
E OK success
E OS ACCESS† the caller isn’t an extended task
E OS RESOURCE† the caller hold a resource
E OS CALLEVEL† the caller is not a task

Resources

GetResource(rez id)

Get resource rez id. The priority of the caller is raised
to the priority of the resource if higher. Returns:

E OK success
E OS ID† resource rez id does not exist
E OS ACCESS† the caller try to get a resource al-

ready held

ReleaseResource(rez id) on

Release resource rez id. The priority of the caller re-
turns to the priority it had before. Returns:

E OK success
E OS ID† resource rez id does not exist
E OS NOFUNC† the caller try to release a resource it

does not hold
E OS ACCESS† the caller try to release a resource

with a priority lower than the caller
one

Messages

SendMessage(mess id, data ref ) on

Send message mess id. data ref is a pointer to a vari-
able containing the data to send. Returns:

E OK success
E COM ID† message mess id does not exist or has

the wrong type

SendZeroMessage(mess id) on

Send signalization message mess id. Returns:

E OK success
E COM ID† message mess id does not exist or has

the wrong type

ReceiveMessage(mess id, data ref )

Receive message mess id. data ref is a pointer to a
variable where the data are copied.

E OK success
E COM ID† message mess id does not exist or

has the wrong type
E COM NOMSG message mess id is queued and the

queue is empty
E COM LIMIT message mess id is queued and the

queue has overflown

GetMessageStatus(mess id)

Returns the status of a message:

E COM ID† message mess id does not exist
E COM NOMSG message mess id is queued and the

queue is empty
E COM LIMIT message mess id is queued and the

queue has overflown
E OK none of the above

Interrupts

DisableAllInterrupt()

Disable all the interrupt sources. Cannot be nested.

EnableAllInterrupt()

Enable all the interrupt sources. Cannot be nested.

SuspendAllInterrupt()

Suspend all the interrupt sources. Can be nested.

ResumeAllInterrupt()

Resume all the interrupt sources. Can be nested.

SuspendOSInterrupt()

Suspend the interrupt sources of ISR2. Can be nested.

ResumeOSInterrupt()

Resume the interrupt sources of ISR2. Can be nested.

Osek QRDC

Jean-Luc Béchennec – LS2N

v1.0 – September 2018

Data types
StatusType error code returned by a service
AppModeType an application mode
TaskType identifier of a task
TaskStateType state of a task (SUSPENDED, READY,

RUNNING or WAITING)
AlarmType identifier of an alarm
AlarmBaseType counter attributes
TickType number of ticks
EventMaskType a set of events
ResourceType identifier of a resource
MessageType identifier of a message

Services
Each service returns an error code except
GetActiveApplicationMode. If the OS has been
compiled in Extended configuration additional
error codes may be returned and are suffixed by a †.
Services suffixed by a on lead to a rescheduling.

Operating system

StartOS(app mode)

Start the operating system in application mode app -
mode. Does not return.

ShutdownOS(error)

Shutdown the operating system with error code error.
Does not return.

GetActiveApplicationMode()

Returns the application mode used to start the oper-
ating system.



Tasks

ActivateTask(task id) on

Activate task task id. If task task id has a priority
greater than the caller priority, the caller is preempted.
Returns:

E OK success
E OS LIMIT too many activation of task id
E OS ID† task task id does not exist

TerminateTask() on

Terminate the caller. Returns:

E OK success
E OS RESOURCE† the caller hold a resource
E OS CALLEVEL† the caller is not a task

ChainTask(task id) on

Terminate the caller and activate task id. Returns:

E OK success
E OS LIMIT too many activation of task id
E OS ID† task task id does not exist
E OS RESOURCE† the caller hold a resource
E OS CALLEVEL† the caller is not a task

Schedule() on

Call the scheduler. Returns:

E OK success
E OS RESOURCE† the caller hold a resource
E OS CALLEVEL† the caller is not a task

GetTaskID(task id ref )

Get the task identifier of the task which is currently
running. task id ref is a pointer to a TaskType variable
where the task identifier of the running task is written.
Returns:

E OK success

GetTaskState(task id, task state ref )

Get the task state of task task id. task state ref is
a pointer to a TaskState variable where the state is
written. Returns:

E OK success
E OS ID† task task id does not exist

Alarms

GetAlarm(alarm id, tick ref )

Get the remaining tick count of alarm alarm id before
the alarm reaches the date. tick ref is a pointer to
a TickType variable where the remaining tick count is
written. Returns:

E OK success
E OS NOFUNC alarm alarm id is not started
E OS ID† alarm alarm id does not exist

GetAlarmBase(alarm id, info ref )

Get the information about the underlying counter
of alarm alarm id. info ref is a pointer to a
AlarmBaseType variable where the information is writ-
ten. A AlarmBaseType is a struct with 3 fields:
maxallowedvalue, ticksperbase and mincycle. Returns:

E OK success
E OS ID† alarm alarm id does not exist

SetRelAlarm(alarm id, offset, cycle)

Start alarm alarm id. After offset ticks the alarm ex-
pire and its action is executed. offset shall be > 0. If
cycle is > 0 the alarm is restarted and expire every
cycle ticks. Both offset and cycle shall ∈ [MINCYCLE,
MAXALLOWEDVALUE]. Returns:

E OK success
E OS NOFUNC alarm alarm id is already started
E OS ID† alarm alarm id does not exist
E OS VALUE† offset and/or cycle out of bounds

SetAbsAlarm(alarm id, date, cycle)

Start alarm alarm id. At next counter date the alarm
expire and its action is executed. If cycle is > 0 the
alarm is restarted and expire every cycle ticks. date
shall be ≤ MAXALLOWEDVALUE. offset shall ∈ [MINCYCLE,
MAXALLOWEDVALUE]. Returns:

E OK success

E OS NOFUNC alarm alarm id is already started
E OS ID† alarm alarm id does not exist
E OS VALUE† date and/or cycle out of bounds

CancelAlarm(alarm id)

Stop alarm alarm id. Returns:

E OK success
E OS NOFUNC alarm alarm id is not started
E OS ID† alarm alarm id does not exist

Events

SetEvent(task id, event mask) on

Set event(s) event mask to task task id. If task task id
was waiting for one of the events of event mask and
it has a higher priority than the caller, the caller is
preempted. Returns:

E OK success
E OS ID† task task id does not exist
E OS ACCESS† task task id is not an extended task
E OS STATE† task task id is in SUSPENDED state

ClearEvent(event mask)

Clear the event(s) of the caller according to events set
in event mask. Returns:

E OK success
E OS ACCESS† the caller is not an extended task
E OS CALLEVEL† the caller is not a task

GetEvent(task id, event mask ref )

Get a copy of the event mask of task task id. event -
mask ref is a pointer to an EventMaskType variable
where the copy is written. Returns

E OK success
E OS ID† task task id does not exist
E OS ACCESS† task task id is not an extended task
E OS STATE† task task id is in SUSPENDED state

WaitEvent(event mask) on

If the none of the events in event mask is set in the
event mask of the caller, the caller is put in the WAITING

state. Returns:


