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This document describes the small version for the CPUX of the Trampoline port on
MSP430, which assumes that the code is hosted in the first 64kB of memory and therefore
the addresses are stored on 16-bit words. Instruction set of the MSP430X is available in
[4] or [3].

1 Multitasking

1.1 ABI

In [2] a change has been made in GCC so that it conforms to the ABI defined in [1] and
becomes compatible with the proprietary Texas Instruments compiler. So there are two
GCC compilers for MSP430: the one that does not conform to the ABI defined by Texas
Instruments, MSPGCC, and the one that does conform to the ABI, GCC compiler for
MSP.

As it is difficult to support both ABIs simultaneously, it was decided to support both
ABIs at compile time. A precompiled MSPGCC is available in the latest version of En-
ergia1. Energia can be downloaded at https://energia.nu. A precompiled GCC compiler
for MSP is available at http://www.ti.com/tool/msp430-gcc-opensource.

In both ABIs the registers used to pass arguments to functions are r12, r13, r14 and r15.
In the ABI of MSPGCC, r15 is the first argument, r14 the second and so on. If a function
returns a value, it is placed in r15. In the ABI of GCC compiler for MSP r12 is the first
argument, r13 the second and so on. If a function returns a value, it is placed in r12. No
Trampoline service uses more than 3 arguments and therefore r12, for MSPGCC ABI, or
r15, for GCC compiler for MSP ABI, is available to pass the service ID into the wrapper.

Adapting to both ABIs at compile time is not very complicated. This involves exchang-
ing the use made of the registers r12, identifying the service, and r15, the return value of
the service and the argument of tpl_run_elected. This can be done by defining an abstract
register to pass the service identifier and an abstract register to return the return value
of the service. The register selection can be made using the preprocessor and the macro

1GCC 4.6.3.
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__GXX_ABI_VERSION as shown at Figure 1. This macro is 1002 for MSPGCC and 1011 for GCC
compiler for MSP. 2 abstract registers are defined: REG_SID which is r12 in MSPGCC ABI
and r15 in GCC compiler for MSP ABI, and REG_RETARG which is r15 in MSPGCC ABI and
r12 in GCC compiler for MSP ABI.

Figure 1: ABI selection with C preprocessor macros

#if __GXX_ABI_VERSION == 1002

/* MSPGCC ABI */

#define MSPGCC_ABI

#define REG_SID r12

#define REG_RETARG r15

#define REG_RETARG_OFFSET 8

#elif __GXX_ABI_VERSION == 1011

/* GCC compiler for MSP ABI */

#define GCCFORMSP_ABI

#define REG_SID r15

#define REG_RETARG r12

#define REG_RETARG_OFFSET 2

#else

#error "Unsupported ABI"

#endif

The following table summarizes the use of the registers in both ABIs if we consider all
arguments are small enough to be stored in one register. Although r11 is volatile in one of
them, for simplification purposes later on, r11 is considered as non-volatile. A preserved
register is noted P and a Volatile register is noted V.

Register MSPGCC GCC compiler for MSP

r0 Program Counter, saved on stack by cpu

r1 Stack Pointer

r2 Status Register

r3 Constants Generator

r4-r10 Not preserved by the callee

r11 V P

r12 V, argument 4 V, argument 1, return value

r13 V, argument 3 V, argument 2

r14 V, argument 2 V, argument 3

r15 V, argument 1, return value V, argument 4

It can be noted that the arguments being passed through the low weight 16 bits of the
registers, except perhaps for the far pointers, the arguments of the Trampoline services
must fit on 16 bits. This limits the tick argument of the services related to alarms to 16
bits.
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1.2 Stack

A service call is done using the br instruction in the service call wrapper to prevent 2 nested
call and fold the ret instruction. The service identifier is passed to the service call handler
through the REG_SID register. So a service call wrapper is as shown in listing at figure 2.

Figure 2: Service wrapper

mov #<service_id >, REG_SID /* put the service id in the ad -hoc reg */

br #tpl_sc_handler /* branch to the service call handler */

When in the tpl_sc_handler the stack is as shown at figure 32. PTOS stands for Process
Top Of Stack.

Figure 3: Stack at beginning of tpl_sc_handler

saved PCSP→ PTOS+0

PTOS+2

When an interrupt is taken into account, the PC and the SR are pushed on the stack.
To save space, the SR is stored in the same 16-bit word as bits 19..16 of PC. For an obscure
reason, words are in reverse order and bits 19..16 of PC are in high bits. Since all the code
is in the first 64kb of the memory, bits 19 to 16 of the PC are always 0. The stack is shown
at figure 4.

Figure 4: Stack in an interrupt handler

saved PC [15..0]

saved PC [19..16] saved SR [11..0]SP→ PTOS+0

PTOS+2

Preemption cases

A preemption can be synchronous or asynchronous. A synchronous preemption (SP) hap-
pens when a service call is done, for instance when a task activates a higher priority task.
An asynchronous preemption (AP) happens under interrupt, for instance when a higher

2stacks are drawn with the lower address up so they are growing upward, not downward. Each stack
location is a 16 bits word.
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priority task is activated by an alarm. A preempted task may resume its execution follow-
ing a synchronous event (SR) : the running task calls TerminateTask, ChainTask, WaitEvent or
SetEvent or following an asynchronous event (AR) : an alarm does a SetEvent. So there are
4 cases:.

SPSR Synchronous Preemption, Synchronous Resume. τ1 is running, τ2 is ready. P (τ1) >
P (τ2). τ1 calls WaitEvent and is preempted synchronously, τ2 becomes running and
calls SetEvent. τ2 is preempted and τ1 is resumed synchronously.

SPAR Synchronous Preemption, Asynchronous Resume. τ1 calls WaitEvent ans is syn-
chronously preempted, An alarm does a SetEvent on τ1 which is asynchronously re-
sumed.

APSR Asynchronous Preemption, Synchronous Resume. τ1 is running, τ2 is suspended.
P (τ1) < P (τ2). An alarm activates τ2, τ1 is asynchronously preempted, τ2 calls
TerminateTask, τ1 is synchronously resumed.

APAR Asynchronous Preemption, Asynchronous Resume. τ1 is running, τ2 is suspended.
P (τ1) < P (τ2). An alarm activates τ2, τ1 is asynchronously preempted. τ2 is termi-
nated by the OS because of protection fault, for instance a timing protection interrupt
and τ1 is asynchronously resumed.

So the stack frame has to be normalized. The normalized stack frame is the asyn-
chronous one shown at figure 4 because it contains the Status Register. Normalization is
done at the beginning of the tpl_sc_handler. The end of the tpl_sc_handleris done using the
reti instruction, as at the end of an interrupt.

The normalized stack frame may be done only when a context is saved to prevent a
normalization if there is no context switch. However, the load of the context is much
complicated, as the restauration of r2 (aka status register) in the tpl_sc_handlerre-enable
the interrupts before the end of the function.

1.3 The tpl sc handler

The background color of the code snippets depends on the current active stack:

green process stack

red kernel stack

yellow either kernel or process stack

The first thing to do is to compare the service id to the number of services to verify its
validity.
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cmp #SYSCALL_COUNT , REG_SID

jlo tpl_sc_handler_id_ok /* continue if lower */

ret /* return if higher or same */

tpl_sc_handler_id_ok:

Disable interrupts so that the kernel cannot be interrupted. Check the reentrancy
flag. If it is not zero, it means the service is called from a hook and has to be processed
differently.

dint

tst.b &tpl_reentrancy_flag

jnz tpl_sc_handler_from_hook

We need to have the same stack pattern for both the tpl_sc_handler and an interrupt
handler which calls the operating system. So we push the SR and we reset the 4 higher
bits (high weight of PC, not sure it is needed) and set GIE in the saved SR.

push sr

bic.b #0xF0 , 1(sp) /* reset the 4 higher bits of saved SR */

bis.b #0x08 , 0(sp) /* set the GIE bit in the saved SR */

The stack is then as follow:

saved PC

saved SR0 0 0 0SP→ PTOS+0

PTOS+2

Obviously volatile registers (r12 to r15 because we take into account both ABIs) are
not saved in tpl_sc_handler since the caller does not expect their values to be preserved but
we need to make room (8 bytes) on the stack for them because an interrupt handler will
save these registers at this location. However register names appear in figures but are in
italic. Either r12 if MSPGCC ABI is used or r15 if GCC for MSP ABI is used is for the
REG_RETARG which is not saved yet.

sub #8, sp

The tpl_sc_handler needs one working register and we choose to use r11 which has to
be saved on the process stack before using it.

push r11

At that stage the stack is shown in figure 5.
Before calling the service, we setup the kernel stack. The process stack pointer (PSP)

is saved in r11, then SP is loaded to the kernel stack bottom and the PSP is saved on the
kernel stack.
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Figure 5: Stack shape before calling the service

saved r11

saved PC

saved SR0 0 0 0

saved r13

saved r14

saved r12 - will hold REG RETARG in GCC for MSP ABI

saved r15 - will hold REG RETARG in MSPGCC ABI

SP→ PTOS+0

PTOS+2

PTOS+4

PTOS+6

PTOS+8

PTOS+10

PTOS+12

mov r1 ,r11

mov #tpl_kern_stack_bottom , r1

push r11

The kernel stack is as follow (KTOS stands for Kernel Top Of Stack):

saved PSPSP→ KTOS+0

Init the NEED_SWITCH/SAVE in tpl_kern.

mov #tpl_kern , r11

mov.b #NO_NEED_SWITCH_NOR_SCHEDULE , TPL_KERN_OFFSET_NEED_SWITCH(r11)

mov.b #NO_NEED_SWITCH_NOR_SCHEDULE , TPL_KERN_OFFSET_NEED_SCHEDULE(r11)

Call the service. The reentrancy flag is incremented before and decremented after.

inc.b &tpl_reentrancy_flag /* surround the call by inc ... */

rla REG_SID /* index -> offset */

call tpl_dispatch_table(REG_SID)

dec.b &tpl_reentrancy_flag /* ... and dec of the flag. */

From there, REG_RETARG holds the return value. It is put at its location in the process
stack. Also r13 and r14 become usable whatever is the ABI.

pop r13 /* get back PSP => r13. */

mov REG_RETARG , REG_RETARG_OFFSET(r13) /* put in Process ’s stack */

Check the context switch condition in tpl_kern.
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mov #tpl_kern , r11

tst.b TPL_KERN_OFFSET_NEED_SWITCH(r11)

jz tpl_sc_handler_no_context_switch

1.3.1 Branch of context switching

Prepare the call to tpl_run_elected by setting REG_RETARG to 0, aka no save.

mov #0, REG_RETARG

Test the NEED_SAVE condition.

bit.b #NEED_SAVE , TPL_KERN_OFFSET_NEED_SWITCH(r11)

jz tpl_sc_handler_no_save_running_context

Save the context. The MSP430 have a “push multiple words”, but no “move multiple
word”. So, we get back to process stack to benefit this instruction

mov r1 , r14 /* get a copy of the KSP to restore it later */

mov r13 , r1 /* change stack to process stack */

pushm.w #7, r10 /* Push r4 to r10 on process stack (save) */

The whole context is now saved on process stack and the kernel stack has been cleaned.
The saved context structure is shown at figure 6.

Now the stack pointer is saved in the dedicated location.

mov &tpl_kern , r11 /* Get the s_running slot of tpl_kern in r11 */

mov @r11 , r11 /* Get the pointer to the context (SP alone) */

mov r1 , @r11 /* Save the stack pointer */

Prepare the argument of tpl_run_elected : 1 (aka save) and call it after switching back
to the kernel stack.

mov r14 , r1 /* get back to kernel stack */

mov #1, REG_RETARG

tpl_sc_handler_no_save_running_context:

call tpl_run_elected

tpl_run_elected has copied the elected process slot of tpl_kern to the running slot. We
load the stack pointer of the new running process.

mov &tpl_kern , r11 /* Get the s_running slot of tpl_kern in r11 */

mov @r11 , r11 /* Get the pointer to the context (SP alone) */

mov @r11 , r1 /* Get the stack pointer */

Now, the context of the new running process is loaded. At start it has the same pattern
as the one shown at figure 6. Registers r4 to r15 are popped and we return.
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Figure 6: Context saved on stack

saved r4

saved r5

saved r6

saved r7

saved r8

saved r9

saved r10

saved r11

saved PC

0 0 0 0 saved SR

saved r12 - REG RETARG in GCC for MSP ABI

saved r13

saved r14

saved r15 - will hold REG RETARG in MSPGCC ABI

SP→ PTOS+0

PTOS+2

PTOS+4

PTOS+6

PTOS+8

PTOS+10

PTOS+12

PTOS+14

PTOS+16

PTOS+18

PTOS+20

PTOS+22

PTOS+24

PTOS+26

popm.w #12,r15 /* Pop r4 to r15 at once */

reti /* and return with interrupts enabled */

1.3.2 Branch of No context switching

In case of no context switch, we have to get to the process stack, stored in r13

tpl_sc_handler_no_context_switch:

mov r13 , r1 /* get back to process stack */

Here we have the stack shaped as shown at figure 5. REG_RETARG is restored, r11 is
restored, the stack is cleaned and we return. Interrupts are enabled at that time.

mov REG_RETARG_OFFSET(r1), REG_RETARG /* get back REG_RETARG */

pop r11 /* get back r11 */

add #8, r1 /* clean the stack */

reti /* return with int enabled */
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1.3.3 Branch when the sc handler is called from hook

Here we are on the kernel stack already and the pc has been pushed on the stack by the
call. REG_SID contains the identifier of the service and the 3 other registers contain the
arguments if any. We do not need to do complicated stuff here because we have no context
switch to do. We only call the service then return and that’s it.

tpl_sc_handler_from_hook:

rla REG_SID /* index -> offset */

call tpl_dispatch_table(REG_SID)

ret

1.4 Context initialisation

The context that shoud be set during the task’s initialisation (tpl_init_context) is the one
of the figure 6, but with a call to either CallTerminateTask or CallTerminateISR2 as return
address of the task/ISR2 function, depending of the type of the process to init.

Figure 7: Context initialization

r4

r5

r6

r7

r8

r9

r10

r11

PC

0 0 0 0 SR

r12 - REG RETARG in GCC for MSP ABI

r13

r14

r15 - REG RETARG in MSPGCC ABI

CallTerminateTask/CallTerminateISR2

SP→ PTOS+0

PTOS+2

PTOS+4

PTOS+6

PTOS+8

PTOS+10

PTOS+12

PTOS+14

PTOS+16

PTOS+18

PTOS+20

PTOS+22

PTOS+24

PTOS+26

PTOS+28
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Beside that, registers from r4 to r15 may be initialized to 0 or left uninitialized to save
both execution time and energy consumption. PC has to be initialized to the address of the
task/ISR2 function. SR has to be initialized with:

• V at 0

• SCG1, SCG0, OSCOFF and CPUOFF control the low power mode and are all at 0. This
correspond to the Active Mode.

• GIE at 1 so interrupts are enabled when the task runs.

• N, Z and C at 0.

So the initialization value of SR is 0x0008.

2 Interrupt Handlers

Interrupt handlers are generated from the OIL description. There are 3 categories of
interrupt handlers in Trampoline which are handlers that link an interrupt vector to:

• the increment of one or more counters
• the execution of a category 1 ISR
• the execution of a category 2 ISR

The incrementation of a counter or the execution of a category 2 ISR involves an
interaction with the OS with possible rescheduling and context switch, while the execution
of a category 1 ISR does not involve an interaction with the OS.

For ISR 1 the interrupt handler will only backup the volatile registers, call the function
implementing ISR 1 and restore the volatile registers. For ISR2 and counters, the handler
will be similar to the one of the service call.

In addition, the interrupt vectors related to the GPIO ports, one vector for each port,
are shared among the I/O pins of the port.

Interrupt vectors are defined in templates/config/msp430x/small/msp430fr5969/config.oil

file. The following vectors are available and can be used as SOURCE attribute is ISR and
COUNTER objects:

• AES256_VECTOR,
• RTC_VECTOR,
• PORT4_VECTOR,
• PORT3_VECTOR,
• TIMER3_A1_VECTOR,
• TIMER3_A0_VECTOR,
• PORT2_VECTOR,
• TIMER2_A1_VECTOR,
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• TIMER2_A0_VECTOR,
• PORT1_VECTOR,
• TIMER1_A1_VECTOR,
• TIMER1_A0_VECTOR,
• DMA_VECTOR,
• USCI_A1_VECTOR,
• TIMER0_A1_VECTOR,
• TIMER0_A0_VECTOR,
• ADC12_VECTOR,
• USCI_B0_VECTOR,
• USCI_A0_VECTOR,
• WDT_VECTOR,
• TIMER0_B1_VECTOR,
• TIMER0_B0_VECTOR,
• COMP_E_VECTOR,
• UNMI_VECTOR

Several ISR or COUNTER objects cannot share the same SOURCE.
The SystemCounter uses the TIMER3_A0_VECTOR and is defined as follow in templates/config

/msp430x/small/msp430fr5969/config.oil file:

COUNTER SystemCounter {

SOURCE = TIMER3_A0_VECTOR;

};

When a PORTx_VECTOR source is used, a BIT sub-attribute can be added to select which bit
is used as interrupt source. In this case several ISR or COUNTER may share the same vector
but shall be of the same type. In other words 2 counters may share the same port vector,
each on its bit or 2 ISR 1or 2 ISR 2 but you can’t have a counter and an ISR sharing the
same port vector or an ISR 1 and an ISR 2.

Examples can be found in examples/msp430x/small/msp430fr5969/launchpad. In readbutton_

isr1, an ISR 1 is linked to button S1 which is connected to bit 5 of PORT4:

ISR buttonS1 {

CATEGORY = 1;

PRIORITY = 1;

SOURCE = PORT4_VECTOR {

BIT = 5;

}; /* Button S1 is on GPIO port 4, bit 5 */

};

readbutton_isr2 is the same example but with an ISR 2 instead of the ISR 1.
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2.1 Vector table generation

The OIL compiler generates the vector table according to what SOURCE are used in the OIL
file. For instance here is the vector table generated for readbutton_isr1 example:

__attribute__ (( section (". isr_vector ")))

CONST(tpl_it_handler , AUTOMATIC) tpl_it_vectors [26] = {

/* 0xFFCC , AES256_VECTOR */ (tpl_it_handler)tpl_null_it ,

/* 0xFFCE , RTC_VECTOR */ (tpl_it_handler)tpl_null_it ,

/* 0xFFD0 , PORT4_VECTOR */ (tpl_it_handler)tpl_direct_irq_handler_PORT4_VECTOR ,

