then it will be accu-
mulated. For instance:

APP_SRC = "blink.c";

APP_SRC = "file2.c";

Chapter 15. Building a Trampoline application

15.2. Build system 95

is equivalent to:

APP_SRC = "blink.c file2.c";

15.2 Build system

2 build system are available for Trampoline, defined in the sub-attribute CPU->OS->BUILD->SYSTEM:

� PYTHON is a set of python script

� CMAKE is a set of CMake files

15.2.1 Python build

The python system generates 2 files ‘build.py’ and ‘make.py’. The script will take into account
all the dependancies. For example, modifying an object in the oil file will result in calling goil
(and generating again the ‘build.py’ file again), before doing the rest of the build step. As a
result, goil should be called only once (bootstrap), and then ./make.py will do all the stuff. A
basic run is (from ‘examples/cortex/armv7em/stm32f303/Nucleo-32/blink’)

% goil --target=cortex/armv7em/stm32f303 --templates=../../../../../../goil/templates/ blink.oil

Created ’blink/tpl_dispatch_table.c’.

Created ’blink/tpl_invoque.S’.

Created ’blink/tpl_os.h’.

Created ’blink/tpl_service_ids.h’.

Created ’build.py’.

Created ’make.py’.

Created ’blink/tpl_app_custom_types.h’.

Created ’blink/tpl_app_config.c’.

Created ’blink/tpl_app_config.h’.

Created ’blink/tpl_app_define.h’.

Created ’blink/MemMap.h’.

Created ’blink/Compiler.h’.

Created ’blink/Compiler_Cfg.h’.

Created ’blink/script.ld’.

Created ’blink/AsMemMap.h’.

Created ’blink/tpl_static_info.json’.

Created ’blink/tpl_vectors.c’.

Created ’blink/tpl_primary_irq.S’.

Created ’blink/cmsis_wrapper.h’.

Created ’blink/tpl_external_interrupts.c’.

Created ’blink/tpl_app_interrupts.c’.

Created ’blink/tpl_cortex_definitions.h’.

Created ’blink/stm_structure.c’.

executing plugin gdb_commands.goilTemplate

Created ’/home/mik/prog/trampoline/examples/cortex/armv7em/stm32f303/Nucleo-32/blink/build/blink.oil.dep’.

No warning, no error.

Chapter 15. Building a Trampoline application

96 15.2. Build system

Then, we call the python script ./make.py :

-> % ./make.py

Nothing to make.

Making "build/os" directory

[3%] Compiling ../../../../../../os/tpl_os_kernel.c

[6%] Compiling ../../../../../../os/tpl_os_timeobj_kernel.c

...

[96%] Compiling ../../../../../../machines/cortex/armv7em/stm32f303/tpl_trace.c

[100%] Linking blink_exe

Generating binary blink_exe.bin from blink_exe

In most cases, an additional target has been defined to flash the application (see section 15.3.4).
For Cortex-M targets, this is ./make.py burn .

15.2.2 CMake build system

The CMake build system generates 2 text based files:

� ‘CMakeLists.txt’ is the main project file

� ‘blink/compiler.cmake’ (if project is defined in ‘blink.oil’) defines cross-compiler defini-
tions.

The bootstrap using goil is the same as in PYTHON:

% goil --target=cortex/armv7em/stm32f303 --templates=../../../../../../goil/templates/ blink.oil

Created ’blink/tpl_dispatch_table.c’.

Created ’blink/tpl_invoque.S’.

Created ’blink/tpl_os.h’.

Created ’blink/tpl_service_ids.h’.

Created ’CMakeLists.txt’.

Created ’blink/compiler.cmake’.

Created ’blink/tpl_app_custom_types.h’.

Created ’blink/tpl_app_config.c’.

Created ’blink/tpl_app_config.h’.

Created ’blink/tpl_app_define.h’.

Created ’blink/MemMap.h’.

Created ’blink/Compiler.h’.

Created ’blink/Compiler_Cfg.h’.

Created ’blink/script.ld’.

Created ’blink/AsMemMap.h’.

Created ’blink/tpl_static_info.json’.

Created ’blink/tpl_vectors.c’.

Created ’blink/tpl_primary_irq.S’.

Created ’blink/cmsis_wrapper.h’.

Created ’blink/tpl_external_interrupts.c’.

Created ’blink/tpl_app_interrupts.c’.

Chapter 15. Building a Trampoline application

15.2. Build system 97

Created ’blink/tpl_cortex_definitions.h’.

Created ’blink/stm_structure.c’.

executing plugin gdb_commands.goilTemplate

Created ’/home/mik/prog/trampoline/examples/cortex/armv7em/stm32f303/Nucleo-32/blink/build/blink.oil.dep’.

No warning, no error.

Then, the command to generate the binary are the standard way, except a special attention to
define the correct cross-compiler when calling cmake, using the generated cross-compiler access:
cmake -D CMAKE_TOOLCHAIN_FILE=../blink/compiler.cmake ..

These commands are defined in comments in the head of ‘CMakeLists.txt’.

% cd build

% cmake -D CMAKE_TOOLCHAIN_FILE=../blink/compiler.cmake ..

-- The C compiler identification is GNU 9.3.1

-- The CXX compiler identification is GNU 9.4.0

-- Detecting C compiler ABI info

-- Detecting C compiler ABI info - done

-- Check for working C compiler: /opt/gcc-arm/bin/arm-none-eabi-gcc - skipped

-- Detecting C compile features

-- Detecting C compile features - done

-- Detecting CXX compiler ABI info

-- Detecting CXX compiler ABI info - done

-- Check for working CXX compiler: /usr/bin/g++ - skipped

-- Detecting CXX compile features

-- Detecting CXX compile features - done

-- The ASM compiler identification is GNU

-- Found assembler: /opt/gcc-arm/bin/arm-none-eabi-gcc

-- Configuring done

-- Generating done

-- Build files have been written to: /home/mik/prog/trampoline/examples/cortex/armv7em/stm32f303/Nucleo-32/blink/build

-> % make

Scanning dependencies of target blink_exe

[3%] Building C object CMakeFiles/blink_exe.dir/blink.c.obj

[6%] Building C object CMakeFiles/blink_exe.dir/home/mik/

...

[96%] Linking C executable blink_exe

[100%] Built target blink_exe

In most cases, an additional target has been defined to flash the application (see section 15.3.4).
For Cortex-M targets, this is make burn .

!
If the oil file is updated, the build system will call goil. goil may update ‘CMakeLists.txt’, but
this modification will not be taken into account during this pass. In that case, the command
make should be run twice to get a correct behavior.

The interest of using CMake is that several IDEs are based on this system for the project
management (Qt Creator1, VS Codefootnotehttps://code.visualstudio.com/, ...). Therefore, we

1https://www.qt.io/product/development-tools

Chapter 15. Building a Trampoline application

98 15.3. Goil related features

can take advantage of the features of these editors (code completion, navigation between files,
...)

A special case is for VS Code editor. With an additional sub-atribute, a ‘.vscode/’ directory is
generated (if it does not exist yet), so that the debugger is well configured. In that way, you can
directly compile and debug from the editor. It runs for some Cortex-M based target at this date
(STM32).

SYSTEM = CMAKE { VSCODE=TRUE; };

15.3 Goil related features

Many parts of the build system are generated for goil templates. This section introduces these
features.

15.3.1 Compilation flags

Some flags may be defined globally for a specific target. It can be retrieved in the goil templates,
in the ‘config/’ subfolders. The file is named ‘buildOptions.oil’. For instance, on ARM Cortex-
M4 (armv7em ISA), the path is ‘goil/templates/config/cortex/armv7em/buildOptions.oil’. be-
gin Some other flags can be added directly in the main ‘config.oil’ file in the templates.

15.3.2 Additionnal files

TODO

15.3.3 Libraries

TODO

15.3.4 Additionnal build target

TODO

Chapter 15. Building a Trampoline application

Part II

Trampoline RTOS internals

99

CHAPTER

SIXTEEN

SYSTEM GENERATION AND
COMPILATION

Trampoline is a static operating system. This means all the objects (tasks, ISR, ...) are known
at compile time. This way, an application is made of tasks’ code and ISRs’ code, application

data, and statically initialized descriptor for each object the operating system manages. A system
generation tool, like goil, generates these descriptors in C files from an application configuration
described in OIL or in XML. After that the Trampoline source code, the generated files and the
application source code are compiled and linked together to produce an executable file as shown
in figure 16.1.

16.1 The generated files

The following files are generated by goil from the OIL file or should be generated if you use a
different system configuration tool. More information may be found in part ??.

File name Usage
tpl app define.h This file contains all the configuration macros (see section 16.2)

and is included in all the Trampoline files to trigger conditional
compilation. goil generates this file using the ‘tpl_app_define_-

h.goilTemplate’ template file.
tpl app config.h This file contains the declarations of the constants and functions

required by the OSEK and Autosar standard (like OSMAXAL-
LOWEDVALUE x, OSTICKSPERBASE x or OSMINCYCLE x
constants for counter x). goil generates this file using the ‘tpl_-

app_config_h.goilTemplate’ template file.

101

102 16.1. The generated files

tpl app config.c This file contains the definitions of the constants and functions re-
quired by the OSEK and Autosar standard and the definitions of
object descriptors used by Trampoline (see section ??) goil gener-
ates this file using the ‘tpl_app_config_c.goilTemplate’ template
file.

tpl app custom types.h Some data types used by Trampoline are not statically defined.
They are generated to fit size or performance criterions. For in-
stance, the type used for a TaskType may be a byte if there is
less than 256 tasks in the system and a word otherwise. This file
defined these data types.

tpl service ids.h This file is generated only if Trampoline is compiled with service
calls implemented using a system call. It contains all the identi-
fiers of the services used by the application according to the con-
figuration. goil generates this file using the ‘tpl_service_ids_-

h.goilTemplate’ template file.
tpl dispatch table.c This file is generated only if Trampoline is compiled with service

calls implemented using a system call. It contains the dispatch
table definition. See section ??. goil generates this file using the
‘tpl_dispatch_table_c.goilTemplate’ template file.

tpl invoque.S This file is generated only if Trampoline is compiled with service
calls implemented using a system call. It contains the API func-
tions for system services. See section ??. The extension (here
.S) may change according to the assembler used. goil gener-
ates this file using the ‘tpl_invoque.goilTemplate’ and ‘service_-

call.goilTemplate’ template files.
MemMap.h This file is generated only if memory mapping is enabled. It con-

tains macros for compiler abstraction memory mapping of functions
and data as defined in the Autosar standard [3]. goil generates this
file using the ‘MemMap_h.goilTemplate’ template file.

Compiler.h This file is generated only if memory mapping is enabled. It con-
tains macros for the compiler abstraction of functions and pointer
qualifier as defined in the Autosar standard [2]. goil generates this
file using the ‘Compiler_h.goilTemplate’ template file.

Compiler Cfg.h This file is generated only if memory mapping is enabled. It con-
tains macros for the compiler abstraction configuration as defined
in the Autosar standard [2]. goil generates this file using the
‘Compiler_Cfg_h.goilTemplate’ template file.

script.ld This file is generated only if memory mapping is enabled. It con-
tains a link script to map the executable in the target memory.
goil generates this file using the ‘script.goilTemplate’ template
file.

The following sections give details about the content of these files.

Chapter 16. System generation and compilation

16.1. The generated files 103

Trampoline
source files

(.c, .h)

OIL source
file (.oil)

XML
source file

(.epc)

Application
source files

(.c, .h)

Object files
(.o, .obj, ...)

Objects'
descriptors,

Configuration
macros, Memory

mapping, Compiler
abstraction

macros. (.c, .h)

OIL
compiler

(goil)

Autosar builder

C
compiler

C
compiler

C
compiler

Executable
file

(.H86, .bin)

linker

Link script

optional or alternate
tool or files
tool

.h inclusion

Figure 16.1: Build process of an application with Trampoline. Starting from the left, the .c
and .h corresponding to the application description given in OIL (or XML) are generated by goil (or
another system generation tool, for instance an Autosar compliant one) and compiled using a C compiler.
Trampoline source files are compiled too and include .h from the description for configuration purpose
(see section 16.2). Application files are compiled and include .h files from Trampoline. All the object files
are then linked together using an optional link script generated by goil or provided with the application.

Chapter 16. System generation and compilation

104 16.2. The Configuration Macros

16.2 The Configuration Macros

Trampoline can be compiled with various options. These options are controlled by setting the
appropriate preprocessor configuration macros. These macros are usually set by goilusing the
template found in ‘tpl_app_define_h.goilTemplate’ file to produce the ‘tpl_app_define.h’ file
that is included by the files of Trampoline. However, a different generation tool may be used
and it should comply to the specification presented in the following tables. When Trampoline
is compiled, the coherency and consistency of the configuration macros are checked, by using
the preprocessor macros located in the ‘tpl_config_check.h’ file, to ensure they correspond to
a supported configuration.

3 kinds of configuration macros are used: boolean macros, numerical macros, symbol macros
and string macros. Boolean macros may take 2 values: YES or NO. All macros should be defined,
Trampoline does not use the #ifdef or #ifndef scheme to limit the occurrences of unwanted
misconfigurations except to prevent multiple inclusions of the same header file.

16.2.1 Number of objects macros

These macros gives the number of objects of each kind (tasks, ISRs, resources, . . .) and other
values. They are used in Trampoline to check the validity of the various identifiers and to define
tables of the corresponding size.

Macro Kind Effect
PRIO_LEVEL_COUNT Integer The number of priority levels used in the system.
TASK_COUNT Integer The number of tasks (basic and extended) used in the sys-

tem.
EXTENDED_TASK_COUNT Integer The number of extended tasks used in the system.
ISR_COUNT Integer The number of ISR category 2 used in the system.
ALARM_COUNT Integer The number of alarms used in the system.
RESOURCE_COUNT Integer The number of resources used in the system.
SEND_MESSAGE_COUNT Integer The number of send messages used in the system.
RECEIVE_MESSAGE_COUNT Integer The number of receive messages used in the system.
SCHEDTABLE_COUNT Integer The number of schedule tables used in the system. This

macros is only used when WITH_AUTOSAR is set to YES.
COUNTER_COUNT Integer The number of counters used in the system. This macros

is only used when WITH_AUTOSAR is set to YES.
APP_COUNT Integer The number of OS applications used in the system. This

macros is only used when WITH_AUTOSAR is set to YES.
TRUSTED_FCT_COUNT Integer The number of trusted functions used in the system. This

macros is only used when WITH_AUTOSAR is set to YES.
RES_SCHEDULER_PRIORITY Integer The priority of the RES_SCHEDULER resource. This should

be equal to the highest priority among the tasks.

16.2.2 Error Handling Macros

Error handling related macros are used to configure what kind of error Trampoline checks and
what extra processing is done when an error is encountered.

Chapter 16. System generation and compilation

16.2. The Configuration Macros 105

Macro Kind Effect
WITH_OS_EXTENDED Bool When set to YES, Trampoline system services perform

error checking on their arguments. WITH_OS_EXTENDED is
set to YES with a STATUS = EXTENDED and is set to NO

with a STATUS = BASIC in the OIL OS object.
WITH_ERROR_HOOK Bool When set to YES, the ErrorHook() function is called if

an error occurs. WITH_ERROR_HOOK is set to YES/NO with
a ERRORHOOK = TRUE/FALSE in the OIL OS object.

WITH_USEGETSERVICEID Bool When set to YES, Trampoline system services store
the id of the current service. This id may
be retrieved in the ErrorHook() function by us-
ing the OSErrorGetServiceId() macro. WITH_-

USEGETSERVICEID is set to YES/NO with a USEGETSERVICEID

= TRUE/FALSE in the OIL OS object.
WITH_USEPARAMETERACCESS Bool When set to YES, Trampoline system services store the

arguments of the current service. These arguments
may be retrieved in the ErrorHook() function by us-
ing the ad-hoc access macros (see WITH_USEGETSERVICEID

above). WITH_USEPARAMETERACCESS is set to YES/NO with
a USEPARAMETERACCESS = TRUE/FALSE in the OIL OS ob-
ject.

WITH_COM_ERROR_HOOK Bool When set to YES, the communication error hook is called
when error occurs in the communication sub-system.
This macro is only available when WITH_COM is set to
YES.

WITH_COM_USEGETSERVICEID Bool When set to YES, Trampoline/COM system ser-
vices store the id of the current service. This
id may be retrieved in the COMErrorHook() func-
tion by using the COMErrorGetServiceId() macro.
WITH_COM_USEGETSERVICEID is set to YES/NO with a
COMUSEGETSERVICEID = TRUE/FALSE in the OIL COM ob-
ject.

WITH_COM_USEPARAMETERACCESS Bool When set to YES, Trampoline/COM system services
store the arguments of the current service. These
arguments may be retrieved in the COMErrorHook()

function by using the ad-hoc access macros (see ??).
WITH_COM_USEPARAMETERACCESS is set to YES/NOwith a
COMUSEPARAMETERACCESS = TRUE/FALSE in the OIL COM
object.

WITH_COM_EXTENDED Bool When set to YES, Trampoline/COM system services
perform error checking on their arguments. WITH_COM_-

EXTENDED is set to YES with a COMSTATUS = EXTENDED and
is set to NO with a COMSTATUS = BASIC in the OIL COM
object.

16.2.3 Protection Macros

Protection macros deal with protection facilities provided by the AUTOSAR standard.

Chapter 16. System generation and compilation

106 16.2. The Configuration Macros

Macro Kind Effect
WITH_MEMORY_PROTECTION Bool When set to YES, Trampoline enables the memory protection

facility. This is only supported on some ports (MPC5510 and
ARM9 at time of writing). Memory protection requires the
memory mapping and the use of system call. WITH_MEMORY_-

PROTECTION is set to YES/NO with the MEMORY_PROTECTION at-
tribute of MEMMAP object (see ??) set to TRUE/FALSE.

WITH_TIMING_PROTECTION Bool When set to YES, Trampoline enables the timing protec-
tion facility. WITH_TIMING_PROTECTION is set to YESif the
AUTOSAR_SC is 2 or 4 (see ??) and a least one of the objects
specifies a timing protection related attribute in the OIL file.

WITH_PROTECTION_HOOK Bool When set to YES, Trampoline calls the ProtectionHook()

with the appropriate argument when a protection fault
occurs. WITH_PROTECTION_HOOK is set to YESwith a
PROTECTIONHOOK = TRUEin the OIL OS object.

WITH_STACK_MONITORING Bool When set to YES, Trampoline enables the stack monitor-
ing. Each time a context switch occurs, the stack pointer
is checked. If the stack pointer is outside the stack zone of
the process, a fault occurs. WITH_STACK_MONITORING is set to
YESwith a STACKMONITORING = TRUE in the oil OS object.

16.2.4 Hook call macros

Hook call macros control whether a hook is called or not.

Macro Kind Effect
WITH_ERROR_HOOK Bool see 16.2.2
WITH_PRE_TASK_HOOK Bool When set to YES, each time a task is scheduled, the function

PreTaskHook() is called. WITH_PRE_TASK_HOOK is set to YES/NO
with a PRETASKHOOK = TRUE/FALSE in the OIL OS object.

WITH_POST_TASK_HOOK Bool When set to YES, each time a task is descheduled, the func-
tion PostTaskHook() is called. WITH_POST_TASK_HOOK is set to
YES/NO with a POSTTASKHOOK = TRUE/FALSE in the OIL OS ob-
ject.

WITH_STARTUP_HOOK Bool When set to YES, the function StartupHook() is called within
the StartOS service. WITH_STARTUP_HOOK is set to YES/NO with
a STARTUPHOOK = TRUE/FALSE in the OIL OS object.

WITH_SHUTDOWN_HOOK Bool When set to YES, the function ShutdownHook() is called within
the ShutdownOS service. WITH_SHUTDOWN_HOOK is set to YES/NO
with a SHUTDOWNHOOK = TRUE/FALSE in the OIL OS object.

WITH_PROTECTION_HOOK Bool see 16.2.3

16.2.5 Miscellaneous macros

Here are the other available macros:

Macro Kind Effect

Chapter 16. System generation and compilation

16.2. The Configuration Macros 107

WITH_USERESSCHEDULER Bool When set to YES, the RES_SCHEDULER resource is used
by at least one process. WITH_USERESSCHEDULER is set
to YES/NO with a USERESSCHEDULER = TRUE/FALSE in the
OIL OS object.

WITH_SYSTEM_CALL Bool When set to YES, services are called by the mean of
a system call, also known as a software interrupt (see
section ??). WITH_SYSTEM_CALL is set to YES/NO accord-
ing to the target architecture and requires a memory
mapping

WITH_MEMMAP Bool When set to YES, a memory mapping is used. A
‘MemMap.h’ files giving the available memory segments
is included and should be generated or provided by
the user. goil generates such a file. WITH_MEMMAP is set
to YES/NO with a MEMMAP = TRUE/FALSE in the OIL OS
object.

WITH_COMPILER_SETTINGS Bool When set to YES, the compiler dependent macros are
used. ‘Compiler.h’ and ‘Compiler_Cfg.h’ files are in-
cludes and should be generated or provided by the
user. goil generates these files if MEMMAP is TRUE and
the COMPILER sub-attribute is set.

WITH_AUTOSAR Bool When set to YES, Trampoline contains additional sys-
tem services, code and declarations related to the AU-

TOSAR standard. For instance, the counter descrip-
tor includes the counter type (hardware or software).
WITH_AUTOSAR is set to YES/NO when at least one AU-

TOSAR object is present in the system configuration
(OIL file for instance).

TRAMPOLINE_BASE_PATH String The path to Trampoline root directory.
AUTOSAR_SC Integer The AUTOSAR scalability class ranging from 0 to 4. 0

means OSEK
WITH_OSAPPLICATION Bool When set to YES, OS Application are used.
WITH_TRACE Bool When set to YES, the tracing of the operating system

is enabled.
TRACE_TASK Bool When set to YES, task (de)scheduling events are traced.

Only available if WITH_TRACE is set to YES.
TRACE_ISR Bool When set to YES, ISR category 2 (de)scheduling events

are traced. Only available if WITH_TRACE is set to YES.
TRACE_RES Bool When set to YES, resources get and release are traced.

Only available if WITH_TRACE is set to YES.
TRACE_ALARM Bool When set to YES, alarm activities are traced. Only

available if WITH_TRACE is set to YES.
TRACE_U_EVENT Bool When set to YES, user events are traced. Only available

if WITH_TRACE is set to YES.
TRACE_FORMAT Symbol Trace format. A function named tpl_trace_-

format_<TRACE_FORMAT> is expected. Only available
if WITH_TRACE is set to YES.

TRACE_FILE String File name where the trace is stored. Usable on Posix
target only. Only available if WITH_TRACE is set to YES.

Chapter 16. System generation and compilation

108 16.3. Application configuration

WITH_IT_TABLE Bool When set to YES, the external interrupts are dispatched
using a table of fonction pointers.

WITH_COM Bool When set to YES, internal communication is used.
TPL_COMTIMEBASE Integer The COMTIMEBASE expressed in nanoseconds.
WITH_COM_STARTCOMEXTENSION Bool When set to YES, the communication extension func-

tion is called.

16.3 Application configuration

The application configuration is generated by goil using the template found in ‘tpl_app_-

config_h.goilTemplate’ file and ‘tpl_app_config_c.goilTemplate’ file to produce the ‘tpl_app_-

define.h’ and ‘tpl_app_define.c’ files.

16.3.1 Counter related constants declaration

The ‘tpl_app_config.h’ files contains the counters related constants: those of the System-
Counter1 and those of the counters defined by the user. The SystemCounter constants are
located in the generated files because the SystemCounter default attributes may be modified by
the user in the OIL or XML file. The constants of a user defined counter are declared as follow:

extern CONST(tpl_tick , OS_CONST) OSTICKSPERBASE_ <counter name >;

extern CONST(tpl_tick , OS_CONST) OSMAXALLOWEDVALUE_ <counter name >;

extern CONST(tpl_tick , OS_CONST) OSMINCYCLE_ <counter name >;

Where <counter name> is obviously the name given to the counter in the confguration. For the
SystemCounter, the following constants are declared:

16.3.2 Events definition

The ‘tpl_app_config.c’ file should contain the event mask definitions. For each event defined
in the configuration, the following lines should appear:

#define API_START_SEC_CONST_UNSPECIFIED

#include "tpl_memmap.h"

#define <event name >_mask <mask value >

CONST(EventMaskType , AUTOMATIC) <event name > = <event name >_mask;

#define API_STOP_SEC_CONST_UNSPECIFIED

#include "tpl_memmap.h"

Where <event name> is the name given to the event in the configuration and <mask value> is
the value set by the user in the configuration or, when set to AUTO, the value computed by the
generation tool.

1the default counter of an OSEK operating system

Chapter 16. System generation and compilation

16.3. Application configuration 109

16.3.3 Standard resources definition

Standard resources need the definition of an identifier used to reference the resource in a system
service (GetResource() and ReleaseResource()) and an instance of a tpl_resource structure
(see ??). This is done with the following definitions:

#define API_START_SEC_CONST_UNSPECIFIED

#include "tpl_memmap.h"

#define <resource name >_id <resource id>

CONST(ResourceType , AUTOMATIC) <resource name > = <resource name >_id;

#define API_STOP_SEC_CONST_UNSPECIFIED

#include "tpl_memmap.h"

#define OS_START_SEC_VAR_UNSPECIFIED

#include "tpl_memmap.h"

VAR(tpl_resource , OS_VAR) <resource name >_rez_desc = {

/* ceiling priority of the resource */ <resource priority >,

/* owner previous priority */ 0,

/* owner of the resource */ INVALID_PROC_ID ,

#if WITH_OSAPPLICATION == YES

/* OS Application id */ <resource application id>,

#endif

/* next resource in the list */ NULL

};

#define OS_STOP_SEC_VAR_UNSPECIFIED

#include "tpl_memmap.h"

Where <resource name> is the name given to the resource in the configuration, <resource
priority> is the priority of the resource that is computed by the generation tool and is the
maximum priority of the processes that use the resource and <resource application id> is the
identifier of the OS Application the resource belongs to. Since this field is protected by WITH_-

OSAPPLICATION, it may be leaved empty when no OS Application is used.

<resource id> ranges from 0 to the number of standard resources minus 1. Once every standard
resource descriptor is defined, a table gathering pointers to the resource descriptors and indexed
by the resource id has to be defined. This table is used by system services to get the resource
descriptor from the resource id. Suppose 3 standard resource, motor1, motor2 and dac has been
defined and RES SCHEDULER is used, the table should be as follow:

#define OS_START_SEC_CONST_UNSPECIFIED

#include "tpl_memmap.h"

CONSTP2VAR(tpl_resource , AUTOMATIC , OS_APPL_DATA)

tpl_resource_table[RESOURCE_COUNT] = {

&motor1_rez_desc ,

&motor2_rez_desc ,

&dac_rez_desc ,

&res_sched_rez_desc

};

#define OS_STOP_SEC_CONST_UNSPECIFIED

#include "tpl_memmap.h"

Chapter 16. System generation and compilation

110 16.3. Application configuration

&res_sched_rez_desc, the pointer to the resource descriptor of RES SCHEDULER should al-
ways be the last element of the table. If RES SCHEDULER is not used, simply remove it from
the table.

16.3.4 Tasks definition

Each task needs an identifier to reference a task un a system service (ActivateTask(), ChainTask(),
GetTaskState(), SetEvent() and GetEvent()) and the declaration of the task function. The
following definitions should appear for each task:

#define API_START_SEC_CONST_UNSPECIFIED

#include "tpl_memmap.h"

#define <task name >_id <task id>

CONST(TaskType , AUTOMATIC) <task name > = <task name >_id;

#define API_STOP_SEC_CONST_UNSPECIFIED

#include "tpl_memmap.h"

#define APP_Task_ <task name >_START_SEC_CODE

#include "tpl_memmap.h"

FUNC(void , OS_APPL_CODE) <task name >_function(void);

#define APP_Task_ <task name >_STOP_SEC_CODE

#include "tpl_memmap.h"

Where <task name> is the name given to the task in the configuration and <task id> is the
identifier of the task computed by the system generation tool. Task ids should range from 0 to
the number of tasks minus 1. In addition, id allocation must start with extended tasks first and
basic task after. In addition an instance of the static task descriptor must be provided:

#define OS_START_SEC_CONST_UNSPECIFIED

#include "tpl_memmap.h"

CONST(tpl_proc_static , OS_CONST) <task name >_task_stat_desc = {

/* context */ <task name >_CONTEXT ,

/* stack */ <task name >_STACK ,

/* entry point (function) */ <task name >_function ,

/* internal ressource */ <internal resource >,

/* task id */ <task name >_id ,

#if WITH_OSAPPLICATION == YES

/* OS application id */ <application >,

#endif

/* task base priority */ <task priority >,

/* max activation count */ <task activation >,

/* task type */ <task type >

#if WITH_AUTOSAR_TIMING_PROTECTION == YES

/* pointer to the timing

protection descriptor */ ,<timing protection >

#endif

};

#define OS_STOP_SEC_CONST_UNSPECIFIED

#include "tpl_memmap.h"

Chapter 16. System generation and compilation

16.3. Application configuration 111

Where <task name> is the name given to the task in the configuration. <internal resource>
mays be one of the following:

� a pointer to the internal resource descriptor (see ??) if an internal resource has been defined
in the configuration;

� a pointer to the scheduler internal resource if the task has been defined as non-preemptable
in the configuration;

� NULL if none of the above cases apply.

<application> is the id of the OS Application the task belongs to when OS Application are
used or, when they are not used, nothing at all. <task priority> is the priority of the task
as computed by the system generation tool. <task activation> is the maximum number of task
activation allowed as defined in the configuration. <task type> may be EXTENDED or BASIC. <timing
protection> is a pointer to the timing protection descriptor or NULL if no timing protection is
defined for the task.

Also an instance of the dynamic task descriptor must be provided:

#define OS_START_SEC_VAR_UNSPECIFIED

#include "tpl_memmap.h"

VAR(tpl_proc , OS_VAR) <task name >_task_desc = {

/* resources */ NULL ,

#if WITH_MEMORY_PROTECTION == YES

/* if > 0 the process is trusted */ <trusted count >,

#endif /* WITH_MEMORY_PROTECTION */

/* activate count */ 0,

/* task priority */ <task priority >,

/* task state */ <task state >

#if WITH_AUTOSAR_TIMING_PROTECTION == YES

/* activation allowed */ ,TRUE

#endif

};

#define OS_STOP_SEC_VAR_UNSPECIFIED

#include "tpl_memmap.h"

Where <task name> is the name given to the task in the configuration. <trusted count> is 0
if the task belongs to a non trusted OS Application and 1 if the tasks belongs to a trusted OS
Application. <task priority> is the priority of the task as computed by the system generation tool.
<task state> is the initial state of the task and must be set to AUTOSTART or SUSPENDED.

If the task is an EXTENDED one, an event mask descriptor is added:

VAR(tpl_task_events , OS_VAR) <task name >_task_evts = {

/* event set */ 0,

/* event wait */ 0

};

Where <task name> is the name given to the task in the configuration.

Chapter 16. System generation and compilation

112 16.3. Application configuration

Chapter 16. System generation and compilation

CHAPTER

SEVENTEEN

KERNEL IMPLEMENTATION

17.1 The tpl_kern structure

The tpl_kern structure gathers informations about the RUNNING process and flags to notify if a
context switch and/or a context save are needed. It eases the access to these informations when
programming in assembly language. The tpl_kern structure is an instance of the tpl_kern_state

type:

typedef struct

{

P2CONST(tpl_proc_static , TYPEDEF , OS_CONST) s_old;

P2CONST(tpl_proc_static , TYPEDEF , OS_CONST) s_running;

P2VAR(tpl_proc , TYPEDEF , OS_VAR) old;

P2VAR(tpl_proc , TYPEDEF , OS_VAR) running;

VAR(int, TYPEDEF) running_id;

VAR(u8 , TYPEDEF) need_switch;

} tpl_kern_state;

17.2 Ready list implementation

The implementation of the ready list makes it possible to reconcile relative simplicity with good
performance regardless of the number of processes1. The ready list is implemented by an array
indexed by priority. Each element of this array is a FIFO that stores the process identifier. An
activated process is stored at the tail of the FIFO. A pre-empted process is stored at the head
of the FIFO. Furthermore, in order to quickly find the non-empty FIFO corresponding to the
highest priority, a binary heap is used to store the indexes (i.e. priority) of the non-empty FIFOs,
the highest index being of course at the root of the heap.

1The term process here refers to a task or an SRI2

113

114 17.2. Ready list implementation

FIFO sizes are determined during the OIL compilation. Once the priorities assigned to processes
and resources are determined, the FIFO size corresponding to a priority is the sum of the acti-
vations of each task, the number of resources and the number of ISR2 for this priority. Priority
level 0 is only occupied by the task idle.

Let’s take for example an application composed of 4 tasks and 2 resources, declared in OIL file
as shown below.

RESOURCE r1 { RESOURCEPROPERTY = STANDARD; };

RESOURCE r2 { RESOURCEPROPERTY = STANDARD; };

TASK t1 { PRIORITY = 2; ACTIVATION = 2; RESOURCE = r1; };

TASK t2 { PRIORITY = 3; ACTIVATION = 1; };

TASK t3 { PRIORITY = 1; ACTIVATION = 3; RESOURCE = r2; };

TASK t4 { PRIORITY = 1; ACTIVATION = 2; RESOURCE = r1; RESOURCE = r2; };

The missing attributes for all tasks are SCHEDULE = FULL and AUTOSTART = FALSE.

The OIL compiler calculates the priority of the resource r1. As it is likely to be taken by the
tasks t1 and t4, its calculated priority is 3 (1 higher than the maximum priorities of t1 and t4).
Therefore the priority of t2 is increased by 1 to allow it to pre-empt t1 or t4 when it holds the
resource. The same is done for r2, which leads to give it the priority of 2. Consequently, the
priorities of t1, t2 and r1 are increased by 1 to make room for r2. The occupancy of the priority
levels and the corresponding size of the FIFO is therefore as shown in the table 17.1:

Priority level Content FIFO size
0 idle 1
1 t3, t4 5
2 r2 1
3 t1 2
4 r1 1
5 t2 1

Table 17.1: Priority levels and FIFO size for the example.

The data structure for this example is given in figure 17.1.

P
ri

or
it

y

0

1

2

3

4

5

Figure 17.1: Data structure for the example.

Chapter 17. Kernel Implementation

CHAPTER

EIGHTEEN

PORTING TRAMPOLINE

In this chapter arch is used to designate the instruction set of the target like PowerPC®, ARM®

or AVR®; chip is used to designate the name of an implementation of the architecture like a
PowerPC 5516; board is used to designate the name of a development board that uses the chip.
compiler is used to designate the compiler and linker is used to designate the linker used to link
the project and produced the executable file.

18.1 Adding files to the directory structure

Doing a port of Trampoline on a new target requires

� data structures

� code, some is in C and some is in assembly language of the target

� code templates

� memory mapping templates (depend on the compiler)

� link scripts templates (depend on the linker)

Data structures declarations and code related to the instruction set are located in the
‘machines/arch’ directory.

Code templates are located in the ‘goil/templates/code/arch’ directory.

Memory mapping templates are located in the ‘goil/templates/compiler/compiler/arch’ direc-
tory.

Link scripts templates are located in the ‘goil/templates/linker/linker/arch’ directory.

For instance, if the goal is to port Trampoline to a Freescale® ColdFire® CPU with the gcc
compiler and the gnu ld linker, you have to create a directory ‘coldfire’ inside the ‘machines’

directory, inside the ‘goil/templates/code’ directory and inside the

115

116 18.2. Using a target with goil

‘goil/templates/code/gnu_ld’ directory.

In addition, some code or link scripts may be specific to the chip or the board. In this case,
create sub-directories in the various arch directories using the pattern ‘arch/chip/board’ to put
the corresponding files.

18.2 Using a target with goil

The -t or --target option of goil selects the target by using a arch/chip/board path. Goil
will look at the code, compiler and linker templates in the corresponding paths. Goil looks for a
template at the deeper path first and goes up until it find it or gives an error when it does not
find it. This way, a generic chip level template may be overridden by a more specific board level
template for instance.

The link script templates (linker) and the memory mapping templates (compiler) are used only
if a project is built using memory mapping. MEMMAP is a boolean attribute of the OS object in
the OIL file. COMPILER and LINKER are sub-attributes of MEMMAP when it is TRUE. For instance, a
MEMMAP using gcc and gnu ld would described like that:

MEMMAP = TRUE {

COMPILER = gcc;

LINKER = gnu_ld { SCRIPT = "script.ld"; };

...

};

Using this description and the target option, goil will look for link script templates in
‘goil/templates/gnu_ld/arch/chip/board’ path and for memory mapping templates in
‘goil/templates/gcc/arch/chip/board’ path.

The SCRIPT sub-attributes gives the name of the generated link script file.

18.3 Target specific code

! The following informations require you use a software interrupt to call the system services.

This code should be located in the ‘machines/arch’ directory or in a sub-directory (‘chip’ or
‘board’) if you want to implement a feature that rely on a specific chip or board (for instance to
put peripheral devices in sleep mode in the tpl_sleep function). Anyway, you should put the
relevant code at the corresponding level. If in the rare instances you may need to use conditional
compiling, you may use the C macros TARGET_ARCH, TARGET_CHIP and TARGET_BOARD that contains
the arch, chip and board respectively as character strings.

