/* * Copyright (C) 2013-2020 Canonical, Ltd. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * This code is a complete clean re-write of the stress tool by * Colin Ian King and attempts to be * backwardly compatible with the stress tool by Amos Waterland * but has more stress tests and more * functionality. * */ #include "stress-ng.h" static const stress_help_t help[] = { { "s N","switch N", "start N workers doing rapid context switches" }, { NULL, "switch-ops N", "stop after N context switch bogo operations" }, { NULL, "switch-freq N", "set frequency of context switches" }, { NULL, NULL, NULL } }; #define SWITCH_STOP 'X' #define THRESH_FREQ (100) /* Delay adjustment rate in HZ */ #define NANO_SECS (1000000000) /* * stress_set_switch_freq() * set context switch freq in Hz from given option */ static int stress_set_switch_freq(const char *opt) { uint64_t switch_freq; switch_freq = stress_get_uint64(opt); stress_check_range("switch-freq", switch_freq, 0, NANO_SECS); return stress_set_setting("switch-freq", TYPE_ID_UINT64, &switch_freq); } /* * stress_switch * stress by heavy context switching */ static int stress_switch(const stress_args_t *args) { pid_t pid; int pipefds[2]; size_t buf_size; uint64_t switch_freq = 0; (void)stress_get_setting("switch-freq", &switch_freq); #if defined(HAVE_PIPE2) && \ defined(O_DIRECT) if (pipe2(pipefds, O_DIRECT) < 0) { /* * Fallback to pipe if pipe2 fails */ if (pipe(pipefds) < 0) { pr_fail("%s: pipe failed, errno=%d (%s)\n", args->name, errno, strerror(errno)); return EXIT_FAILURE; } } buf_size = 1; #else if (pipe(pipefds) < 0) { pr_fail("%s: pipe failed, errno=%d (%s)\n", args->name, errno, strerror(errno)); return EXIT_FAILURE; } buf_size = args->page_size; #endif #if defined(F_SETPIPE_SZ) if (fcntl(pipefds[0], F_SETPIPE_SZ, buf_size) < 0) { pr_dbg("%s: could not force pipe size to 1 page, " "errno = %d (%s)\n", args->name, errno, strerror(errno)); } if (fcntl(pipefds[1], F_SETPIPE_SZ, buf_size) < 0) { pr_dbg("%s: could not force pipe size to 1 page, " "errno = %d (%s)\n", args->name, errno, strerror(errno)); } #endif again: pid = fork(); if (pid < 0) { if (keep_stressing_flag() && (errno == EAGAIN)) goto again; (void)close(pipefds[0]); (void)close(pipefds[1]); pr_fail("%s: fork failed, errno=%d (%s)\n", args->name, errno, strerror(errno)); return EXIT_FAILURE; } else if (pid == 0) { char buf[buf_size]; (void)setpgid(0, g_pgrp); stress_parent_died_alarm(); (void)sched_settings_apply(true); (void)close(pipefds[1]); while (keep_stressing_flag()) { ssize_t ret; ret = read(pipefds[0], buf, sizeof(buf)); if (ret < 0) { if ((errno == EAGAIN) || (errno == EINTR)) continue; pr_fail("%s: read failed, errno=%d (%s)\n", args->name, errno, strerror(errno)); break; } if (ret == 0) break; if (*buf == SWITCH_STOP) break; } (void)close(pipefds[0]); _exit(EXIT_SUCCESS); } else { char buf[buf_size]; int status; double t1, t2, t; uint64_t delay, switch_delay = (switch_freq == 0) ? 0 : NANO_SECS / switch_freq; uint64_t i = 0, threshold = switch_freq / THRESH_FREQ; /* Parent */ (void)setpgid(pid, g_pgrp); (void)close(pipefds[0]); (void)memset(buf, '_', buf_size); delay = switch_delay; t1 = stress_time_now(); do { ssize_t ret; inc_counter(args); ret = write(pipefds[1], buf, sizeof(buf)); if (ret <= 0) { if ((errno == EAGAIN) || (errno == EINTR)) continue; if (errno) { pr_fail("%s: write failed, errno=%d (%s)\n", args->name, errno, strerror(errno)); break; } continue; } if (switch_freq) { /* * Small delays take a while, so skip these */ if (delay > 1000) shim_nanosleep_uint64(delay); /* * This is expensive, so only update the * delay infrequently (at THRESH_FREQ HZ) */ if (++i >= threshold) { double overrun, overrun_by; i = 0; t = t1 + ((((double)get_counter(args)) * switch_delay) / NANO_SECS); overrun = (stress_time_now() - t) * (double)NANO_SECS; overrun_by = (double)switch_delay - overrun; if (overrun_by < 0.0) { /* Massive overrun, skip a delay */ delay = 0; } else { /* Overrun or underrun? */ delay = (double)overrun_by; if (delay > switch_delay) { /* Don't delay more than the switch delay */ delay = switch_delay; } } } } } while (keep_stressing()); t2 = stress_time_now(); pr_inf("%s: %.2f nanoseconds per context switch (based on parent run time)\n", args->name, ((t2 - t1) * NANO_SECS) / (double)get_counter(args)); (void)memset(buf, SWITCH_STOP, sizeof(buf)); if (write(pipefds[1], buf, sizeof(buf)) <= 0) pr_fail("%s: write failed, errno=%d (%s)\n", args->name, errno, strerror(errno)); (void)kill(pid, SIGKILL); (void)shim_waitpid(pid, &status, 0); } return EXIT_SUCCESS; } static const stress_opt_set_func_t opt_set_funcs[] = { { OPT_switch_freq, stress_set_switch_freq }, { 0, NULL } }; stressor_info_t stress_switch_info = { .stressor = stress_switch, .class = CLASS_SCHEDULER | CLASS_OS, .opt_set_funcs = opt_set_funcs, .help = help };