/* 0xFFD2 , PORT3_VECTOR */ (tpl_it_handler)tpl_null_it ,

/* 0xFFD4 , TIMER3_A1_VECTOR */ (tpl_it_handler)tpl_null_it ,

/* 0xFFD6 , TIMER3_A0_VECTOR */ (tpl_it_handler)tpl_primary_irq_handler_TIMER3_A0_VECTOR ,

/* 0xFFD8 , PORT2_VECTOR */ (tpl_it_handler)tpl_null_it ,

/* 0xFFDA , TIMER2_A1_VECTOR */ (tpl_it_handler)tpl_null_it ,

/* 0xFFDC , TIMER2_A0_VECTOR */ (tpl_it_handler)tpl_null_it ,

/* 0xFFDE , PORT1_VECTOR */ (tpl_it_handler)tpl_null_it ,

/* 0xFFE0 , TIMER1_A1_VECTOR */ (tpl_it_handler)tpl_null_it ,

/* 0xFFE2 , TIMER1_A0_VECTOR */ (tpl_it_handler)tpl_null_it ,

/* 0xFFE4 , DMA_VECTOR */ (tpl_it_handler)tpl_null_it ,

/* 0xFFE6 , USCI_A1_VECTOR */ (tpl_it_handler)tpl_null_it ,

/* 0xFFE8 , TIMER0_A1_VECTOR */ (tpl_it_handler)tpl_null_it ,

/* 0xFFEA , TIMER0_A0_VECTOR */ (tpl_it_handler)tpl_null_it ,

/* 0xFFEC , ADC12_VECTOR */ (tpl_it_handler)tpl_null_it ,

/* 0xFFEE , USCI_B0_VECTOR */ (tpl_it_handler)tpl_null_it ,

/* 0xFFF0 , USCI_A0_VECTOR */ (tpl_it_handler)tpl_null_it ,

/* 0xFFF2 , WDT_VECTOR */ (tpl_it_handler)tpl_null_it ,

/* 0xFFF4 , TIMER0_B1_VECTOR */ (tpl_it_handler)tpl_null_it ,

/* 0xFFF6 , TIMER0_B0_VECTOR */ (tpl_it_handler)tpl_null_it ,

/* 0xFFF8 , COMP_E_VECTOR */ (tpl_it_handler)tpl_null_it ,

/* 0xFFFA , UNMI_VECTOR */ (tpl_it_handler)tpl_null_it ,

/* 0xFFFC , SYSNMI_VECTOR */ (tpl_it_handler)tpl_MPU_violation ,

/* 0xFFFE , RESET_VECTOR */ (tpl_it_handler)tpl_reset_handler

};

Obviously the last 2 vectors, SYSNMI_VECTOR and RESET_VECTOR, are not usable by the
application and are reserved to Trampoline.

2.2 ISR 1 interrupt handler

An ISR 1 handler has a name formed from the concatenation of tpl_direct_irq_handler_

and the name of the source. For instance an ISR 1 handler for the PORT4_VECTOR has the
name tpl_direct_irq_handler_PORT4_VECTOR.

When entering the ISR, the stack is as shown at figure 4 and PC (r0) and SR (r2) have
been saved. Before doing anything we have to save the volatile registers, which are r113 to
r15.

tpl_direct_irq_handler_PORT4_VECTOR:

pushm.w #5, r15 /* Push r11 , r12 , r13 , r14 and r15 */

As a result the stack is as follow:

3r11 is not volatile in the MSPGCC ABI but is volatile in GCC compiler for MSP ABI. Anyway, in
order to limit variabilility, r11 is saved for both ABIs.
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saved r11

saved PC [15..0]

saved SR [11..0]saved PC [19..16]

saved r13

saved r14

saved r12

saved r15

SP→ PTOS+0

PTOS+2

PTOS+4

PTOS+6

PTOS+8

PTOS+10

PTOS+12

If the vector is not a port vector, the code is straightforward.

call #buttonS1_function

If the vector is a port vector but no bit is specified, the ack of the interrupt is added.

call #buttonS1_function

mov #0,__P4IV

If the vector is a port vector and a bit is specified, the generated code follows the Texas
Instruments recommendations as outlined in section 12.2.6.1 of [3].

add &__P4IV , pc

jmp tpl_direct_irq_handler_exit_PORT4_VECTOR

jmp tpl_direct_irq_handler_exit_PORT4_VECTOR /* bit 0 */

jmp tpl_direct_irq_handler_exit_PORT4_VECTOR /* bit 1 */

jmp tpl_direct_irq_handler_exit_PORT4_VECTOR /* bit 2 */

jmp tpl_direct_irq_handler_exit_PORT4_VECTOR /* bit 3 */

jmp tpl_direct_irq_handler_exit_PORT4_VECTOR /* bit 4 */

jmp tpl_p4_5_handler /* bit 5 */

jmp tpl_direct_irq_handler_exit_PORT4_VECTOR /* bit 6 */

jmp tpl_direct_irq_handler_exit_PORT4_VECTOR /* bit 7 */

tpl_p4_5_handler:

call #buttonS1_function

tpl_direct_irq_handler_exit_PORT4_VECTOR:

Then the volatile registers are restored and we return.

popm.w #5, r15

reti

2.3 ISR 2 interrupt handler

An ISR 2 handler has a name formed from the concatenation of tpl_primary_irq_handler_

and the name of the source. For instance an ISR 2 handler for the PORT4_VECTOR has the
name tpl_primary_irq_handler_PORT4_VECTOR.
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When entering the ISR, the stack is as shown at figure 4 and PC (r0) and SR (r2) have
been saved. Before doing anything we have to save the volatile registers, which are r11 to
r15.

tpl_primary_irq_handler_PORT4_VECTOR:

pushm.w #5, r15 /* Push r11 , r12 , r13 , r14 and r15 */

Then we switch to the kernel stack and init tpl_kern.

mov r1 , r11 /* Copy the PSP in r11 */

mov #tpl_kern_stack + TPL_KERNEL_STACK_SIZE , r1 /* kernel stack */

push r11 /* Save PSP to kernel stack */

mov #tpl_kern , r11

mov.b #NO_NEED_SWITCH_NOR_SCHEDULE , TPL_KERN_OFFSET_NEED_SWITCH(r11)

mov.b #NO_NEED_SWITCH_NOR_SCHEDULE , TPL_KERN_OFFSET_NEED_SCHEDULE(r11)

Activate the ISR 2. Here the #1 in mov #1, REG_RETARG is the identifier of the ISR 2. Only
the most complex generated code is shown.

add &__P4IV , pc

jmp tpl_direct_irq_handler_exit_PORT4_VECTOR

jmp tpl_direct_irq_handler_exit_PORT4_VECTOR /* bit 0 */

jmp tpl_direct_irq_handler_exit_PORT4_VECTOR /* bit 1 */

jmp tpl_direct_irq_handler_exit_PORT4_VECTOR /* bit 2 */

jmp tpl_direct_irq_handler_exit_PORT4_VECTOR /* bit 3 */

jmp tpl_direct_irq_handler_exit_PORT4_VECTOR /* bit 4 */

jmp tpl_p4_5_handler /* bit 5 */

jmp tpl_direct_irq_handler_exit_PORT4_VECTOR /* bit 6 */

jmp tpl_direct_irq_handler_exit_PORT4_VECTOR /* bit 7 */

tpl_p4_5_handler:

mov #1, REG_RETARG

call #tpl_fast_central_interrupt_handler

The remaining code is similar to the one of the tpl_sc_handler.

tpl_direct_irq_handler_exit_PORT4_VECTOR:

mov r1 , r13 /* get a copy of the KSP to restore it later */

add #2, r13 /* and forget the pushed PSP (not useful anymore ). */

pop r1 /* get the saved process stack pointer back */

mov #tpl_kern , r11

tst.b TPL_KERN_OFFSET_NEED_SWITCH(r11)

jz tpl_PORT4_VECTOR_no_context_switch

pushm.w #7, r10 /* Push r4 to r10 */

mov &tpl_kern , r11 /* Get the s_running slot of tpl_kern in r11 */

mov @r11 , r11 /* Get the pointer to the context (SP alone) */

mov r1 , @r11 /* Save the stack pointer */

mov r13 , r1 /* Switch back to the kernel stack */

mov #1, REG_RETARG

call #tpl_run_elected

mov &tpl_kern , r11 /* Get the s_running slot of tpl_kern in r11 */

mov @r11 , r11 /* Get the pointer to the context (SP alone) */
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mov @r11 , r1 /* Get the stack pointer */

popm.w #12,r15 /* Pop r4 to r15 */

reti

tpl_PORT4_VECTOR_no_context_switch:

popm.w #5, r15

reti

2.4 Counter interrupt handler

A counter interruption handler has the same structure as that of an ISR 2. The only differ-
ence is the function called. For instance for the SystemCounter the code is straightforward.

tpl_primary_irq_handler_TIMER3_A0_VECTOR:

/*--------------------------------------------------------------------------

* -1- Before doing anything we have to save the volatile registers , which

* are r11 (r11 is not volatile in the MSPGCC ABI but is volatile in GCC

* compiler for MSP ABI. Anyway , in order to limit variabilility , r11 is

* saved for both ABIs) to r15 , because they will not be saved when we will

* call the underlying C function.

*/

pushm.w #5, r15 /* Push r11 , r12 , r13 , r14 and r15 */

/*--------------------------------------------------------------------------

* -2- Switch to the kernel stack.