18.3.1 Functions called by Trampoline

The following functions are needed by Trampoline:

extern FUNC(void , OS_CODE) tpl_init_context(

CONST(tpl_proc_id , AUTOMATIC) proc_id);

Chapter 18. Porting Trampoline

18.3. Target specific code 117

tpl_init_context may be written in C. It is called when an activated task runs for the first
time. It initializes the context of the task by setting the ‘at start’ values of registers. Setting at
least the values of the stack pointer at the beginning of the stack zone of the task and the return
address at the entry point of the task code are required.

extern FUNC(void , OS_CODE) tpl_init_machine(void);

tpl_init_machine is called at the beginning of StartOS before calling the StartupHook and
starting the scheduling. tpl_init_machine should do the hardware related initializations that
are needed to run the OS (for instance starting the timer of the SystemCounter).

extern FUNC(void , OS_CODE) tpl_sleep(void);

tpl_sleep is called from the idle task. It should implement a loop around an instruction that
put the CPU in a waiting for interrupt mode. If the arch does not have such an instruction, an
empty loop may be used.

! tpl_sleep should never return.

extern FUNC(void , OS_CODE) tpl_shutdown(void);

tpl_shutdown is called from ShutdownOS. It should disable all interrupts and put the CPU in
sleep mode. If no sleep mode exists, an empty loop may be used.

! tpl_shutdown should never return.

18.3.2 Service call

A service call is done by using a software interrupt1. So any function executed by the kernel as
a result of API function call is handled by the software interrupt vector.

This code is called tpl_sc_handler and performs the following steps:

1. save registers to be able to work

2. disable memory protection

3. switche to kernel stack if needed

4. call the service

5. perform a context switch if needed and programs the MPU.

6. call kernel function tpl_run_elected

7. switche back to the process stack if needed

8. enable memory protection

9. restore registers saved at step 1

10. get back to the process

At step 4, the service identifier is used as an index in the function pointer table where all the
services are stored. This table is also generated by goil (this allow to add services by your own and

1swi on ARM, sc on PowerPC, syscall on Tricore

Chapter 18. Porting Trampoline

118 18.4. Target specific structures

customize Trampoline) and is called tpl_dispatch_table. The function pointer corresponding to
the service is read from this table and the service is called.

The identifier of the service is passed to tpl_sc_handler in one of the following ways:

� the software interrupt instruction of the target has an argument, the identifier of the service
is passed in this argument

� the software interrupt instruction of the target does not have an argument or the argument
cannot store big enough value, the identifier of the service is passed in a register or on the
stack

The way the PowerPC port manages the system call is explained in details in section 19.2.

18.3.3 Interrupt management

External interrupt handling should follow the same steps as service call when the ISR interacts
with the kernel, activate a task or set an event and leads to a rescheduling. Of course, step 4
is a little bit different: instead of using a service id, the interrupt handler uses the interrupt
source number. Usually the interrupt source number is got by reading a register of the interrupt
controller.

goil provides a dispatch table for interrupts. This table is filled according to the SOURCE attribute
of counters and ISR category 2. This attribute must be set to a symbolic name that is found in
the ‘target.cfg’ (located in ‘goil/templates/config/arch/chip/board’ path). Each entry in the
‘target.cfg’ file lists the correspondance between the interrupt source number and the symbolic
name.

So at step 4, the interrupt handler uses the interrupt source number as an index in the tpl_-

it_table, get the corresponding interrupt handling function pointer and calls the function.

If interrupts are fully vectorized, i.e. each interrupt source has its own interrupt vector, goil
should generate the code for each vector. See how it is done in ‘cortex/armv7em’ port.

18.4 Target specific structures

A file named ‘tpl_machine.h’ should exists in the ‘machines/arch’ directory. This file should
contain the declarations and definitions of:

� the tpl_stack_word type

� the tpl_stack_size type

� the tpl_context structure

� the tpl_stack structure

� the IDLE_ENTRY macro that should set to tpl_sleep

� the IDLE_STACK macro

� the IDLE_CONTEXT macro

The tpl_stack_word type is used to achieved a correct alignment of the stack

Chapter 18. Porting Trampoline

18.4. Target specific structures 119

The tpl_context context structure contains one of more pointers to structures where all the
registers needed for the execution context are stored. More than one pointer may be needed
because on some architectures, contexts may be split in 2 or 3 parts to store the integer context,
the floating point context and the vector context for instance. This way a task doing only integer
computation needs the integer context only. The other pointers are set to NULL and the context
switching code does not save or restore contexts for the NULL pointers. A tpl_context field is
included in the static part of a task descriptor which may be stored in ROM. For instance, on
an AVR, the context structure is declared as follow:

struct TPL_CONTEXT {

avr_context *ic;

};

typedef struct TPL_CONTEXT tpl_context;

and an avr_context is defined as follow:

struct AVR_CONTEXT {

u8 *sp;

u8 regist [33]; // registers: R0-R15 ,R17 -R31 ,SREG ,R16

};

typedef struct AVR_CONTEXT avr_context;

The tpl_stack stack structure contains one or more pointers to the stack and one or more stack
sizes. Some ABI may use more than one stack (an example is the Infineon C166). A tpl_stack

field is included in the static part of a task descriptor. The AVR stack structure is as follow:

struct TPL_STACK {

tpl_stack_word *stack_zone;

tpl_stack_size stack_size;

};

typedef struct TPL_STACK tpl_stack;

The IDLE_STACK macro should expand to a tpl_stack initialization. This macro is used to initialize
the stack in the idle task descriptor. For instance, the AVR IDLE_STACK and the component it
uses are defined like this:

#define SIZE_OF_IDLE_STACK 50

extern VAR(tpl_stack_word , OS_VAR)

idle_stack[SIZE_OF_IDLE_STACK/sizeof(tpl_stack_word)];

#define IDLE_STACK { idle_stack , SIZE_OF_IDLE_STACK }

The IDLE_CONTEXT should expand to a tpl_context initialization. This macro is used to initialize
the context in the idle task descriptor. For instance, the AVR IDLE_CONTEXT and the component
it uses are defined like this:

extern avr_context idle_task_context;

#define IDLE_CONTEXT {& idle_task_context}

Chapter 18. Porting Trampoline

120 18.5. Code templates

18.5 Code templates

See chapter 20 for informations about the goil templates and the goil templates language.

Since service API functions perform a system call, they are to be written in assembly language.
Instead of writting each of these functions by hand, they are generated by goil using 3 templates.
2 are generic, the 3rd one, ‘service_call.goilTemplate’, is specific.

‘service_call.goilTemplate’ should be located in the ‘goil/templates/code/arch/’ directory

For instance the ppc arch has the following template:

let api_func :: FUNC_NAME := exists api_func :: ACTUAL default (api_func ::NAME)

%

.global % !api_func :: FUNC_NAME %

% !api_func :: FUNC_NAME %:

/* load the service id in r0 */

li r0 ,% !api_sec :: ID_PREFIX %ServiceId_% !api_func ::NAME %

sc /* system call */

blr /* returns */

.type % !api_func :: FUNC_NAME %,@function

.size % !api_func :: FUNC_NAME %,$-% !api_func :: FUNC_NAME %

REAL and API are configuration data provided by goil. Both have a value equal to the name of
the service (ActivateTask for instance). StartOS is a special case where API have the value
StartOS and REAL have the value tpl_start_os. This is because StartOS is the only service that
is called before the memory protection is turned on.

For ActivateTask, the template execution produces the following code:

.global ActivateTask

ActivateTask:

/* load the service id in r0 */

li r0,OSServiceId_ActivateTask

sc /* system call */

blr /* returns */

.type ActivateTask ,@function

.size ActivateTask ,$-ActivateTask

18.6 Structures initialization templates

These templates are located in ‘goil/templates/code/arch’.

The template ‘process_specific.goilTemplate’ is used to generate the instantiation of the con-
text and the stack of a process (task or ISR category 2).

The template ‘counter_call.goilTemplate’ is used to wrap a counter interrupt source to the
Trampoline function that handle counter incrementation.

Chapter 18. Porting Trampoline

18.7. The memory mapping and the link script templates 121

18.7 The memory mapping and the link script templates

Memory mapping is required with software interrupts because you have to put the interrupt
vectors at the good place in memory. Moreover, when you use memory protection, goil generates
memory sections for each task and ISR category 2.

The ‘MemMap.h’ file that defines the sections is generated from the ‘MemMap_h.goilTemplate’.
Files ‘Compiler_h.goilTemplate’ and ‘Compiler_Cfg_h.goilTemplate’ are used to generate the
‘Compiler.h’ and ‘Compiler_Cfg.h’ files which define the various AUTOSAR macros that assist
to the specification of sections in the source files of Trampoline and of the application. These
templates are found at the ‘goil/templates/compiler/arch/chip/board’ path.

Usually these templates depend on the compiler only but, for instance, the Metrowerks® C
compiler uses different #pragma according to the arch. So memory mapping templates for
the Metrowerks C compiler for PowerPC would be located in ‘goil/templates/compiler/mwc/
powerpc’ and for HCS12 would be located in ‘goil/templates/compiler/mwc/hcs12’

To do that a link script template is used. This template is located in the
‘goil/templates/linker/linker/arch/chip/board’ path.

The best way is to start with an existing template from a different target for the linker you use
and to modify it.

Chapter 18. Porting Trampoline

122 18.7. The memory mapping and the link script templates

Chapter 18. Porting Trampoline

CHAPTER

NINETEEN

PORTS DETAILS

19.1 Posix

19.1.1 Overview

19.1.2 Monocore

19.1.3 Multicore

19.2 PowerPC

19.2.1 System services

The PowerPC port uses the sc software interrupt to call system services [1]. sc stands for System
Call. It saves the current PC in SRR0 register and the current MSR in SRR1 register and jump
to the System Call handler.

The id of the system service to call is given in the r0 register and r0 save and restore are added
around. For instance, the following listing gives the ActivateTask service code. These function
are generated from templates by goil (see 16.1) and are part of the invoque layer (see ??):

.global ActivateTask

ActivateTask:

subi r1,r1 ,4 /* make room on stack */

stw r0 ,0(r1) /* save r0 */

li r0,OSServiceId_ActivateTask /* load r0 with the id */

sc /* system call */

lwz r0 ,0(r1) /* restore r0 */

addi r1,r1 ,4 /* restore stack */

blr /* return */

123

124 19.2. PowerPC

.type ActivateTask ,@function

.size ActivateTask ,$$-ActivateTask

When the System Call begin execution, the process stack has the mapping depicted in figure
19.1.

r0SP

Figure 19.1: Process stack mapping at the begin-
ning of the System Call handler. The grayed zone
represents an unknown content depending on from
where the service was called.

19.2.2 Dispatching the service call

The System Call handler is usually located in the 0C00H exception handler but, depending on
the CPU kind, it may be located elsewhere. Since the available memory for the interrupt or
exception handler may vary, a jump is made to the tpl_sc_handler.

tpl_sc_handler performs the following tasks:

1. saves additional registers to be able to work

2. disables memory protection

3. switches to kernel stack if needed

4. calls the service

5. performs a context switch if needed and programs the MPU.

6. switches back to the process stack if needed

7. enable memory protection

8. restore registers

9. get back to the process

Currently the PowerPC port does not support tasks that use floating point registers

Saving additional registers

The following registers are saved: lr, cr, r11 and r12. In fact, it should be not necessary to
save r11 and r12 because these registers are volatile as defined in the PowerPC EABI [5] but
we prefer a conservative approach. Register saving is done by the following code at start of the
tpl_sc_handler and the mapping of the process stack is depicted at figure 19.2:

subi r1,r1,PS_FOOTPRINT /* Make room on stack */

stw r11 ,PS_R11(r1) /* Save r11 */

Chapter 19. Ports details

19.2. PowerPC 125

stw r12 ,PS_R12(r1) /* Save r12 */

mflr r11

stw r11 ,PS_LR(r1) /* Save lr */

mfcr r11

stw r11 ,PS_CR(r1) /* Save cr */

cr

r11

lr

r0

r12
SP Figure 19.2: Process stack mapping after addi-

tional registers have been saved by the beginning of
the System Call handler.

Disabling memory protection

This part of the dispatch layer is done in the tpl_enter_kernel function and is assembled only
if WITH_MEMORY_PROTECTION is set to YES. After saving the lr, the tpl_kernel_mp function is called
and does the actual job. At last lr is restored.

#if WITH_MEMORY_PROTECTION == YES

/*

* Switch to kernel mem protection scheme

*/

subi r1,r1 ,4

mflr r11

stw r11 ,0(r1) /* save lr on the current stack */

bl tpl_kernel_mp /* disable memory protection */

lwz r11 ,0(r1) /* restore lr */

mtlr r11

addi r1,r1 ,4

#endif

Switching to the kernel stack

Once the dispatch layer has saved the registers it uses and has switched to the kernel memory
protection scheme, it switches to the kernel stack. However the kernel stack could used already
because a call to a PreTaskHook or a PostTaskHook is done on the kernel stack and such a hook
may call a service. So the dispatch layer is reentrant. The number of reentrant calls is counted
by the tpl_reentrancy_counter. In addition the process stack pointer (r1), SRR0 and SRR1
are saved in the kernel stack. The kernel stack mapping is shown in figure 19.3. For a reentrant
call, the same frame is build over the current one. The switch to the kernel stack is done as
follow:

Chapter 19. Ports details

126 19.2. PowerPC

/*

* Check the reentrency counter value and increment it

* if the value is 0 before the inc , then we switch to

* the system stack.

*/

lis r11 ,TPL_HIG(tpl_reentrancy_counter)

ori r11 ,r11 ,TPL_LOW(tpl_reentrancy_counter)

lwz r12 ,0(r11) /* get the value of the counter */

cmpwi r12 ,0

addi r12 ,r12 ,1

stw r12 ,0(r11)

bne no_stack_change

/*

* Switch to the kernel stack

*

* Get the pointer to the bottom of the stack

*/

lis r11 ,TPL_HIG(tpl_kernel_stack_bottom)

ori r11 ,r11 ,TPL_LOW(tpl_kernel_stack_bottom)

stw r1 ,KS_SP -KS_FOOTPRINT(r11) /* save the sp of the caller */

mr r1,r11 /* set the kernel stack */

no_stack_change:

/*

* make space on the stack to call C functions

*/

subi r1,r1,KS_FOOTPRINT

SP of the caller (r1)
SRR0 of the caller

pointer to the tpl_kern struct
return code of the service (r3)

SRR1 of the caller

linkage area
linkage area

SP

Figure 19.3: Kernel stack mapping after alloca-
tion.

Calling the service

Since the registers used to pass parameters to a function, that is r3 to r10 as documented in [5],
have not been changed until now, calling the function that implements the service respects the
register usage conventions.

The first thing to do is to get the function pointer corresponding to the service id. The service
id is in r0 as explained in 19.7.2 and is used as an index to the tpl_dispatch_table.

Chapter 19. Ports details

19.2. PowerPC 127

slwi r0,r0 ,2 /* compute the offset */

/*

* load the ptr to the dispatch table

*/

lis r11 ,TPL_HIG(tpl_dispatch_table)

ori r11 ,r11 ,TPL_LOW(tpl_dispatch_table)

lwzx r11 ,r11 ,r0 /* get the ptr to the service */

mtlr r11 /* put it in lr for future use */

The second thing to do is to reset the need_switch flag that triggers a context switch. This flag
(a byte) is located in the tpl_kern kernel struct. This is done as follow:

lis r11 ,TPL_HIG(tpl_kern)

ori r11 ,r11 ,TPL_LOW(tpl_kern)

stw r11 ,KS_KERN_PTR(r1) /* save the ptr for future use */

li r0,NO_NEED_SWITCH

stb r0 ,20(r11)

In the future tpl_kern will be reused, so its address is saved in the kernel stack.

Then, to allow reentrancy for a service call in a hook, the RI bit of the MSR is set to 1. Without
that, a sc cannot be properly executed.

mfmsr r11

ori r11 ,r11 ,RI_BIT_1

mtmsr r11

At last, the service is called:

blrl

Context switch

The need_switch flag that as been possibly modified by the service is now checked to do a
context switch if needed.

lwz r11 ,KS_KERN_PTR(r1) /* get back the tpl_kern address */

lbz r12 ,20(r11) /* get the need_switch flag */

andi. r0,r12 ,NEED_SWITCH /* check if a switch is needed */

beq no_context_switch

A context switch is performed in 3 steps. The first one is the context save of the process that
loses the CPU. This step is optional because if the service was a TerminateTask or a ChainTask,
the context needs not to be saved. This information is in the need_switch flag. Before doing
the actual context save, the return value of the service must be saved in the proper location of
the kernel stack. The tpl_save_context function will read it from this location and expects a
pointer to the context saving area or the process in r3. s_old, the address of the context saving
area, is in another member of tpl_kern. At the end, the tpl_kern address is reread because
r11 has been destroyed in tpl_save_context.

stw r3 ,KS_RETURN_CODE(r1) /* save the return value */

andi. r0,r12 ,NEED_SAVE /* r12 contains need_switch */

beq no_save

Chapter 19. Ports details

128 19.2. PowerPC

lwz r3 ,0(r11) /* r11 contains the tpl_kern address */

bl tpl_save_context /* and s_old is put into r3 */

lwz r11 ,KS_KERN_PTR(r1) /* get back tpl_kern address */

The second step consists in loading the configuration of memory protection for the process that
get the CPU by calling the tpl_set_process_mp function. This function expects the id of the
process in r3. Again this id is located in member proc_id of tpl_kern. This is done only if
WITH_MEMORY_PROTECTION is YES.

#if WITH_MEMORY_PROTECTION == YES

lwz r3 ,16(r11) /* get the id of the process which get the cpu */

bl tpl_set_process_mp /* set the memory protection scheme */

#endif

The third step loads the context of the process that get the CPU. The address of tpl_kern is
loaded into r11 because it has been destroyed in tpl_set_process_mp, s_running, the address
of the context saving area of the current process is loaded into r3 and tpl_load_context is
called. At last, r3 is restored.

lwz r11 ,KS_KERN_PTR(r1)

lwz r3 ,4(r11) /* get s_running */

bl tpl_load_context

lwz r3 ,KS_RETURN_CODE(r1)

Switching back to the process stack

At this stage, the SRR0 and SRR1 registers saved in the kernel stack are restored. The space
reserved in the kernel stack is freed. The reentrancy counter is decremented and the stack
switches to the process stack if the reentrancy counter is 0.

lwz r11 ,KS_SRR0(r1)

mtspr spr_SRR0 ,r11

lwz r11 ,KS_SRR1(r1)

mtspr spr_SRR1 ,r11

addi r1,r1,KS_FOOTPRINT /* free back space on the stack */

/*

* The reentrency counter is decremented. If it reaches

* 0, the process stack is restored

*/

lis r11 ,TPL_HIG(tpl_reentrancy_counter)

ori r11 ,r11 ,TPL_LOW(tpl_reentrancy_counter)

lwz r12 ,0(r11) /* get the value of the counter */

subi r12 ,r12 ,1

stw r12 ,0(r11)

cmpwi r12 ,0

bne no_stack_restore

/*

* Restore the execution context of the caller

* (or the context of the task/isr which just got the CPU)

Chapter 19. Ports details

19.2. PowerPC 129

*/

lwz r1 ,KS_SP -KS_FOOTPRINT(r1) /* Restore the SP and switch

back to the process stack */

Enabling memory protection

Then, if memory protection is used, the user scheme is reenabled. The actual works depends on
the kind of MPU and is done in tpl_user_mp.