*/

mov r1 , r11 /* Copy the PSP in r11 */

mov #tpl_kern_stack + TPL_KERNEL_STACK_SIZE , r1 /* kernel stack */

push r11 /* Save PSP to kernel stack */

/*--------------------------------------------------------------------------

* -3- Init the NEED_SWITCH/SAVE in tpl_kern.

*/

mov #tpl_kern , r11

mov.b #NO_NEED_SWITCH_NOR_SCHEDULE , TPL_KERN_OFFSET_NEED_SWITCH(r11)

mov.b #NO_NEED_SWITCH_NOR_SCHEDULE , TPL_KERN_OFFSET_NEED_SCHEDULE(r11)

/*--------------------------------------------------------------------------

* -4- Call the underlying C function.

*/

call #tpl_tick_TIMER3_A0_VECTOR

/*--------------------------------------------------------------------------

* -5- Switch back to the process stack

*/

tpl_direct_irq_handler_exit_TIMER3_A0_VECTOR:

mov r1 , r13 /* get a copy of the KSP to restore it later */

add #2, r13 /* and forget the pushed PSP (not useful anymore ). */

pop r1 /* get the saved process stack pointer back */

/*--------------------------------------------------------------------------

* -6- Check the context switch condition in tpl_kern.

*/

mov #tpl_kern , r11
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tst.b TPL_KERN_OFFSET_NEED_SWITCH(r11)

jz tpl_TIMER3_A0_VECTOR_no_context_switch

/*--------------------------------------------------------------------------

* -7- Save the rest of the context.

*/

pushm.w #7, r10 /* Push r4 to r10 */

/*--------------------------------------------------------------------------

* -8- Now the stack pointer is saved in the dedicated location.

*/

mov &tpl_kern , r11 /* Get the s_running slot of tpl_kern in r11 */

mov @r11 , r11 /* Get the pointer to the context (SP alone) */

mov r1 , @r11 /* Save the stack pointer */

/*--------------------------------------------------------------------------

* -9- Call tpl_run_elected with argument 1 (aka save) after switching back

* to the kernel stack.

*/

mov r13 , r1 /* Switch back to the kernel stack */

mov #1, REG_RETARG

call #tpl_run_elected

/*--------------------------------------------------------------------------

* -10- tpl_run_elected has copied the elected process slot of tpl_kern to

* the running slot. We load the stack pointer of the new running process.

*/

mov &tpl_kern , r11 /* Get the s_running slot of tpl_kern in r11 */

mov @r11 , r11 /* Get the pointer to the context (SP alone) */

mov @r11 , r1 /* Get the stack pointer */

/*--------------------------------------------------------------------------

* -11- Now , the context of the new running process is loaded. All registers

* are popped.

*/

popm.w #12,r15 /* Pop r4 to r15 */

reti

/*--------------------------------------------------------------------------

* -12- We get here from stage 6. Restore the volatile registers and return

* from the interrupt handler.

*/

tpl_TIMER3_A0_VECTOR_no_context_switch:

popm.w #5, r15

reti

3 MCU Clocks

The MCU clocks uses the DCO as input clock. The CPU is limited to 16MHz.
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3.1 Startup

The MCU clocks can be defined in the .oil file directly in CPU->OS->CPU FREQ MHZ. Value
should be in the set 1,2,4,6,8,12,16,21 and 24 MHz.

By default, the frequency is set to 1MHz.

3.2 Dynamic update

The MCU clocks can be updated with a user fonction to update the frequency in tpl_clocks.h:

/* configure the frequency in MHz: 1,2,4,6,8,12,16,(21,24 overclock)

* set to 1MHz in case of bad input frequency.

**/

FUNC(void ,OS_CODE) tpl_set_mcu_clock(uint16_t freq);

When the CPU clock is updated, the Wait States for the FRAM access are set accord-
ingly: 1 wait state above 8MHz, and 2 wait states above 16MHz.

Note that the 21MHz and 24 MHz frequencies overclock the CPU capabilities and may
not work.

A callback can be added each time the CPU clock is updated. This is done through
the function:

void tpl_add_freq_update_callback(tpl_freq_update_item *freqObs );

Where freqObs is an item of a single linked list of function calls. This functionnality is
implemented in the serial line driver (for debug purpose) of the launchpad like this:

#include "tpl_clocks.h"

tpl_freq_update_item tpl_serial_callback = {& tpl_serial_update_freq ,NULL};

void tpl_serial_begin ()

{

/* make sure we are informed of a clock update. */

tpl_add_freq_update_callback (& tpl_serial_callback );

..

}

void tpl_serial_update_freq ()

{

// callback that updates the serial baudrate configuration

//in function of the new input clock.