#if WITH_MEMORY_PROTECTION == YES

subi r1,r1 ,4

mflr r11

stw r11 ,0(r1) /* save lr on the current stack */

bl tpl_user_mp /* Enable the memory protection */

lwz r11 ,0(r1) /* restore lr */

mtlr r11

addi r1,r1 ,4

#endif

Restoring registers

Registers saved at stage 1 on the process stack are restored an the stack is freed.

lwz r11 ,PS_CR(r1)

mtcr r11

lwz r11 ,PS_LR(r1)

mtlr r11

lwz r12 ,PS_R12(r1)

lwz r11 ,PS_R11(r1)

addi r1,r1,PS_FOOTPRINT

Getting back to the process

At last, the dispatch layer is exited using a rfi.

rfi /* return from interrupt */

19.2.3 Interrupt handler

19.2.4 The CallTrustedFunction service

The CallTrustedFunction service is implemented by the tpl_call_trusted_function_service
function. This function is a special case of service because the kernel stack and the process stack
have to be modified. In addition, an ExitTrustedFunction service is implemented to restore
the process stack when the trusted function exits. Both services have to be written in assembly
language since C does not allow to explicitely modify the stack.

tpl_call_trusted_function_service performs the following steps:

Chapter 19. Ports details

130 19.2. PowerPC

1. check the trusted function id is within the allowed range

2. increment the trusted counter of the calling process

3. build a frame on the process stack to store the registers pushed by a service call except for
r0 and for SRR0 and SRR1 ; put the address of ExitTrustedFunction in the lr location
in the process stack; save SRR0 and SRR1 in the process stack

4. get the trusted function address and put it in SRR0

5. go back to the dispatch layer

Checking the trusted function id

The id of the trusted function is checked to avoid to call a function at an arbitrary address.

mov r11 ,r3 /* save r3 in r11 b/c it will be destroyed */

cmpw r3,TRUSTED_FCT_COUNT /* check the id of the trusted function */

ori r3 ,r0 ,E_OS_SERVICEID /* E_OS_SERVICEID return code */

bge invalid_trusted_fct_id

mov r3 ,r11 /* restore r3 if trusted function id ok */

Incrementing the trusted counter

The trusted counter of the process is incremented each time a trusted function is called. When
the trusted counter is > 0, the process is trusted. In such a case, the dispatch layer does not
enable memory protection when scheduling the process so it has an unlimited access to the whole
addressing space.

lwz r11 ,KS_KERN_PTR(r1) /* get the ptr to tpl_kern */

lwz r11 ,12(r11) /* get the ptr to the runnning process desc */

lwz r12 ,4(r11) /* get trusted_count member */

addi r12 ,r12 ,1 /* increment it */

stw r12 ,4(r11) /* put it back in the process desc */

Building the frame

The frame is used to store the calling context of the trusted function and is shown in figure 19.4.
The following code builds this frame:

/*

* First get back the process stack pointer

*/

lwz r11 ,KS_SP(r1)

/*

* Make room to prepare the call of the trusted function

*/

subi r11 ,r11 ,PS_TRUSTED_FOOTPRINT_IN

/*

* store ExitTrustedFunction as the return address

*/

lis r12 ,TPL_HIG(ExitTrustedFunction)

ori r12 ,r12 ,TPL_LOW(ExitTrustedFunction)

Chapter 19. Ports details

19.2. PowerPC 131

stw r12 ,PS_LR(r11)

/*

* Update the stack pointer

*/

stw r11 ,KS_SP(r1)

/*

* second get back SRR0 and SRR1 and save them to the process stack

*/

lwz r12 ,KS_SRR0(r1)

stw r12 ,PS_SRR0_IN(r11)

lwz r12 ,KS_SRR1_IN(r1)

stw r12 ,PS_SRR1(r11)

r12

r0

SRR0 (return to CallTrustedFunction)

dummy cr

cr
lr

dummy r11

linkage area

r11

lr (ExitTrustedFunction)
dummy r12

SRR1

linkage area

SP

pushed by
CallTrustedFunction

pushed by the
dispatch layer

allocated by
tpl_call_trusted_function_service

Figure 19.4: Process stack map-
ping at the end of tpl_call_-

trusted_function_service. r0, at
the bottom of the stack has been
pushed by CallTrustedFunction. cr
to r11 has been pushed by the dis-
patch layer. SRR0 and SRR1 are
saved here by tpl_call_trusted_-

function_service to be able to go
back to the calling process. Above,
the linkage area allows the trusted
function to call functions. Above, a
frame that will be used by the dis-
patch layer to restore an execution
context for the trusted function is
built.

Setting the trusted function address

The SRR0 saved by the dispatch layer after the CallTrustedFunction is changed to the address
of the trusted function. This way, instead of returning to the caller, the trusted function will be
executed.

lis r11 ,TPL_HIG(tpl_trusted_fct_table)

ori r11 ,r11 ,TPL_LOW(tpl_trusted_fct_table)

slwi r0,r3 ,2

lwzx r12 ,r11 ,r0

stw r12 ,KS_SRR0(r1)

Going back to the dispatch layer

A simple blr goes back to the dispatch layer. The latter cleans up the process stack. Once the
trusted function starts execution, the process stack is like that:

Chapter 19. Ports details

132 19.2. PowerPC

r12

cr

linkage area

lr

r11

SRR0

linkage area

SRR1

r0

SP

Figure 19.5: Process stack mapping when the
trusted function starts its execution.

19.2.5 The ExitTrustedFunction service

When a trusted function finishes, the context of the CallTrustedFunction must be restored
to return to the caller. ExitTrustedFunction does not need to be called explicitly because
its address has been set as the return address of the trusted function by tpl_call_trusted_-

function_service. Calling ExitTrustedFunction explicitly may result in an undefined behav-
ior or in the crash of the calling process but see below. The mapping of the process stack at
start of tpl_exit_trusted_function_service is shown in figure 19.6.

r12

r0

SRR0

r0

cr
lr

r12

linkage area

r11

cr
lr

r11

SRR1

linkage area

SP

Figure 19.6: Process stack mapping when the tpl_exit_-

trusted_function_service function starts its execution.

First, tpl_exit_trusted_function_service decrements the trusted counter of the calling pro-
cess. A particular attention must be given to this point because by building a fake stack frame
and calling Explicitly ExitTrustedFunction to underflow this counter, a process could get a full
access to the memory. So the counter is tested before to avoid to go under 0.

lwz r11 ,KS_KERN_PTR(r1) /* get the ptr to tpl_kern */

Chapter 19. Ports details

19.2. PowerPC 133

lwz r11 ,12(r11) /* get the ptr to the runnning process desc */

lwz r12 ,4(r11) /* get trusted_count member */

/*

* Warning , the trusted counter has to be check (compared to 0) to

* avoid to decrement it if it is already 0. Without that a process

* could build an had -hoc stack an call explicitly ExitTrustedFunction

* to get access to all the memory.

*/

cmpwi r12 ,0 /* check it is not already at 0 */

beq cracker_in_action /* uh uh */

subi r12 ,r12 ,1 /* decrement it */

stw r12 ,4(r11) /* put it back in the process desc */

tpl_exit_trusted_function_service has to remove from the process stack the frame that was
built by tpl_call_trusted_function_service, restore SRR0 and SRR1 before returning to
the dispatch layer.

cracker_in_action:

/*

* get the process stack pointer

*/

lwz r11 ,KS_SP(r1)

/*

* get back the SRR0 and SRR1

*/

lwz r12 ,PS_SRR0_OUT(r11)

stw r12 ,KS_SRR0(r1)

lwz r12 ,PS_SRR1_OUT(r11)

stw r12 ,KS_SRR1(r1)

/*

* free the process stack and update it in the kernel stack

*/

addi r11 ,r11 ,PS_TRUSTED_FOOTPRINT_OUT

stw r11 ,KS_SP(r1)

/*

* that’s all

*/

blr

19.2.6 Execution of the OS Applications startup and shutdown hooks

These hooks are executed from the kernel but with the access right of a task belonging to the OS
Application. The system generation tool should choose one of the tasks of the OS Application
to be used as context to execute the OS Application startup and shutdown hooks. Execution of
an OS Application startup hook is done by the tpl_call_startup_hook_and_resume function.
The argument of this function is a function pointer to the hook. Similarly execution of an
OS Application shutdown hook is done by the tpl_call_shutdown_hook_and_resume function.

Chapter 19. Ports details

134 19.2. PowerPC

These functions end by a call to NextStartupHook and NextShutdownHook services respectively
to cycle through the hooks.

19.2.7 The MPC5510 Memory Protection Unit

The access control rights of the memory region descriptor rules the access of 5 bus masters
(labeled from 4 to 0). Unused bus masters are set to the same access right for all the regions.
Bus master 4 is used for factory testing only, so the access rights should be set to no access. Bus
master 3 is the Flexray controller. Since it is not used in the current version of Trampoline, it is
set to no access too. Bus master 2 is the DMA controller and for the same reason it is set to no
access. Bus master 1 is the Z0 core. Again it is set to no access.

The access control rights register has the following bit usage:

Reserved

M4R
E

M4W
E

M3P
E M3SM M3UM

M2P
E M2SM M2UM

M1P
E M1SM M1UM

M0P
E M0SM M0UM

0 0

ne
ve

r s
et

for
 fa

cto
ry

tes
t

Flex
ray

. S
inc

e i
t is

no
t u

se
d c

urr
en

tly,

it is
 se

t to
 0

DMA. S
inc

e i
t is

no
t u

se
d c

urr
en

tly,

it is
 se

t to
 0

Z0 c
ore

 (ie
 VLE

on
ly)

. S
inc

e i
t is

no
t u

se
d c

urr
en

tly,

it is
 se

t to
 0

Z1 c
ore

 (ie
 PPC).

Bus master 4 is a special case. The 2 bits have the following meaning:

Bit Meaning
M4RE If set to 1, bus master 4 may read memory in the region. If 0, no read is allowed
M4WE If set to 1, bus master 4 may write memory in the region. If 0, no write is allowed

So in our case, these bits are set to 0.

Of course, other bus masters have more sophisticated access right:

Bit Meaning
MxPE The PID Enable bit. Set to 0 in our case
MxSM These 2 bits rules the supervisor mode access control with the following meaning:

00 = rwx, 01 = rx, 10 = rw, 11 = same as defined by MxUM. In our case, it is set to 00
for code and constants and to 11 for data.

MxUM These 2 bits rules the user mode access control. The first bit means r, the second one
w and the third one x.

Trampoline uses 4 descriptors:

Descriptor Usage MxUM value
MPU_RGD0 Constants and program1. rwx = 00 for supervisor mode, rx = 101

for user mode.
1This region is set to the whole addressing space. This is not definitive and should be improved because reading

Chapter 19. Ports details

19.3. ARM – Common conventions 135

MPU_RGD1 Private variables of the process. rw = 110 for supervisor and user mode.
MPU_RGD2 Stack of the process. rw = 110 for supervisor and user mode.
MPU_RGD3 Variables of the OS Application

if OS Applications are used.
rw = 110 for supervisor and user mode.

So values of access control bits should be:

Reserved

M4R
E

M4W
E

M3P
E M3SM M3UM

M2P
E M2SM M2UM

M1P
E M1SM M1UM

M0P
E M0SM M0UM

0 1 0 1
For program and constants:

For variables:
0 1 1 1 1 0

So in hexa:

Kind Value
Program region access 0x00000005
Variable region access 0x0000001E

What happen in case of memory protection violation ?

Two exception handler are used to handle a memory protection violation, one for data access,
one for code access.

The Data Storage exception is tied to the IVOR 2 vector (VPR offset = 0x020), see page 8-2 of
the MPC5510 Microcontroller Family Reference Manual.

The Instruction Storage exception is tied to the IVOR 3 vector (VPR offset = 0x030), see page
8-2 of the MPC5510 Microcontroller Family Reference Manual.

However, it appears one of these exceptions is raised when the processor is in user mode. The
behavior is different in supervisor mode to be completed.

19.3 ARM – Common conventions

19.3.1 File hierarchy

19.3.2 Common definitions

19.3.3 Bootstraping

The bootstrap must be made in specific ARM port and must call the main function. If main
ever returns, the bootstrap code must fall into an infinite loop.

a peripheral control register should be protected. So an additional descriptor has to be used to allow the kernel
(supervisor mode) a complete access on all the memory space and no access at all for applications (user mode).

Chapter 19. Ports details

136 19.4. ARM – ARM926 chip support

As a reason, many ARM architectures needs early specific and required initializations. This
includes steps like memory mapping configuration, DRAM controller configuration, ...

Besides specific initializations, the bootstrap should :

� initialize stack pointer for every ARM exception modes

� keep all external interrupts locked (will be unlocked at the first task context loading)

� call main in ”system” mode (0x1F)

19.3.4 Stacks

19.3.5 Interrupt management

Kernel is not interruptible. So hardware interrupt source are disabled entering in kernel (via any
case in system call, interrupt request, abort, ...).

But kernel shall be reentrant via system call (because kernel hooks can call some system calls).

Interrupt and category classification

All ARM IRQ are category 2 ISR.

All ARM FIQ are category 1 ISR.

Vector table

Each ARM exception vector points on a so called ”primary” subprogram (like tpl_primary_-

syscall_handler).

To be located at address 0x00000000, this vector table is assigned to a specific section named
.vectbl. The linker script uses this section name to output it to address 0x00000000.

System call

IRQ handling

FIQ handling

19.4 ARM – ARM926 chip support

19.4.1 Memory protection

To be written...

Some points to explain :

Chapter 19. Ports details

19.5. ARM – Armadeus APF27 board 137

� FCSE mechanism is not used by this port (if someone is interested by this work, she’s
welcome)

� address translation is not used, all VMA equals physical address

� IDLE task’s memory protection configuration is used to provide configuration for trusted
applications or kernel

MMU tables generation principle

To be written...

Some points to explain :

� MMU is not disabled in privileged mode, but all useful memory areas are accessible. Thus,
we hope we can find bugs easily in privileged code.

� useful memory areas, except processes and applications ones, are configured as accessible
(read and write) in privileged mode. These memory areas are called system areas

� some memory areas needs to be accessible by anyone (API, GCC builtin functions, common
libraries, ...), they are called common areas (they are read only for unprivileged contexts)

� there is one translation table for each process

� all translation tables have the same system and common areas

� there is one page table set for each process. Page tables are fine page tables. Table entries
are tiny page descriptors.

� the number of page table in a set depends on the size of the whole trampoline and appli-
cation memory footprint. Then this information is given by linker via a symbol which is
used by the MMU driver.

� Page tables are accessed via a macro, as they are allocated by linker (and we cannot know
the number of page tables)

19.4.2 CPU cache support

19.5 ARM – Armadeus APF27 board

19.5.1 Debugging with Abatron BDI2000 or BDI3000 JTAG probe

A configuration file is provided in ‘machines/arm/arm926/armadeus-apf27/bdi-config’.

To enable JTAG, if your APF27 has a FPGA, you must load the FPGA to wake it up (TO DO
: explain how to do this...).

To start a debug session, follow these steps :

1. connects everything together

Chapter 19. Ports details

138 19.6. ARM – Simtec EB675001 board

2. power up everything

3. reset the APF27 (S2 on APF27-Dev)

4. stop u-boot before it loads Linux (if MMU is started, you won’t be able to load anything)

5. telnet your BDI

6. type reset command in the BDI shell

7. start GDB session (target remote ...)

19.5.2 Configuration

All configuration of port is done in ‘apf27_config.h’.

Stacks

Stacks’ size (stack of each exception mode) can be adjusted via the following constants. Remem-
ber that the size must be aligned to 4.

CPU caches

By default, CPU caches are disabled (for real time determinism).

19.5.3 Memory mapping

This port can be use in one of these three configurations :

1. No memory mapping (and thus no memory protection)

2. Memory mapping without memory protection

3. Memory mapping and memory protection

19.5.4 Memory protection

Memory protection is based on ARM926 shared code (see ?? page ??)

19.6 ARM – Simtec EB675001 board

19.6.1 Memory map and hardware resources

Talk about configured memory map (use of DRAM, where the bootstrap would be flashed, . . .).

Tell which hardware resources are used by the kernel.

Chapter 19. Ports details

19.7. ARM - Cortex 139

19.6.2 Booting

There is two way to start Trampoline on APF27 :

� from ELF image (in file usually called ‘trampoline’)

� from raw binary image (in file usually called ‘trampoline.bin’)

Booting from ELF image

Load image with your ELF loader (the file is usually named ‘trampoline’). This can be GDB via
a JTAG probe for example. Then, just start execution from tpl_arm_bootstrap_entry entry
point. Here are commands you can type in GDB :

(gdb) load

(gdb) set $pc=tpl_arm_bootstrap_entry

(gdb) break main

(gdb) continue

Booting from raw binary image

Load image with your binary loader to 0xA0000000 memory address. Then just start execution
at this point (0xA0000000).

With u-boot, you can type these commands :

BIOS > tftpboot 0xA0000000 192.168.5.20: trampoline.bin

BIOS > go 0xA0000000

19.6.3 Internal kernel drivers

19.6.4 Hardware interrupts handling

19.6.5 Idle task

19.6.6 Exceptions handling

19.6.7 Kernel sleep service

19.7 ARM - Cortex

19.7.1 Overview

The processor

The processor has two modes of execution depending on the kind of execution. The processor
modes are:

Chapter 19. Ports details

140 19.7. ARM - Cortex

1. Thread mode: Used to execute application software. The processor enters Thread mode
when it comes out of reset. The CONTROL register controls whether software execution
is privileged or unprivileged, see CONTROL register on page 24.

2. Handler mode: Used to handle exceptions. The processor returns to Thread mode when it
has finished exception processing. Software execution is always privileged.