}

The frequency of the MCU is defined using the DCO. The function uint32_t tpl_getDCOFrequency();

returns the DCO output frequency in Hz. This can be used in the function callback.
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4 Low power in idle

When Trampoline runs the idle task, the MCU can be put in low power mode. This is
done by setting the attribute IDLE_POWER_MODE in the OS object. Possible values are ACTIVE,
LPM0, LPM1, LPM2 and LPM3. Default value, that is without setting this attribute, is ACTIVE.

5 Stack size estimation

In the following, tasks and ISR2s are collectively referred to as processes. Stack size of
a process depends on what function the process calls, the size of the local variables, the
optimization level of the compiler and if at least one ISR1 is used by the application4. So
it is not something that is easy to compute. The minimum stack size of a process is the
size needed to store an initialized context as shown at figure 7, i.e. 30 bytes.

When the process runs, the context is popped and the only element left on the stack is
the return address to CallTerminateTask or CallTerminateISR2, which leaves 28 bytes for local
variables and function calls.

Calling an OS service requires 14 bytes if the service does not lead to a context save
and 28 bytes if it does not. Since the kernel runs on a dedicated stack, the stack depth
required to run a service has no impact on the stack size of a process.

Example of a trivial basic task

Let’s take the blink task from the example readbutton_isr2. Once compiled in -O0, the
generated code is as follow:

00006238 <blink_function >:

6238: 04 12 push r4

623a: 04 41 mov r1 , r4

623c: 24 53 incd r4

623e: 5f 42 02 02 mov.b &0x0202 ,r15 /* read port */

6242: 6f e3 xor.b #2, r15 /* toggle */

6244: c2 4f 02 02 mov.b r15 , &0 x0202 /* write port */

6248: b0 12 54 61 call #0 x6154 /* Call TerminateTask */

624c: 34 41 pop r4

624e: 30 41 ret

By pushing r4 on the stack and calling TerminateTask, the amount of stack consumed
is 16 bytes out of the 28 bytes available. The minimum stack size is therefore sufficient.
However, pressing the button at the time the task is executed leads to its pre-emption and
the execution of ISR2. In this case, the stack must be able to contain the register r4 that
has been pushed and the context of the task, namely 30 bytes. By adding the two bytes
of the CallTerminateTask address, the minimum stack is 32 bytes.

4ISR1 executes on the stack of the running task/ISR2
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When the application is compiled in -O3, the blink task code is as follows:

00005 d60 <blink_function >:

5d60: e2 e3 02 02 xor.b #2, &0 x0202 /* toggle */

5d64: b0 12 7a 5c call #0 x5c7a /* Call TerminateTask */

5d68: 30 41 ret

This time r4 is not pushed on the stack and its size can be 30 bytes. Given the time
taken to complete this task, it is also questionable whether it would not be worthwhile to
make it non-preemptible.

6 Memory mapping and memory protection

Memory organization of MSP430FR5969 is shown at figure 8.

Peripherals - 4kB

00000h

00FFFh

Bootloader (ROM) - 1kB01000h

017FFh

SRAM - 2kB
01C00h

023FFh

gap - 8kB

FRAM - 46kB

04400h

0FF7Fh

FRAM - 16kB

10000h

13FFFh

Interrupt vectors. FRAM 0.75kB

Info memory + Device descriptor.
FRAM 0.125kB

Figure 8: Memory organization of MSP430FR5969

The TI MSP430 uses a very simple memory protection scheme. The Memory Protection
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Unit allows to define 2 boundaries, SEGB1 and SEGB2 and the access right corresponding
to 3 regions, the one below SEGB1 (excluded), the one between SEGB1 (included) and
SEGB2 (excluded) and the one above SEGB2 (included). Some addresses locations, the 16
bytes starting à 0xFF80 contain the JTAG password. Writing random values at theses ad-
dresses bricks the MCU. To prevent that, Trampoline initialize the MPU so that addresses
below the start of FRAM (peripherals and SRAM) may be read and written, addresses
from start of FRAM to 0x10000 may be read and executed and addresses from 0x10000 to
the end of the FRAM may be read and written.

7 Libraries

7.1 Serial line

The launchpad kits use a serial line over USB that can be used for debugging purpose.
The configuration is 9600 bauds, 8N1. The clock is the DCO, which is not precise enough
to get a correct 115200 bauds communication.

The library should be declared in the .oil file (so that dedicated files are included in
the build process), with 2 parameters:

BUILD = TRUE {

LIBRARY = serial {

TXBUFFER = 16;

RXBUFFER = 16;

};

};

The buffers are ring buffers that are updated in the corresponding RX or TX interrupts.
If the buffer size is set to 0, the corresponding interrupt is not enabled.

The library supports various MCU change frequencies, and the output frequency is
updated (the current message may be corrupted!).

An example is given for the msp430fr5969 launchpad.
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