The privilege levels for software execution are:

1. Unprivileged: Unprivileged software executes at the unprivileged level and:

(a) Has limited access to the MSR and MRS instructions, and cannot use the CPS in-
struction

(b) Cannot access the system timer, NVIC, or system control block

(c) Might have restricted access to memory or peripherals

(d) Must use the SVC instruction to make a supervisor call to transfer control to privileged
software

2. Privileged: Privileged software executes at the privileged level and can use all the instruc-
tions and has access to all resources. Can write to the CONTROL (nPRIV : bit 0) register
to change the privilege level for software execution.

Core processor registers are depicted in figure 19.7.

R6

R3

R5

SP (R13)

R8

LR (R14)

R0

R11

R9
R10

R12

R4

R1
R2

PC (R15)

R7

pushed by
CallTrustedFunction

pushed by the
dispatch layer

General-purpose registers

CONTROL

PSR
PRIMASK

BASEPRI
FAULTMASK

PSP MSP Banked version of SP

Program Statut Register

Exception mask registers

CONTROL register

Link Register
Program Counter

Figure 19.7: Processor core registers

The Program Status Register (PSR) combines:

1. Application Program Status Register (APSR)

2. Interrupt Program Status Register (IPSR)

Chapter 19. Ports details

19.7. ARM - Cortex 141

3. Execution Program Status Register (EPSR)

These registers are mutually exclusive bitfields in the 32-bit PSR.

The stack

The processor uses a full descending stack. This means the stack pointer indicates the last
stacked item on the stack memory. When the processor pushes a new item onto the stack,
it decrements the stack pointer and then writes the item to the new memory location. The
processor implements two stacks, the main stack and the process stack, with independent copies
of the stack pointer. In Thread mode, the CONTROL register controls whether the processor
uses the main stack or the process stack. In Handler mode, the processor always uses the main
stack. The options for processor operations are:

Processor mode Used to execute Privilege level for execution Stack used

Thread Applications Privileged or unprivileged Main stack or Process stack
Handler Exception handlers Always privileged Main stack

The port of Trampoline will use the two stacks and unprivileged level for software execution.
This configuration is made in the function tpl_init_machine_generic of file ‘tpl_machine_-

arm_generic.c’:

FUNC (void , OS_CODE) tpl_init_machine_specific (void)

{

tpl_kernel_stack_top = (uint32)& tpl_kernel_stack[KERNEL_STACK_SIZE - 1];

nested_kernel_entrance_counter = 0;

__set_MSP(tpl_kernel_stack_top);

setTimer ();

__set_CONTROL (0x3); /* Switch to use Process Stack , privileged state */

__ISB (); /* Execute ISB after changing CONTROL register */

}

On reset the processor starts in Thread mode and uses the Main stack (MSP) for both Handler
and Thread modes. We set the Process stack to the current Main stack address and switch to
use Process stack for Thread mode. We then set the Main stack to a dedicated area pointed to
by ptrMainStack.

The memory

The processor has a fixed memory map that provides up to 4 GB of addressable memory.

The exceptions

The Cortex-M4 processor supports interrupts and system exceptions. The processor and the
Nested Vectored Interrupt Controller (NVIC) prioritize and handle all exceptions. The processor
uses handler mode to handle all exceptions except for reset. The NVIC registers control interrupt
handling and includes the following features:

Chapter 19. Ports details

142 19.7. ARM - Cortex

1. 82 maskable interrupt channels for STM32F407xx (not including the 16 interrupt lines of
CortexTM-M4 with FPU)

2. 16 programmable priority levels (4 bits of interrupt priority are used) All interrupts includ-
ing the core exceptions are managed by the NVIC

Exception number Priority Type Priority

1 Reset -3 the highest
2 -14 NMI -2
3 -13 Hard fault -1
4 -12 Memory management fault Configurable
5 -11 Bus fault Configurable
6 -10 Usage fault Configurable
7-10
11 -5 SVCall Configurable
12-13
14 -2 PendSV Configurable
15 -1 SysTick Configurable
16-above 0 and above Interrupt (IRQ) Configurable

When an exception arises the processor saves a context state onto a stack pointed to by sp (either
MSP or PSP depending on the mode of the processor at the time of the exception) and jumps
to the Supervisor Call handler. The context state supports the ARM Architecture Procedure
Calling Standard (AAPCS). When pushing context to the stack, the hardware saves eight 32-bit
words, comprising xPSR, ReturnAddress, LR (R14), R12, R3, R2, R1, and R0. This behaviour
is depicted figure 19.8.

Reserved
xPSR

R1

PC
LR
R12

R2

R0

R3

Original SP

New SP

8-byte aligned

Figure 19.8: Stacking frame upon exception rising

19.7.2 System services

The Cortex-M4 port uses the svc (Supervisor Call) exception call to call system services [].

Chapter 19. Ports details

19.7. ARM - Cortex 143

The id of the system service to call is given in the r0 register and r0 save and restore are added
around. A system service may be directly called (without using the Supervisor Call) in case of
nested calls. This is due to the architecture of the Cortex-m4. Other microcontrolers (e.g. Power
PC) have features that enable nested system calls.

For instance, the following listing gives the ActivateTask service code. These functions are
generated from templates by goil (see 16.1) and are part of the invoque layer (see ??):

/*

* Service ActivateTask

*/

.global ActivateTask

.type ActivateTask , %function

ActivateTask:

/* manage reentrance of kernel */

ldr r1 , =nested_kernel_entrance_counter

ldr r2 , [r1]

/* If nested_kernel_entrance_counter is greater or equal than 1 */

cmp r2 ,#1

/* then we are in Handler mode and we must call the service with a

* direct call to the function */

beq ActivateTask_direct_call

/* Exception call to the service : use SVC exception */

ActivateTask_exception_call:

mov r3 ,# OSServiceId_ActivateTask

svc #OSServiceId_ActivateTask

b ActivateTask_exit_call

/* Procedural call to the service */

ActivateTask_direct_call:

/* get the appropriate system call address into R3 */

ldr r1 , =tpl_dispatch_table

mov r3 , #OSServiceId_ActivateTask

ldr r3 , [r1 , r3 , LSL #2]

push {lr}

/* call the service */

blx r3

pop {lr}

/* Function call */

ActivateTask_exit_call:

bx lr

The ARM Architecture Procedure Calling Standard (AAPCS) defines the following behaviour for
subroutine call:

Register Synonym Special Role in the procedure call
standard

r15 PC -3 The Program Counter
r14 LR The Link Register
r13 SP The Stack Pointer
r12 IP The Intra-Procedure-call

Scratch-register
r11 v8 Variable-register 8

Chapter 19. Ports details

144 19.7. ARM - Cortex

r10 v7 Variable-register 7
r9 v6, SB, TR Platform register. The meaning

of this register is defined by the
platform standard.

r8 v5 SVCall Variable-register 5
r7 v4 Variable-register 4
r6 v3 PendSV Variable-register 3
r5 v2 SysTick Variable-register 2
r4 v1 Variable-register 1
r3 a4 Argument / Scratch-register 4
r2 a3 Argument / Scratch-register 3
r1 a2 Argument / Scratch-register 2
r0 a1 Argument / Scratch-register 1

Where the role of registers are:

1. Scratch-register, Temporary-register : A register used to hold an intermediate value
during a calculation (usually, such values are not named in the program source and have a
limited lifetime).

2. Variable-register, V-register : A register used to hold the value of a variable, usually
one local to a routine, and often named in the source code.

19.7.3 Dispatching the service call

Raising the svc exception makes the processor change the stack pointer from the Process Stack
Pointer to the Main Stack Pointer and then save a set of registers on top of this Main Stack.
The kernel stack is the Main Stack and the process stack is the Process Stack.

The Cortex-M4 locates the Supervisor Call handler in the exception handler 11. but, depending
on the CPU kind, it may be located elsewhere. Since the available memory for the interrupt or
exception handler may vary, a jump is made to the tpl_primary_syscall_handler.

tpl_primary_syscall_handler performs the following tasks:

1. Prepare the environment

2. Saves additional registers to be able to work

3. Disables memory protection

4. Switches to kernel stack if needed

5. Calls the service

6. Performs a context switch if needed and programs the MPU.

7. Switches back to the process stack if needed

8. Enable memory protection

9. Restore registers

10. Get back to the process

Currently the Cortex-M4 port does not support tasks that use floating point registers

Chapter 19. Ports details

19.7. ARM - Cortex 145

Preparing the environment

When the Supervisor Call begins execution, the kernel stack has the mapping depicted in figure
19.9.

R0

R3
R2

LR

xPSR

R1

PC

R12

SP

Figure 19.9: Process stack mapping at the begin-
ning of the Supervisor Call handler. The grayed zone
represents an unknown content depending on from
where the service was called.

We will need space on top of current stack (Main stack or Kernel stack) MSP in order to save
working registers. Some registers could be found in the frame saved by the processor, but we
kept a common scheme for handling exception calls.

Saving additional registers

We save following values and registers on top of kernel stack :

� The value of caller sp :

� Register lr : This register is modified when calling subroutines. We save it to properly
restore the caller process stack.

� Return code, the return code of service : The return code of the service is stored into R0
register when returning from service. We save it into kernel stack as soon as the return of
the service so that we can transmit it to the caller of service.

� A pointer to tpl_kern

� r4 : Working register

� r5 : Working register

Additional values saving is done by the following code at start of the tpl_sc_handler and the
mapping of the kernel stack is depicted at figure 19.10:

sub sp , sp , #KS_FOOTPRINT /* Make space on top of kernel stack. */

mrs r12 , psp /* Copy process stack pointer psp into r12 */

str r12 , [sp , #KS_PROCESS_SP] /* and save it into kernel stack. */

str r4 , [sp , #KS_R4] /* Save working register r4 on process stack. */

str r5 , [sp , #KS_R5] /* Save working register r5 on process stack. */

Chapter 19. Ports details

146 19.7. ARM - Cortex

ldr r12 , =tpl_kern

str r12 , [sp , #KS_KERN_PTR] /* Store tpl_kern into kernel stack. */

str lr , [sp , #KS_LR] /* Store lr register into kernel stack. */

Disabling memory protection

This part of the dispatch layer is done in the tpl_enter_kernel function and is assembled only if
WITH_MEMORY_PROTECTION is set to YES. After pushing the lr on the kernel stack, the tpl_kernel_mp
function is called and does the actual job. At last lr is popped from the kernel stack.

#if WITH_MEMORY_PROTECTION == YES

/*

* Switch to kernel memory protection scheme

*/

push {lr}

bl tpl_kernel_mp

pop {lr}

#endif

Switching to the kernel stack

The Cortex-m4 is configured to use two stacks and the Main Stack is the kernel stack.

The kernel stack may be already used because a call to a PreTaskHook or a PostTaskHook is
done on the kernel stack and such a hook may call a service. So the dispatch layer must be
reentrant. The number of reentrant calls is counted by the tpl_reentrancy_counter. For a
reentrant call, the same frame is build over the current one.

/*

* Manage reentrance of kernel

* Increment nested_kernel_entrance_counter

*/

ldr r12 , =nested_kernel_entrance_counter

ldr r4 , [r12]

add r4 , r4 , #1

str r4 , [r12]

Calling the service

Since the registers used to pass parameters to a function, that is r3 to r10 as documented in [?],
have not been changed until now, calling the function that implements the service respects the
register usage conventions.

The first thing to do is to get the function pointer corresponding to the service id. The service
id is in r0 as explained in 19.7.2 and is used as an index to the tpl_dispatch_table.

/*

* Get the appropriate system call address into R3

*/

ldr r12 , =tpl_dispatch_table

ldr r3 , [r12 , r3 , LSL #2]

Chapter 19. Ports details

19.7. ARM - Cortex 147

R1

PC

LR

R5

R12

R2

tpl_kern pointer

LR

R3

xPSR

Caller SP
R0

Return code

R4
SP

Figure 19.10: Kernel stack mapping after saving
additional registers.

The second thing to do is to reset the need_switch flag that triggers a context switch. This flag
(a byte) is located in the tpl_kern kernel struct. This is done as follow:

/*

* Reset tpl_kern variables

*/

ldr r12 , [r5 , #KS_KERN_PTR] /* load the tpl_kern base address from kernel stack */

mov r4 , #NO_NEED_SWITCH_NOR_SCHEDULE

strb r4, [r12 , #TPL_KERN_OFFSET_NEED_SWITCH]

strb r4, [r12 , #TPL_KERN_OFFSET_NEED_SCHEDULE]

At last, the service is called:

blx r3

And we then immediately save the return value of the service call into the kernel stack:

str r0 , [r5 , #KS_RETURN_CODE]

Context switch

The need_switch flag that as been possibly modified by the service is now checked to do a
context switch if needed.

ldr r12 , [r5 , #KS_KERN_PTR] /* load the tpl_kern base address */

ldrb r12 , [r12 , #TPL_KERN_OFFSET_NEED_SWITCH]

cmp r12 , #NO_NEED_SWITCH

beq no_context_switch

A context switch is performed in 3 steps:

Chapter 19. Ports details

148 19.7. ARM - Cortex

� Save the context of the task that looses the cpu.

� Load the configuration of memory protection for the process that gets the cpu.

� Load the context of the process that get the cpu.

Save the context of the task th at looses the cpu The first one is the context save of the
process that loses the CPU. This step is optional because if the service was a TerminateTask or
a ChainTask, the context needs not to be saved. This information is in the need_switch flag.
s_old, the address of the context saving area, is in another member of tpl_kern.

ldr r12 , [r5 , #KS_KERN_PTR] /* load the tpl_kern base address */

ldr r12 , [r12 , #TPL_KERN_OFFSET_S_RUNNING]

push {lr}

bl tpl_save_context

pop {lr}

Load the configuration of memory protection for the process that gets the cpu
TODO (The second step consists in loading the configuration of memory protection for the
process that get the CPU by calling the tpl_set_process_mp function. This function expects
the id of the process in r3. Again this id is located in member proc_id of tpl_kern. This is
done only if WITH_MEMORY_PROTECTION is YES.

#if WITH_MEMORY_PROTECTION == YES

lwz r3 ,16(r11) /* get the id of the process which get the cpu */

bl tpl_set_process_mp /* set the memory protection scheme */

#endif

)

Load the context of the process that get the cpu The third step calls the function tpl_-

run_elected. This function chooses the process that will get the cpu and write this information
into the field tpl_kern.s_running.

Then we load the context of the process that got the CPU. The address of tpl_kern is loaded
into r12 because it has been destroyed in tpl_set_process_mp, s_running, the address of the
context saving area of the current process is loaded into r12 and tpl_load_context is called.

ldr r12 , [r5 , #KS_KERN_PTR] /* load the tpl_kern base address */

ldr r12 , [r12 , #TPL_KERN_OFFSET_S_RUNNING] /* get the address of the context bloc */

push {lr}

bl tpl_load_context

pop {lr}

Switching back to the process stack

This is not useful for the Cortex-m4.

Chapter 19. Ports details

19.7. ARM - Cortex 149

Leaving the kernel

Now we leave the kernel by calling the subroutine tpl_leave_kernel

push {lr}

bl tpl_leave_kernel

pop {lr}

In this routine the reentrancy counter is decremented by 1.

Enabling memory protection

Then, if memory protection is used, the user scheme is reenabled. The actual works depends on
the kind of MPU and is done in tpl_user_mp.

#if WITH_MEMORY_PROTECTION == YES

/*

* Switch to user memory protection scheme

*/

push {lr}

bl tpl_user_mp

pop {lr}

#endif

Restoring registers

Registers saved at stage 1 on the kernel stack are restored and the stack is freed.

ldr r4 , [sp , #KS_R4]

ldr r5 , [sp , #KS_R5]

ldr lr , [sp , #KS_LR]

ldr r12 , [sp , #KS_PROCESS_SP]

msr psp , r12

add sp , sp , #KS_FOOTPRINT

Getting back to the process

At last, the dispatch layer is exited using a bx.

tpl_sc_handler_exit:

bx lr

===

Chapter 19. Ports details

150 19.8. AVR8

19.7.4 Interrupt handler

19.7.5 The CallTrustedFunction service

19.7.6 The ExitTrustedFunction service

19.7.7 Execution of the OS Applications startup and shutdown hooks

19.7.8 Memory protection

The base address of a region must be aligned to an integer multiple value of the region size. For
example, if the region size is 4KB (0x1000), the starting address must be Nx0x1000 where N is
an integer.

Private Peripheral Bus (PPB) address ranges (including System Control Space, SCS) and the
vector table don’t need a memory region. Accesses to PPB (including MPU, NVIC, SysTick,
ITM) are always allowed in privileged state, and vector fetches are always permitted by the
MPU.

We need to define a handler for HardFault and MemManage (Memory Management) fault.
The handler for HardFault is mandatory but not for MemManage unless we configure the bit
MEMFAULTENA into register SCB-¿SHCSR. We chose to use MemManage fault.

19.7.9 Monocore

19.7.10 Multicore

19.8 AVR8

19.8.1 System services

The AVR architecture does not support the system call instructions, because there is no super-
visor mode. However, the port works as if there were system calls. This allows to switch to a
system stack at the beginning of a service call and preserve stack usage of user tasks.

Service calls are generated in the tpl_invoque.S file. As other port with system calls, the
service id in stored in a table. The tpl_sc_handler is called like a function. This call does
not respect the ABI in order to preserve registers used for parameters for the internal service
code. For instance, the following listing gives the ActivateTask service code. These functions
are generated from templates by goil (see 16.1) and are part of the invoque layer (see ??):

.global ActivateTask

ActivateTask:

ldi r30 ,OSServiceId_ActivateTask /* load the service id in r30 */

call tpl_sc_handler

ret

Chapter 19. Ports details

19.8. AVR8 151

19.8.2 Dispatching the service call

tpl_sc_handler performs the following tasks:

1. save working registers

2. switch to kernel stack if needed

3. calls the service / counter call / ISR

4. performs a context switch if needed

5. switches back to the process stack if needed

6. restore working registers and get back to the process

Save working registers

Some working registers are saved on the user stack. TODO: use volatile registers. . .

Switching to the kernel stack

The first objective of the tpl_sc_handler is to switch to a kernel stack. However the kernel
stack could used already because a call to a PreTaskHook or a PostTaskHook is done on the
kernel stack and such a hook may call a service. So the dispatch layer is reentrant. The number
of reentrant calls is counted by the tpl_reentrancy_counter.For a reentrant call, the same
frame is build over the current one. The switch to the kernel stack is done as follow:

// tpl_reentrancy_counter ++

lds r30 ,tpl_reentrancy_counter //load

subi r30 , 0xFF //r30 <- R30 -(-1)

sts tpl_reentrancy_counter ,r30 //store

// tpl_reentrancy_counter == 1?

cpi r30 ,0x01 // compare with immediat

brne tpl_enter_kernel_end // branch if not equal

//yes => tpl_switch_to_kernel_stack

call tpl_switch_to_kernel_stack ;use r2-r6,r30 -r31

When the tpl_switch_to_kernel_stack returns, SP points to the kernel stack and the stack
is empty (figure 19.11

SP

KERNEL stack when changing
stack to kernel stack in sc_handler

(note: NO returned address)

Figure 19.11: Kernel stack just after the tpl_-

switch_to_kernel_stack function. The grayed
zone represents stack bottom.

Ce qui est fait: Remanier le fichier tpl os.c pour: * le couper en 2 dans les templates * faire
la partie en C directement. Mettre la partie commune de changement de pile directement dans
machine/avr.

Chapter 19. Ports details

152 19.8. AVR8

il faut rajouter en début de fichier tpl os.c

#include <avr/io.h>

#include <avr/interrupt.h>

extern uint8_t tpl_reentrancy_counter;

extern void tpl_switch_to_kernel_stack ();

extern void tpl_switch_to_user_stack ();

19.8.3 Context

The context of the AVR is composed of:

� the stack pointer sp

� the program counter PC

� the status register SREG and

� 32 GPRs r0 to r31. This includes the 3 16-bits indirect registers X, Y and Z which are
mapped on these GPRs.

However, the context switch uses the stack to save all theses registers (except sp obviously) and
the context does not use any structure to save only one variable (SP):

typedef u16 avr_context;

typedef avr_context *tpl_context;

Moreover, it is not necessary to save all registers. The ABI impose only to save call-Saved

Registers2. Only R2-R17, R28 and R29 should be preserved. We also store the status register
SREG to allow interrupts at the beginning of tasks (the I flag of SREG is set in tpl_init_context).

19.8.4 Context switch

The context switch implementation uses intensively the stack. The two functions for context
switches point to the same code:

void tpl_switch_context(tpl_context *old , tpl_context *new);

void tpl_switch_context_from_it(tpl_context *old , tpl_context *new);

� save the current context (if old is not NULL);

� restore the context from new

registers are pushed on the stack like in figure 19.12. The GPR r16 is used during the context
switch and is the first on the stack. Then, the status register is saved, and all the remaining
registers that should be preserved in the ABI. Note that we use the standard gcc frame in
interrupts; this frame store all the remaining registers.

The restoration of the new context just gets the new stack pointer from the argument tpl_-

context and pops all these registers.

2see more information on the AVR ABI at https://gcc.gnu.org/wiki/avr-gcc#Register_Layout

Chapter 19. Ports details

https://gcc.gnu.org/wiki/avr-gcc#Register_Layout

19.8. AVR8 153

r3

r16

r17

SREG
r2

r28

…
r15

r29SP

Figure 19.12: Stack of the old context at the end of context
switch

19.8.5 Context init

The initialization of the context init (tpl_init_context)the stack according to be compliant
with the context switch.

!
All the AVR8 do not have the same size of the program counter!! Most of them use a 16-bit
program counter, while a few ATMega use a 24-bit program counter!! (if there is more than 64ko
of program flash).

The gcc compiler defines either the symbol __AVR_3_BYTE_PC__ or __AVR_2_BYTE_PC__, which
is used in the tpl_machine.c file. So, the AVR kind should be defined:

The stack at the end of context init should be like in figure 19.13:

� The TerminateTask or CallTerminateISR2 is pushed, depending on the type of the process
(task or ISR2)

� the PC of the entry point of the process is pushed

� the rest of the context is pushed. All required GPRs are init to 0x0, and the status register
SREG to 0x80 to enable interrupts (I bit).

19.8.6 Interrupts

Interrupts are handled directly using the standard way by the compiler GCC. GCC saves all the
required registers, which are restored at the end of the interrupt.

It should be noted that GCC uses the ISR macro to define an interrupt handler, which is in conflict
with the ISR macro defined in Trampoline.

//gcc uses ISR as a keyword to define an interrupt handler.

//Osek uses ISR to define an ISR2 :-/

#ifdef ISR

#undef ISR

#endif

#include <avr/interrupt.h>

Chapter 19. Ports details

154 19.9. Arduino Port

SP

entry point
(either 16 or 24 bits

TerminateTask or
CallTerminateISR2

r3

r16

r17

SREG
r2

r28

…
r15

r29

Figure 19.13: Stack at the end of contact init

ISR(TIMER2_OVF_vect)

{

tpl_counter_tick (& SystemCounter_counter_desc);

if (tpl_kern.need_schedule)

{

tpl_schedule_from_running ();

LOCAL_SWITCH_CONTEXT ()

}

}

19.9 Arduino Port

The Arduino port aims to use the Arduino libraries with trampoline on Arduino3 AVR cards
(first targets are Arduino Uno and Arduino Mega).

Arduino libraries have been set in the directory machines/avr/arduino and adapted to Tram-
poline. They are extracted from the GitHub version (see file machines/avr/arduino/version.txt).
Current version is 1.5.8.

Some adaptations on libraries should be done, and are explained in the next sections. For
an easiest merge with next Arduino libraries, the code modification are well identified with
comments:

// START TRAMPOLINE SECTION

void trampolineSystemCounter ();

3http://www.arduino.cc/

Chapter 19. Ports details

http://www.arduino.cc/

19.9. Arduino Port 155

// STOP TRAMPOLINE SECTION

Code parts that are removed are also documented:

// START REMOVE TRAMPOLINE SECTION

void trampolineSystemCounter ();

// STOP REMOVE TRAMPOLINE SECTION

19.9.1 Main adaptation

In the Arduino approach, the main.cpp file is hidden, and 2 functions should be user defined:

� setup() initialize the system;

� loop() is repeated indefinitely;

With Trampoline, the loop() function disappears and the StartOS() service should be called
at the end of the setup().

To be compliant with the Arduino approach, the main.cpp is hidden in user projects (but is
present in machines/avr/arduino/main.cpp. It initializes timers, call the setup() user init
function and start the OS with StartOS().

Another service is provided to support different application modes4. The application mode
should be defined during the setup() function:

void SetAppMode(AppModeType appMode);

19.9.2 Goil adaptation

A dedicated section for Arduino is provided in CPU.OS:

CPU test {

OS config {

ARDUINO = TRUE {

BOARD = UNO;

PORT = "/dev/tty.usbmodem1411 ";

AVR_LIBC = "/usr/local/CrossPack -AVR/avr/include /";

SERIAL = TRUE;

};

//...

}

}

Parameters are:

BOARD The Arduino specific board. It should be only UNO or MEGA at this date;

PORT This is the device associated to the board to flash the AVR, like in the Arduino IDE. On
Linux systems it should something like /dev/ttyUSB0.

4By default, the application mode OSDEFAULTAPPMODE is used

Chapter 19. Ports details

156 19.9. Arduino Port

AVR_LIBC This is the place where is the libc for avr-gcc. This is required to get the avr/io.h

include file. On Debian/Ubuntu, it should be located in "/usr/lib/avr/include"

feature Add the required files in the project. Current features5 are:

� SERIAL

19.9.3 System Counter

The Arduino libraries comes with a SysTick associated to TIMER0 interrupt. Timer0 has a
prescaler factor of 64, and the sysTick period is 1024µs on a 16MHz chip.

The SystemCounter counter is automatically defined6 and connected to that Arduino SysTick,
with:

� TICKSPERBASE = 1

� MAXALLOWEDVALUE = 65535

� MINCYCLE = 1

This means that the System Counter is hardwired to a 1024 µs period.

The period of this timer cannot be changed has it is used for both Arduino SysTick, and PWM.
If you need another resolution, the best way is to use another timer associated to another OSEK
counter.

5See up-to-date features in Goil specific templates in <goilTemplatesDir>/config/avr/arduino/config.oil
6see file <goilTemplatesDir>/config/avr/arduino/config.oil

Chapter 19. Ports details

Part III

The Goil system generator

157

CHAPTER

TWENTY

THE GOIL TEMPLATES

Goil includes a template interpreter which is used for file generation. Goil generates the
structures needed by trampoline to compile the application and may generate other files like

a memory mapping file ‘MemMap.h’, the compiler abstraction files, ‘Compiler.h’ and ‘Compiler_-

cfg.h’ and a linker script depending on which attributes you set in the OIL file.

A template is a file which is located in the default template directory (set with the environment
variable GOIL TEMPLATES or with the --templates option on the command line) or in the directory
of your project. Goil starts by looking for a template in the directory of your project, then, if
the template is not found, in the default templates directory.

Four sets of templates are used:

� code generation templates that are located in the ‘code’ subdirectory of the template
directory;

� build system templates that are located in the ‘build’ subdirectory;

� compiler dependent stuff in the ‘compiler’ subdirectory and

� linker script templates in the ‘linker’ subdirectory.

Templates are written using a simple language which allow to access the application configuration
data and to mix them with text to produce files.

Files are produced by a template program located in the ‘root.goilTemplate’ file which is as
the root of the template directory. By default the following files are produced:

� ‘tpl_app_config.c’ by using the ‘tpl_app_config.c.goilTemplate’ file

� ‘tpl_app_config.h’ by using the ‘tpl_app_config.h.goilTemplate’ file

� ‘Makefile’ (if option -g or --generate-makefile is given) by using the ‘Makefile.goilTemplate’

file

159

160 20.1. The configuration data

� ‘script.ld’ (if memory mapping is used and if the default name is not changed) by using
the ‘script.goilTemplate’ file

� ‘MemMap.h’ (if memory mapping is used) by using the ‘MemMap.h.goilTemplate’ file

� ‘Compiler.h’ (if memory mapping is used) by using the ‘Compiler.h.goilTemplate’ file

� ‘Compiler_Cfg.h’ (if memory mapping is used) by using the
‘Compiler_Cfg.h.goilTemplate’ file

20.1 The configuration data

The configuration data are computed by Goil from the OIL source files, from the options on the
command line and from the ‘target.cfg’ file. They are available as a set of predefined boolean,
string, integer or list variables. All these variables are in capital letters.

!
Some configuration data are not listed here because they depend on the target. For instance, the
STACKSIZE data may be an attribute of each item of a TASKS list for ppc target but are missing
for the c166 target.

20.1.1 The PROCESSES, TASKS, BASICTASKS, EXTENDEDTASKS, ISRS1 and ISRS2

lists

Theses variables are lists where informations about the processes1 used in the application are
stores:

List Content
PROCESSES the list of processes. The items are sorted in the following order: extended

tasks, then basic tasks, then ISRs category 2.
TASKS the list of tasks, basic and extended. The items are sorted in the following

order: extended tasks, then basic tasks.
BASICTASKS the list of basic tasks.
EXTENDEDTASKS the list of extended tasks.
ISRS1 the list of ISR category 1.
ISRS2 the list of ISR category 2.

Each item of these lists has the following attributes:

Item Type Content
NAME string the name of the process.
PROCESSKIND string the kind of process: "Task" or "ISR".
EXTENDEDTASK boolean true if the process is an extended task, false otherwise.
NONPREEMPTABLE boolean true if the process is a non-preemptable task, false other-

wise.
PRIORITY integer the priority of the process.

1In Trampoline, a process is a task or an ISR category 2.

Chapter 20. The Goil templates

20.1. The configuration data 161

Item Type Content
ACTIVATION integer the number of activation of a task. 1 for and extended task

or an ISR.
AUTOSTART boolean true if the process is an autostart task, false otherwise.
USEINTERNALRESOURCE boolean true if the process is a task that uses an internal resource,

false otherwise.
INTERNALRESOURCE string the name of the internal resource if the process is a task

that uses an internal resource, empty string otherwise.
RESOURCES list The resources used by the process. Each item has the fol-

lowing attribute: NAME

TIMINGPROTECTION struct The timing protection attributes. This attribute does not
exist if no timing protection is defined for the process. See
below for the content of this struct.

The TIMINGPROTECTION struct has the following sub-attributes:

Item Type Content
EXECUTIONBUDGET integer The execution budget of a task. This attribute is not

defined for an ISR.
EXECUTIONTIME integer The execution time of an ISR. This attribute is not de-

fined for a Task.
TIMEFRAME integer The time frame.
MAXOSINTERRUPTLOCKTIME integer The maximum locking time of OS interrupts.
MAXALLINTERRUPTLOCKTIME integer The maximum locking time of all interrupts.
RESOURCESLOCK list The maximum locking time of resources.

Each element of the RESOURCESLOCK list has the following attributes:

Item Type Content
RESOURCENAME string The name of the locked resource.
LOCKTIME integer The maximum locking time of the resource.

20.1.2 The COUNTERS, HARDWARECOUNTERS and SOFTWARECOUNTERS lists

These list contains all the informations about the counters used in the application, including the
SystemCounter.

List Content
COUNTERS the list of counters, both hardware and software as long as the

SystemCounter.
HARDWARECOUNTERS the list of hardware counters including the SystemCounter.
SOFTWARECOUNTERS the list of software counters.

Each item of this list has the following attributes:

Chapter 20. The Goil templates

162 20.1. The configuration data

Item Type Content
NAME string the name of the counter.
TYPE string the type: "HARDWARE_COUNTER" or "SOFTWARE_COUNTER".
MAXALLOWEDVALUE integer the maximum allowed value of the counter.
MINCYCLE integer the minimum cycle value of the counter.
TICKPERBASE integer the number of ticks needed to increment the counter.
SOURCE string the interrupt source name of the counter. This is be used to

wrap interrupt vector to a counter incrementation function.

20.1.3 The EVENTS list

This list contains the informations about the events of the application. Each item has the
following attributes:

Item Type Content
NAME string the name of the event.
MASK integer the mask of the event.

20.1.4 The ALARMS list

This list contains the informations about the alarms of the application. Each item has the
following attributes:

Item Type Content
NAME string the name of the alarm.
COUNTER string the name of the counter that drives the alarm.
ACTION string the action to be done when the alarm expire. It can take the following

values: "setEvent", "activateTask" and "callback". The last action is
not available in AUTOSAR mode.

TASK string the name of the task on which the action is performed. This attribute
is defined for "setEvent" and "activateTask" actions only.

EVENT string the name of the event to set on the target task. This attribute is
defined for "setEvent" action only.

AUTOSTART boolean true if the alarm is autostart, false otherwise
ALARMTIME integer the alarm time of the alarm. This attribute is set if AUTOSTART is true.
CYCLETIME integer the cycle time of the alarm. This attribute is set if AUTOSTART is true.
APPMODE string the application mode in which the alarm is autostart. This attribute

is set if AUTOSTART is true.

20.1.5 The REGULARRESOURCES and INTERNALRESOURCES lists

These lists contains the informations about the resources of the application.

List Content
REGULARRESOURCES the list of STANDARD and LINKED resources.
INTERNALRESOURCES the list of INTERNAL resources.

Chapter 20. The Goil templates

20.1. The configuration data 163

Each item has the following attributes:

Item Type Content
NAME string the name of the resource.
PRIORITY integer the priority of the resource.
TASKUSAGE list the list of tasks that use the resource. Each item of this list has an

attribute NAME which is the name of the task.
ISRUSAGE list the list of ISRs that use the resource. Each item of this list has an

attribute NAME which is the name of the ISR.

20.1.6 The MESSAGES, SENDMESSAGES and RECEIVEMESSAGES lists

These lists contain the informations about the messages of the application.

List Content
MESSAGES the list of messages, both send and receive message.
SENDMESSAGES the list of send messages.
RECEIVEMESSAGES the list of receive messages.

Each item has the following attributes

Item Type Content
NAME string the name of the message.
MESSAGEPROPERTY string the type of the message. It can be "RECEIVE_ZERO_-

INTERNAL", "RECEIVE_UNQUEUED_INTERNAL", "RECEIVE_QUEUED_-

INTERNAL", "SEND_STATIC_INTERNAL", "SEND_ZERO_INTERNAL" or
"RECEIVE_ZERO_SENDERS".

NEXT string the name of the next message in a receive message chain. This
attribute is defined for receive messages only.

SOURCE string the name of the send message which is connected to the receive
message. This attribute is defined for receive messages only.

CTYPE string the C language type of the message. This attribute is not
defined for "RECEIVE_ZERO_INTERNAL" and "SEND_ZERO_INTERNAL"

messages.
INITIALVALUE string initial value of the receive message. This attribute is defined for

"RECEIVE_UNQUEUED_INTERNAL" and "RECEIVE_ZERO_SENDERS" mes-
sages only.

QUEUESIZE integer queue size of a receive queued message. This attribute is defined
for "RECEIVE_QUEUED_INTERNAL" messages only.

TARGET string target message of a send message. This is the first message in
a receive message chain. This attribute is defined for "SEND_-

STATIC_INTERNAL" and "SEND_ZERO_INTERNAL" messages only.

Chapter 20. The Goil templates

164 20.1. The configuration data

Item Type Content
FILTER string the kind of filter to apply. This attribute may take the

following values: "ALWAYS", "NEVER", "MASKEDNEWEQUALSX",
"MASKEDNEWDIFFERSX", "NEWISEQUAL", "NEWISDIFFERENT",
"MASKEDNEWEQUALSMASKEDOLD", "MASKEDNEWDIFFERSMASKEDOLD",
"NEWISWITHIN", "NEWISOUTSIDE", "NEWISGREATER",
"NEWISLESSOREQUAL", "NEWISLESS", "NEWISGREATEROREQUAL"

or "ONEEVERYN".
MASK integer Mask of the filter when needed. This attribute is

defined for "MASKEDNEWEQUALSX", "MASKEDNEWDIFFERSX",
"MASKEDNEWEQUALSMASKEDOLD" and "MASKEDNEWDIFFERSMASKEDOLD"

filters only.
X integer Value of the filter when needed. This attribute is defined

for "MASKEDNEWEQUALSMASKEDOLD" and "MASKEDNEWDIFFERSX" filters
only.

MIN integer Minimum value of the filter when needed. This attribute is de-
fined for "NEWISWITHIN" and "NEWISOUTSIDE" filters only.

MAX integer Maximum value of the filter when needed. This attribute is
defined for "NEWISWITHIN" and "NEWISOUTSIDE".

PERIOD integer Period of the filter. This attribute is defined for "ONEEVERYN"

filter only.
OFFSET integer Offset of the filter. This attribute is defined for "ONEEVERYN" filter

only.
ACTION string the action (or notification) to be done when the message is

delivered. It can take the following values: "setEvent" or
"activateTask".

TASK string the name of the task on which the notification is performed. This
attribute is defined for "setEvent" and "activateTask" actions
only.

EVENT string the name of the event to set on the target task. This attribute
is defined for "setEvent" notification only.

20.1.7 The SCHEDULETABLES list

This list contains the informations about the schedule tables of the application.

Item Type Content
NAME string the name of the schedule table.
COUNTER string the name of the counter which drives the schedule table.
PERIODIC boolean true if the schedule table is a periodic one, false otherwise.
SYNCSTRATEGY string the synchronization strategy of the schedule table. This at-

tribute may take the following values: "SCHEDTABLE_NO_SYNC",
"SCHEDTABLE_IMPLICIT_SYNC" or "SCHEDTABLE_EXPLICIT_SYNC".

PRECISION integer the precision of the synchronization. This attribute is define when
SYNCSTRATEGY is "SCHEDTABLE_EXPLICIT_SYNC".

STATE string the state of the schedule table. This attribute may take the
following values: "SCHEDULETABLE_STOPPED", "SCHEDULETABLE_-

AUTOSTART_SYNCHRON", "SCHEDULETABLE_AUTOSTART_RELATIVE" or
"SCHEDULETABLE_AUTOSTART_ABSOLUTE".

Chapter 20. The Goil templates

20.1. The configuration data 165

Item Type Content
DATE integer the start date of the schedule table. This attribute has an

actuel value when STATE is "SCHEDULETABLE_AUTOSTART_RELATIVE" or
"SCHEDULETABLE_AUTOSTART_ABSOLUTE", otherwise it is set to 0.

LENGTH integer The length of the schedule table.
EXPIRYPOINTS list The expiry points of the schedule table. See the following table for

items attributes.

Each item of the EXPIRYPOINTS list has the following attributes:

Item Type Content
ABSOLUTEOFFSET integer the absolute offset of the expiry points.
RELATIVEOFFSET integer the relative offset of the expiry points from the previous expiry

point.
MAXRETARD integer maximum retard to keep the schedule table synchronous.
MAXADVANCE integer maximum advance to keep the schedule table synchronous.
ACTIONS list the actions to perform on the expiry point. See the following

table for items attributes.

Each item of the ACTIONS list has the following attributes:

Item Type Content
ACTION string the action to be done when the alarm expire. It can take the fol-

lowing values: "setEvent", "activateTask", "incrementCounter" and
"finalizeScheduleTable".

TASK string the name of the task on which the action is performed. This at-
tribute is defined for "setEvent" and "activateTask" actions only.

EVENT string the name of the event to set on the target task. This attribute is
defined for "setEvent" action only.

TARGETCOUNTER string the name of the counter to increment. This attribute is defined for
"incrementCounter" action only.

20.1.8 The OSAPPLICATIONS list

This list contains the informations about the OS Applications of the application.

Item Type Content
NAME string the name of the OS Application.
RESTART string the name of the restart task. This attribute is not

defined is there is no restart task for the OS Appli-
cation.

PROCESSACCESSVECTOR string access right for the processes
PROCESSACCESSITEMS string access right for the processes as bytes in a table
PROCESSACCESSNUM integer number of elements in the previous table
ALARMACCESSVECTOR string access right for the alarms
ALARMACCESSITEMS string access right for the alarms as bytes in a table
ALARMACCESSNUM integer number of elements in the previous table

Chapter 20. The Goil templates

166 20.1. The configuration data

Item Type Content
RESOURCEACCESSVECTOR string access right for the resources
RESOURCEACCESSITEMS string access right for the resources as bytes in a table
RESOURCEACCESSNUM integer number of elements in the previous table
SCHEDULETABLEACCESSVECTOR string access right for the schedule tables
SCHEDULETABLEACCESSITEMS string access right for the schedule tables as bytes in a table
SCHEDULETABLEACCESSNUM integer number of elements in the previous table
COUNTERACCESSVECTOR string access right for the software counters
COUNTERACCESSITEMS string access right for the software counters as bytes in a

table
COUNTERACCESSNUM integer number of elements in the previous table
PROCESSES list list of the processes that belong to the OS Applica-

tion. Each item has an attribute NAME which is the
name of the process.

HASSTARTUPHOOK boolean true if the OS Application has a startup hook.
HASSHUTDOWNHOOK boolean true if the OS Application has a shutdown hook.
TASKS list list of the tasks that belong to the OS Application.

Each item has an attribute NAME which is the name
of the task.

ISRS list list of the ISRs that belong to the OS Application.
Each item has an attribute NAME which is the name
of the ISR.

ALARMS list list of the alarms that belong to the OS Application.
Each item has an attribute NAME which is the name
of the alarm.

RESOURCES list list of the resources that belong to the OS Applica-
tion. Each item has an attribute NAME which is the
name of the resource.

REGULARRESOURCES list list of the standard or linked resources that belong
to the OS Application. Each item has an attribute
NAME which is the name of the resource.

INTERNALRESOURCES list list of the internal resources that belong to the OS
Application. Each item has an attribute NAME which
is the name of the resource.

SCHEDULETABLES list list of the schedule tables that belong to the OS Ap-
plication. Each item has an attribute NAME which is
the name of the schedule table.

COUNTERS list list of the counters that belong to the OS Applica-
tion. Each item has an attribute NAME which is the
name of the counter.

MESSAGES list list of the messages that belong to the OS Applica-
tion. Each item has an attribute NAME which is the
name of the messages.

20.1.9 The TRUSTEDFUNCTIONS list

This list contains the informations about the trusted functions of the application. Each item
contains one attribute only.

Chapter 20. The Goil templates

20.1. The configuration data 167

Item Type Content
NAME string the name of the trusted function.

20.1.10 The READYLIST list

This list contains the informations about the ready list. Items are sorted by priority from 0 to
the maximum computed priority. The only attribute of each item is the size of the queue.

Item Type Content
SIZE integer the size of the queue for the corresponding priority.

20.1.11 The SOURCEFILES, CFLAGS, CPPFLAGS, ASFLAGS, LDFLAGS and
TRAMPOLINESOURCEFILES lists

The SOURCEFILES list contains the source files as found in attributes APP_SRC of the OS object
in the OIL file. Each item in the list has one attribute.

Item Type Content
FILE string the source file name.

The CFLAGS list contains the flags for the C compiler as found in attributes CFLAGS of the OS
object in the OIL file. Each item in the list has one attribute.

Item Type Content
CFLAG string the C compiler flag.

The CPPFLAGS list contains the flags for the C++ compiler as found in attributes CPPFLAGS of
the OS object in the OIL file. Each item in the list has one attribute.

Item Type Content
CPPFLAG string the C++ compiler flag.

The ASFLAGS list contains the flags for the assembler as found in attributes ASFLAGS of the OS
object in the OIL file. Each item in the list has one attribute.

Item Type Content
ASFLAG string the assembler flag.

The LDFLAGS list contains the flags for the linker as found in attributes LDFLAGS of the OS object
in the OIL file. Each item in the list has one attribute.

Item Type Content
LDFLAG string the linker flag.

Chapter 20. The Goil templates

168 20.1. The configuration data

The TRAMPOLINESOURCEFILES list contains the trampoline source files used by the application.
Each item in the list has two attributes.

Item Type Content
DIRECTORY string the directory of the source file relative to the Trampoline root directory

(‘os’, ‘com’ or ‘autosar’).
FILE string the source file name.

20.1.12 The INTERRUPTSOURCES list

This list is extracted from the ‘target.cfg’ file. Each item has the following attributes:

Item Type Content
NAME string the name of the interrupt source. This is one of the name used in the OIL

file as value for the SOURCE attribute.
NUMBER string the id of the interrupt source.

20.1.13 Scalar data

The following scalar data are defined:

Data Type Content
APPNAME string name of executable as given in the APP_NAME attribute in

the OS object
ARCH string name of the architecture. This is the first item in the target.
ASSEMBLER string name of the assembler used. This is the ASSEMBLER attribute

in the MEMMAP attribute of the OS object. It is used for
assembler dependent templates.

ASSEMBLEREXE string name of the assembler executable used. This is the
ASSEMBLER attribute in the OS object. It is set to as by
default. It is used for build dependent templates.

AUTOSAR boolean true if Trampoline is compiled with the Autosar extension.
BOARD string name of the board. This is the third item (if any) in the

target.
CHIP string name of the chip. This is the second item (if any) in the

target.
COMPILER string name of the compiler used. This is the COMPILER attribute

in the MEMMAP attribute of the OS object. It is used for
compiler dependent templates.

COMPILEREXE string name of the compiler executable used. This is the COMPILER

attribute in the OS object. It is set to gcc by default. It is
used for build dependent templates. Do not confuse with
the COMPILER data.

CPUNAME string name given to the OIL CPU object
EXTENDED boolean true if Trampoline is compiled in extended error handling

mode.
FILENAME string the name of the file which will be written as the result of

the computation of the current template.

Chapter 20. The Goil templates

20.1. The configuration data 169

Data Type Content
FILEPATH string the full absolute path of the file which will be written as

the result of the computation of the current template.
ITSOURCESLENGTH integer number of interrupt sources as defined in the ‘target.cfg’

file.
LINKER string name of the linker used. This is the LINKER attribute in

the MEMMAP attribute of the OS object. It is used for linker
dependent templates.

LINKEREXE string name of the linker executable used. This is the LINKER

attribute in the OS object. It is set to gcc by default. It is
used for build dependent templates. Do not confuse with
the LINKER data.

LINKSCRIPT string name of the link script file as given in the MEMMAP attribute
of the OS object.

MAXTASKPRIORITY integer the highest computed priority among the tasks.
NATIVEFILEPATH string the full absolute path of the file which will be written as the

result of the computation of the current template in native
OS format.

OILFILENAME string name of the root OIL source file
PROJECT string name of the project. The name of the project is the -p

(or --project) value if it is set or the name of the oil file
without the extension.

SCALABILITYCLASS integer the Autosar scalability class used by the application. If
Autosar is not enabled, SCALABILITYCLASS is set to 0.

TARGET string name of the target. This is the -t (or --target) option
value of goil.

TEMPLATEPATH string path to the template root directory. This is the --templates

option value of goil or the value of the GOIL TEMPLATES envi-
ronment variable.

TIMESTAMP string current date
TRAMPOLINEPATH string path to the trampoline root directory. This is the

TRAMPOLINE_BASE_PATH attribute of the OS object. It de-
faults to “..”.

USEBUILDFILE boolean true if a build file is used for the project ie option -g or
--generate-makefile is given.

USECOM boolean true if the application uses OSEK COM.
USECOMPILERSETTINGS boolean true if memory mapping is enabled (Goil generates the

‘Compiler.h’ and ‘Compiler_Cfg.h’ files and Trampoline
includes them).

USEERRORHOOK boolean true if Trampoline uses the Error Hook.
USEGETSERVICEID boolean true if Trampoline uses the service ids access macros.
USEINTERRUPTTABLE boolean true if the wrapping of interrupt vector to glue functions

used to increment a counter or to activate an ISR2 (for
instance) should be generated. The actual code generation
is up to the port.

USELOGFILE boolean true if goil generates a log file, ie option -l or --logfile is
given.

USEMEMORYMAPPING boolean true if memory mapping is enabled (Goil generates the
‘MemMap.h’ file and Trampoline includes it).

Chapter 20. The Goil templates

170 20.2. The Goil template language (or GTL)

Data Type Content
USEMEMORYPROTECTION boolean true if Trampoline uses the Memory Protection.
USEOSAPPLICATION boolean true if Trampoline uses OS Applications.
USEPARAMETERACCESS boolean true if Trampoline uses the parmaters access macros.
USEPOSTTASKHOOK boolean true if Trampoline uses the Post-Task Hook.
USEPRETASKHOOK boolean true if Trampoline uses the Pre-Task Hook.
USEPROTECTIONHOOK boolean true if Trampoline uses the Protection Hook.
USERESSCHEDULER boolean true if Trampoline uses the RES SCHEDULER resource.
USESHUTDOWNHOOK boolean true if Trampoline uses the Shutdown Hook.
USESTACKMONITORING boolean true if Trampoline uses the Stack Monitoring.
USESTARTUPHOOK boolean true if Trampoline uses the Startup Hook.
USESYSTEMCALL boolean true if services are called using a System Call (i.e. a soft-

ware interrupt).
USETIMINGPROTECTION boolean true if Trampoline uses Timing Protection.
USETRACE boolean true if tracing is enabled.

20.2 The Goil template language (or GTL)

A template is a text file with file extension ‘.goilTemplate’. This kind of file mixes literal text
with an embedded program. Some instructions (see section 20.5.6) in the embedded program
outputs text as a result of the program execution and this text is put in place of the instructions.
The resulting file is then stored.

The template interpreter starts in literal text mode. Switching from literal text mode to program
mode and back to text mode is done when a ‘%’ is encountered. A literal ‘%’ and a literal ‘\’
may be used by escaping them with a ‘\’.

20.3 GTL types

GTL supports 5 types: string, integer, boolean, list and struct. The 4 first types have
readers to get informations about a variable. A reader is invokes with the following syntax:

[expression reader]

A struct is an aggregate of data. The ‘::’ allows to get a member of the struct. For instance one
of the member of TIMINGPROTECTION is TIMEFRAME so to get TIMEFRAME, the following syntax is
used:

TIMINGPROTECTION :: TIMEFRAME

20.3.1 string readers

The following readers are available for string variables:

Chapter 20. The Goil templates

20.3. GTL types 171

Item Type Meaning
HTMLRepresentation string this reader returns a representation of

the string suitable for an HTML en-
coded representation. ‘&’ is encoded
by & , ‘"’ by " , ‘<’ by <

and ‘>’ by > .
identifierRepresentation string this reader returns an unique repre-

sentation of the string conforming to
a C identifier. Any Unicode charac-
ter that is not a latin letter is trans-
formed into its hexadecimal code point
value, enclosed by ‘_’ characters. This
representation is unique: two different
strings are transformed into different
C identifiers. For example: value3 is
transformed to value_33_; += is trans-
formed to _2B__3D_; An_Identifier is
transformed to An_5F_Identifier.

lowercaseString string this reader returns lowercased represen-
tation of the string.

length integer this reader returns the number of char-
acters in the string

stringByCapitalizingFirstCharacter string if the string is empty, this reader re-
turns the empty string; otherwise, it
returns the string, the first character
being replaced with the corresponding
upper case character.

uppercaseString string this reader returns uppercased repre-
sentation of the receiver

20.3.2 boolean readers

The following readers are available for boolean variables:

Item Type Meaning
trueOrFalse string this reader returns "true" or "false" according to the boolean value
yesOrNo string this reader returns "yes" or "no" according to the boolean value
unsigned integer this reader returns 0 or 1 according to the boolean value

20.3.3 integer readers

The following readers are available for integer variables:

Item Type Meaning
string string This reader returns the integer value as a character string.
hexString string this reader returns an hexadecimal string representation of the integer

value.

Chapter 20. The Goil templates

172 20.4. GTL operators

Item Type Meaning
bitAtIndex boolean this reader takes one int argument. It returns true if the bit at the

index passed as argument is set and false if it is not set. For instance
let a := 3 let b := [a bitAtIndex: 0] set b to true because bit
0 of a is 1

setBitAtIndex integer this reader takes two arguments. The first one, the value, is a boolean
and the second one, the index, an int. it returns the integer value with
the bit at the index passed as second argument set at the value passed
as the first argument. For instance let b := [1 setBitAtIndex:

true, 4] set b to 17

20.3.4 list readers

The following reader is available for list variables:

Item Type Meaning
length integer this reader returns the number of objects currently in the list.

20.4 GTL operators

20.4.1 Unary operators

Operator Operand Type Result Type Meaning
+ integer integer no operation.
∼ integer integer bitwise not.

not boolean boolean boolean not.
exists any variable boolean true if the variable is defined, false other-

wise. But see below

A second form of exists is:

exists var default (expression)

var and expression should have the same type. If var exists, the returned value is the content
of var. If it does not exist, expression is returned.

20.4.2 Binary operators

Operator Operands Type Result Type Meaning
+ integer integer add.
- integer integer substract.
* integer integer multiply.
/ integer integer divide.

Chapter 20. The Goil templates

20.5. GTL instructions 173

Operator Operands Type Result Type Meaning
& integer integer bitwise and.
& boolean boolean boolean and.
| integer integer bitwise or.
| boolean boolean boolean or.
∧ integer integer bitwise xor.
∧ boolean boolean boolean xor.
. string string string concatenation.
<< integer integer shift left.
>> integer integer shift right.
!= any boolean comparison (different).
== any boolean comparison (equal).
< integer or boolean boolean comparison (lower than).
<= integer or boolean boolean comparison (lower or equal).
> integer or boolean boolean comparison (greater).
>= integer or boolean boolean comparison (greater or equal).

20.4.3 Constants

Constant Type Meaning
emptyList list this constant is an empty list
true boolean true boolean
false boolean false boolean
yes boolean true boolean
no boolean false boolean

20.5 GTL instructions

20.5.1 The let instruction

Data assignment instruction. The general form is:

let var := expression

A second form allows to add a string to a list (only, this should be extended in the future). The
string is added with the NAME attribute.

let var += expression

var is a list and expression is a string.

The scope of a variable depends on the location where the variable is assigned the first time. For
instance, in the following code:

let a := 1

foreach task in TASKS do

let b := INDEX

let a := INDEX

end foreach

!a !b

Chapter 20. The Goil templates

174 20.5. GTL instructions

Because a is assigned outside the foreach loop, it contains the value of the last INDEX after the
foreach. Because b is assigned inside the foreach loop, it does not exist after the loop anymore
and !b will trigger and error.

20.5.2 The if instruction

Conditional execution. The forms are:

if expression then ... end if

if expression then ... else ... end if

if expression then ... elsif expression then ... end if

if expression then ... elsif expression then ... else ... end if

The expression must be boolean. In the following example, the blue text (within the %) is
produced only if the USECOM boolean variable is true:

if USECOM then %

#include "tpl_com.h" %

end if

20.5.3 The foreach instruction

This instruction iterates on the elements of a list. Each element may have many attributes that
are available as variables within the do section of the foreach loop. The simplest form is the
following one

foreach var in expression do ... end foreach

In the following example, for each element in the ALARMS list, the text between the do and the end
foreach is produced with the NAME attribute of the current element of the ALARMS list inserted
at the specified location. INDEX is not an attribute of the current element. It is generated for
each element and ranges from 0 to the number of elements in the list minus 1.

foreach ALARMS do

%

/* Alarm % !NAME % identifier */

#define % !NAME %_id % !INDEX %

CONST(AlarmType , AUTOMATIC) % !NAME % = % !NAME %_id;

%

end foreach

A more general form of the foreach instruction is:

foreach expression prefixedby string

before ...

do ...

between ...

after ...

end foreach

prefixedby is optional and allows to prefix the attribute names by string. If the list is not
empty, the before section are executed once before the first execution of the do section. The

Chapter 20. The Goil templates

20.5. GTL instructions 175

between section is executed between the execution of the do section. If the list is not empty, the
after section is executed once after the last execution of the do section.

In the following example, a table of pointers to alarm descriptors is generated:

foreach ALARMS

before %

tpl_time_obj *tpl_alarm_table[ALARM_COUNT] = {

%

do % &% !NAME %_alarm_desc%

between %,

%

after %

};

%

end foreach

20.5.4 The for instruction

The for instruction iterates along a literal list of elements.

for var in expression , ... , expression do

...

end for

At each iteration, var gets the value of the current expression. As in the foreach instruction,
INDEX is generated and ranges from 0 to the number of elements in the list minus 1.

20.5.5 The loop instruction

The loop instruction is the classical integer loop. Its simplest form is:

loop var from expression to expression do

...

end loop

Like in the foreach instruction, before, between and after sections may be used:

loop var from expression to expression

before ...

do ...

between ...

after ...

end loop

20.5.6 The ! instruction

! emits an expression. The form is:

! expression

Chapter 20. The Goil templates

176 20.5. GTL instructions

20.5.7 The ? instruction

? stores in a variable a number of spaces equal to the current column in the output. The form
is:

? var

20.5.8 The template instruction

The template instruction includes the output of another template in the output of the current
template. Its simplest form is the following one:

template template_file_name

If the file template file name.goilTemplate does not exist, an error occurs. To include the output
of a template without generating an error, use the following form:

template if exists template_file_name

A third form allows to execute instructions when the included template file is not found:

template if exists template_file_name or ... end template

At last, it is possible to search templates in a hierarchy (code, linker, compiler, build) different
from the current one. For instance to include a template located in the linker hierarchy, use one
of the following forms:

template template_file_name in hierarchy

template if exists template_file_name in hierarchy

template if exists template_file_name in hierarchy or ... end template

In all cases, the included template inherits from the current variables table but works on its own
local copy.

20.5.9 The write instruction

The write instruction defines a block where the template processing output is captured to be
written to a file. The general form is:

write to expression :

...

end write

Where expression is a string expression.

In the following example, the result of the ‘script’ template is written to the link script file.

if exists LINKER then

write to PROJECT ."/". LINKSCRIPT:

template script in linker

end write

end if

Chapter 20. The Goil templates

20.6. Examples 177

20.5.10 The error and warning instructions

It can be useful to generate an error or a warning if a data is not defined or if it looks strange.
For instance if a target needs a STACKSIZE for a task or if the STACKSIZE is too large for a 16bit
target. error and warning have 2 forms:

error var expression

warning var expression

and

error here expression

warning here expression

expression must be of type string. In the first form, var is a configuration data. The file location
of this configuration may be a location in the OIL file or in the template file if the variable was
assigned in the template. In the second form, here means the current location in the template
file.

In the following example an error is generated for each task with not STACKSIZE attribute in the
OIL file:

foreach TASKS do

if not exists STACKSIZE then

error NAME "STACKSIZE of Task " . NAME . " is not defined"

end if

end foreach

In this second example, a warning is generated if a template is not found:

template if exists interrupt_wrapping or

warning here "interrupt_wrapping.goilTemplate not found"

end template

20.6 Examples

Here are examples of code generation using GTL.

20.6.1 Computing the list of process ids

foreach PROCESSES do

if PROCESSKIND == "Task" then

%

/* Task % !NAME % identifier */

#define % !NAME %_id % !INDEX %

CONST(TaskType , AUTOMATIC) % !NAME % = % !NAME %_id;

%

else

%

/* ISR % !NAME % identifier */

#define % !NAME %_id % !INDEX

Chapter 20. The Goil templates

178 20.6. Examples

if AUTOSAR then

#

ISR ids constants are only available for AUTOSAR

#

%

CONST(ISRType , AUTOMATIC) % !NAME % = % !NAME %_id;

%

end if

end if

end foreach

20.6.2 Computing an interrupt table

if USEINTERRUPTTABLE then

loop ENTRY from 0 to ITSOURCESLENGTH - 1

before

%

#define OS_START_SEC_CONST_UNSPECIFIED

#include "tpl_memmap.h"

CONST(tpl_it_vector_entry , OS_CONST)

tpl_it_table [% !ITSOURCESLENGTH %] = {

%

do

let entryFound := false

foreach INTERRUPTSOURCES prefixedby interrupt_ do

if ENTRY == interrupt_NUMBER then

check first for counters

foreach HARDWARECOUNTERS prefixedby counter_ do

if counter_SOURCE == interrupt_NAME & not entryFound then

% { tpl_tick_% !interrupt_NAME %, (void *)NULL }%

let entryFound := true

end if

end foreach

if not entryFound then

foreach ISRS2 prefixedby isr2_ do

if isr2_SOURCE == interrupt_NAME & not entryFound then

% { tpl_central_interrupt_handler_2 , (void *)%

!([TASKS length] + INDEX) % }%

let entryFound := true

end if

end foreach

end if

end if

end foreach

if not entryFound then

% { tpl_null_it , (void *)NULL }%

end if

between %,

%

after

%

};

#define OS_STOP_SEC_CONST_UNSPECIFIED

Chapter 20. The Goil templates

20.6. Examples 179

#include "tpl_memmap.h"

%

end loop

end if

20.6.3 Generation of all the files

This is the default ‘root.goilTemplate’ file

write to PROJECT ."/ tpl_app_config.c":

template tpl_app_config_c in code

end write

write to PROJECT ."/ tpl_app_config.h":

template tpl_app_config_h in code

end write

write to PROJECT ."/ tpl_app_define.h":

template tpl_app_define_h in code

end write

if exists COMPILER then

write to PROJECT ."/ MemMap.h":

template MemMap_h in compiler

end write

write to PROJECT ."/ Compiler.h":

template Compiler_h in compiler

end write

write to PROJECT ."/ Compiler_Cfg.h":

template Compiler_Cfg_h in compiler

end write

end if

if exists LINKER then

write to PROJECT ."/". LINKSCRIPT:

template script in linker

end write

end if

Chapter 20. The Goil templates

INDEX

ActivateTask, 26, 28, 38, 40, 120, 123, 143, 150
ALARM COUNT, 104
APP COUNT, 104
AUTOSAR SC, 107
AUTOSTART, state of a task, 34, 46

BASIC, compilation with no extended error check-
ing, 26, 33, 35, 37, 45, 46, 105, 111

CallTrustedFunction, 129, 131, 132
ChainTask, 26, 29, 38, 42, 127, 148
ClearEvent, 55
Compiler.h, 102
Compiler Cfg.h, 102
Configuration macros, 104

ALARM COUNT, 104
APP COUNT, 104
AUTOSAR SC, 107
COUNTER COUNT, 104
EXTENDED TASK COUNT, 104
ISR COUNT, 104
PRIO LEVEL COUNT, 104
RECEIVE MESSAGE COUNT, 104
RES SCHEDULER PRIORITY, 104
RESOURCE COUNT, 104
SCHEDTABLE COUNT, 104
SEND MESSAGE COUNT, 104
TASK COUNT, 104
TPL COMTIMEBASE, 108
TRACE ALARM, 107
TRACE FILE, 107
TRACE FORMAT, 107
TRACE ISR, 107
TRACE RES, 107
TRACE TASK, 107
TRACE U EVENT, 107
TRAMPOLINE BASE PATH, 107

TRUSTED FCT COUNT, 104
WITH AUTOSAR, 107
WITH COM, 108
WITH COM ERROR HOOK, 105
WITH COM EXTENDED, 105
WITH COM STARTCOMEXTENSION, 108
WITH COM USEGETSERVICEID, 105
WITH COM USEPARAMETERACCESS,

105
WITH COMPILER SETTINGS, 107
WITH ERROR HOOK, 105, 106
WITH IT TABLE, 108
WITH MEMMAP, 107
WITH MEMORY PROTECTION, 106
WITH OS EXTENDED, 105
WITH OSAPPLICATION, 107
WITH POST TASK HOOK, 106
WITH PRE TASK HOOK, 106
WITH PROTECTION HOOK, 106
WITH SHUTDOWN HOOK, 106
WITH STACK MONITORING, 106
WITH STARTUP HOOK, 106
WITH SYSTEM CALL, 107
WITH TIMING PROTECTION, 106
WITH TRACE, 107
WITH USEGETSERVICEID, 105
WITH USEPARAMETERACCESS, 105
WITH USERESSCHEDULER, 107

COUNTER COUNT, 104

DeclareApplicationMode, 23
DeclareResource, 51
DeclareTask, 28, 40

ExitTrustedFunction, 129, 130, 132
EXTENDED, compilation with extended error

checking, 26, 33, 37, 45, 105, 111

180

Index 181

EXTENDED TASK COUNT, 104

GetActiveApplicationMode, 23, 24
GetEvent, 55
GetResource, 52
GetTaskID, 31, 43
GetTaskState, 32, 44
goil, The OIL/arXML compiler of Trampoline,

15, 16, 19, 22, 24, 47, 51, 76, 93, 95–
98, 101–104, 107, 108

ISR COUNT, 104

MemMap.h, 102

NextShutdownHook, 57, 134
NextStartupHook, 57, 134

OS Application, 107

PRIO LEVEL COUNT, 104
PRIORITY, 27, 38
process, a task, basic or extended, or an ISR

category 2, 25

READY, state of a task, 25–28, 30, 33, 37, 38,
40, 42, 45, 53, 54, 88

READY AND NEW, state of a task, 34, 46
RECEIVE MESSAGE COUNT, 104
ReceiveMessage, 69
ReleaseResource, 52
RES SCHEDULER PRIORITY, 104
RESOURCE COUNT, 104
RUNNING, state of a task, 25, 26, 28, 31, 33,

34, 37, 38, 40, 43, 44, 46, 50, 53, 88,
113

Scalability class, 107
SCHEDTABLE COUNT, 104
SCHEDULE, 27, 38
Schedule, 27, 31, 38, 43, 50
script.ld, 102
SEND MESSAGE COUNT, 104
SetEvent, 54
ShutdownOS, 22, 106, 117
StartOS, 21–24, 34, 35, 46, 106, 117, 120
SUSPENDED, state of a task, 25, 26, 30, 33,

37, 38, 42, 45, 55, 56, 88, 89
system generation tool, the tool that takes as

an input a description of the system
(in OIL or in XML) to generate the

corresponding .c and .h files., 54, 57,
111, 133

TASK COUNT, 104
TerminateTask, 26, 28, 30, 38, 39, 42, 127, 148
tpl app config.c, 102
tpl app config.h, 101
tpl app custom types.h, 102
tpl app define.c, 108
tpl app define.h, 101, 104, 108
TPL COMTIMEBASE, 108
tpl dispatch table.c, 102
tpl invoque.S, 102
tpl service ids.h, 102
TRACE ALARM, 107
TRACE FILE, 107
TRACE FORMAT, 107
TRACE ISR, 107
TRACE RES, 107
TRACE TASK, 107
TRACE U EVENT, 107
TRAMPOLINE BASE PATH, 107
TRUSTED FCT COUNT, 104

WaitEvent, 26, 38, 50, 55
WAITING, state of a task, 25, 26, 33, 37, 38,

45, 53, 55, 88
WITH AUTOSAR, 107
WITH COM, 108
WITH COM ERROR HOOK, 105
WITH COM EXTENDED, 105
WITH COM STARTCOMEXTENSION, 108
WITH COM USEGETSERVICEID, 105
WITH COM USEPARAMETERACCESS, 105
WITH COMPILER SETTINGS, 107
WITH ERROR HOOK, 105, 106
WITH IT TABLE, 108
WITH MEMMAP, 107
WITH MEMORY PROTECTION, 106
WITH OS EXTENDED, 105
WITH OSAPPLICATION, 107
WITH POST TASK HOOK, 106
WITH PRE TASK HOOK, 106
WITH PROTECTION HOOK, 106
WITH SHUTDOWN HOOK, 106
WITH STACK MONITORING, 106
WITH STARTUP HOOK, 106
WITH SYSTEM CALL, 107
WITH TIMING PROTECTION, 106
WITH TRACE, 107

Index

182 Index

WITH USEGETSERVICEID, 105
WITH USEPARAMETERACCESS, 105
WITH USERESSCHEDULER, 107

Index

BIBLIOGRAPHY

[1] Programming Environments Manual for 32-Bit Implementations of the PowerPCTM Archi-
tecture, chapter 8, pages 8–157. Freescale semiconductor, rev. 3 edition, September 2005.

[2] AUTOSAR. Specification of compiler abstraction. Technical report, AUTOSAR GbR, August
2008. http://autosar.org/download/R3.1/AUTOSAR_SWS_CompilerAbstraction.pdf.

[3] AUTOSAR. Specification of memory mapping. Technical report, AUTOSAR GbR, June
2008. http://autosar.org/download/R3.1/AUTOSAR_SWS_MemoryMapping.pdf.

[4] AUTOSAR. Specification of compiler abstraction. Technical report, AUTOSAR, October
2018.

[5] Microcontroller Applications IBM Microelectronics. Developing powerpc embedded applica-
tion binary interface (eabi) compliant programs. Technical report, IBM, Research Triangle
Park, NC, September 1998.

[6] Consortium OSEK/VDX. OSEK/VDX Operating System, 2.2.3 edition, 17th February 2005.

[7] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inheritance protocols: An approach to
real-time synchronization. IEEE Trans. Comput., 39(9):1175–1185, 1990.

183

http://autosar.org/download/R3.1/AUTOSAR_SWS_CompilerAbstraction.pdf
http://autosar.org/download/R3.1/AUTOSAR_SWS_MemoryMapping.pdf

	I The Real-Time Operating System
	Getting started
	Setting up the environment
	Compiling goil
	Compiling ViPer (POSIX target only)

	First Application: one_task
	Application source
	Build and run

	Operating System Execution
	Configuration Options
	System Services
	StartOS
	ShutdownOS

	Application Modes Declarations
	Application Modes Services
	DeclareApplicationMode
	GetActiveApplicationMode

	Implementation

	Tasks
	States a task
	The scheduling
	Writing the code of a task
	Tasks services
	DeclareTask
	ActivateTask
	ChainTask
	TerminateTask
	Schedule
	GetTaskID
	GetTaskState

	Inside Task management
	Static attributes
	Dynamic attributes
	Additional task states

	The idle task

	Alarms
	States a task
	The scheduling
	Writing the code of a task
	Tasks services
	DeclareTask
	ActivateTask
	ChainTask
	TerminateTask
	Schedule
	GetTaskID
	GetTaskState

	Inside Task management
	Static attributes
	Dynamic attributes
	Additional task states

	The idle task

	Resources
	OSEK Priority Ceiling Protocol
	The RES_SCHEDULER resource
	Standard and Internal Resources
	Nested resources accesses
	OIL description
	Resources services
	DeclareResource
	GetResource
	ReleaseResource

	Events
	OIL description
	Events services
	SetEvent
	WaitEvent
	GetEvent

	OS Applications
	Execution of the OS Applications startup and shutdown hooks

	Timing Protection Implementation
	Low Level Functions
	FRT related functions
	TPT related functions

	Schedule Table Implementation
	The States of a Schedule Table
	Processing a Schedule Table

	The communication library
	Implementation
	Sending Message Objects
	Receiving Message Objects

	The Inter OS-application Communication Library
	IOC declaration in OIL
	Implementation

	Memory mapping
	Memory mapping directives
	The memory sections

	Tracing the execution
	Traced events
	OIL declaration
	Generic part
	Target specific part

	Using the tracing subsystem
	Implementation
	Implementing target specific backends
	Binary format
	How to port trace to another target

	Debugging an application
	Command generation
	Examining the tasks
	Examining the resources
	Examining the alarms
	Examining the counters
	Examining the tpl_kern structure
	Examining the tpl_ready_list structure

	Building a Trampoline application
	Main OIL file
	Build system
	Python build
	CMake build system

	Goil related features
	Compilation flags
	Additionnal files
	Libraries
	Additionnal build target

	II Trampoline RTOS internals
	System generation and compilation
	The generated files
	The Configuration Macros
	Number of objects macros
	Error Handling Macros
	Protection Macros
	Hook call macros
	Miscellaneous macros

	Application configuration
	Counter related constants declaration
	Events definition
	Standard resources definition
	Tasks definition

	Kernel Implementation
	The tpl_kern structure
	Ready list implementation

	Porting Trampoline
	Adding files to the directory structure
	Using a target with goil
	Target specific code
	Functions called by Trampoline
	Service call
	Interrupt management

	Target specific structures
	Code templates
	Structures initialization templates
	The memory mapping and the link script templates

	Ports details
	Posix
	Overview
	Monocore
	Multicore

	PowerPC
	System services
	Dispatching the service call
	Interrupt handler
	The CallTrustedFunction service
	The ExitTrustedFunction service
	Execution of the OS Applications startup and shutdown hooks
	The MPC5510 Memory Protection Unit

	ARM – Common conventions
	File hierarchy
	Common definitions
	Bootstraping
	Stacks
	Interrupt management

	ARM – ARM926 chip support
	Memory protection
	CPU cache support

	ARM – Armadeus APF27 board
	Debugging with Abatron BDI2000 or BDI3000 JTAG probe
	Configuration
	Memory mapping
	Memory protection

	ARM – Simtec EB675001 board
	Memory map and hardware resources
	Booting
	Internal kernel drivers
	Hardware interrupts handling
	Idle task
	Exceptions handling
	Kernel sleep service

	ARM - Cortex
	Overview
	System services
	Dispatching the service call
	Interrupt handler
	The CallTrustedFunction service
	The ExitTrustedFunction service
	Execution of the OS Applications startup and shutdown hooks
	Memory protection
	Monocore
	Multicore

	AVR8
	System services
	Dispatching the service call
	Context
	Context switch
	Context init
	Interrupts

	Arduino Port
	Main adaptation
	Goil adaptation
	System Counter

	III The Goil system generator
	The Goil templates
	The configuration data
	The PROCESSES, TASKS, BASICTASKS, EXTENDEDTASKS, ISRS1 and ISRS2 lists
	The COUNTERS, HARDWARECOUNTERS and SOFTWARECOUNTERS lists
	The EVENTS list
	The ALARMS list
	The REGULARRESOURCES and INTERNALRESOURCES lists
	The MESSAGES, SENDMESSAGES and RECEIVEMESSAGES lists
	The SCHEDULETABLES list
	The OSAPPLICATIONS list
	The TRUSTEDFUNCTIONS list
	The READYLIST list
	The SOURCEFILES, CFLAGS, CPPFLAGS, ASFLAGS, LDFLAGS and TRAMPOLINESOURCEFILES lists
	The INTERRUPTSOURCES list
	Scalar data

	The Goil template language (or GTL)
	GTL types
	string readers
	boolean readers
	integer readers
	list readers

	GTL operators
	Unary operators
	Binary operators
	Constants

	GTL instructions
	The let instruction
	The if instruction
	The foreach instruction
	The for instruction
	The loop instruction
	The ! instruction
	The ? instruction
	The template instruction
	The write instruction
	The error and warning instructions

	Examples
	Computing the list of process ids
	Computing an interrupt table
	Generation of all the files

