/* Generated by Cython 0.29.14 */ #define PY_SSIZE_T_CLEAN #include "Python.h" #ifndef Py_PYTHON_H #error Python headers needed to compile C extensions, please install development version of Python. #elif PY_VERSION_HEX < 0x02060000 || (0x03000000 <= PY_VERSION_HEX && PY_VERSION_HEX < 0x03030000) #error Cython requires Python 2.6+ or Python 3.3+. #else #define CYTHON_ABI "0_29_14" #define CYTHON_HEX_VERSION 0x001D0EF0 #define CYTHON_FUTURE_DIVISION 1 #include #ifndef offsetof #define offsetof(type, member) ( (size_t) & ((type*)0) -> member ) #endif #if !defined(WIN32) && !defined(MS_WINDOWS) #ifndef __stdcall #define __stdcall #endif #ifndef __cdecl #define __cdecl #endif #ifndef __fastcall #define __fastcall #endif #endif #ifndef DL_IMPORT #define DL_IMPORT(t) t #endif #ifndef DL_EXPORT #define DL_EXPORT(t) t #endif #define __PYX_COMMA , #ifndef HAVE_LONG_LONG #if PY_VERSION_HEX >= 0x02070000 #define HAVE_LONG_LONG #endif #endif #ifndef PY_LONG_LONG #define PY_LONG_LONG LONG_LONG #endif #ifndef Py_HUGE_VAL #define Py_HUGE_VAL HUGE_VAL #endif #ifdef PYPY_VERSION #define CYTHON_COMPILING_IN_PYPY 1 #define CYTHON_COMPILING_IN_PYSTON 0 #define CYTHON_COMPILING_IN_CPYTHON 0 #undef CYTHON_USE_TYPE_SLOTS #define CYTHON_USE_TYPE_SLOTS 0 #undef CYTHON_USE_PYTYPE_LOOKUP #define CYTHON_USE_PYTYPE_LOOKUP 0 #if PY_VERSION_HEX < 0x03050000 #undef CYTHON_USE_ASYNC_SLOTS #define CYTHON_USE_ASYNC_SLOTS 0 #elif !defined(CYTHON_USE_ASYNC_SLOTS) #define CYTHON_USE_ASYNC_SLOTS 1 #endif #undef CYTHON_USE_PYLIST_INTERNALS #define CYTHON_USE_PYLIST_INTERNALS 0 #undef CYTHON_USE_UNICODE_INTERNALS #define CYTHON_USE_UNICODE_INTERNALS 0 #undef CYTHON_USE_UNICODE_WRITER #define CYTHON_USE_UNICODE_WRITER 0 #undef CYTHON_USE_PYLONG_INTERNALS #define CYTHON_USE_PYLONG_INTERNALS 0 #undef CYTHON_AVOID_BORROWED_REFS #define CYTHON_AVOID_BORROWED_REFS 1 #undef CYTHON_ASSUME_SAFE_MACROS #define CYTHON_ASSUME_SAFE_MACROS 0 #undef CYTHON_UNPACK_METHODS #define CYTHON_UNPACK_METHODS 0 #undef CYTHON_FAST_THREAD_STATE #define CYTHON_FAST_THREAD_STATE 0 #undef CYTHON_FAST_PYCALL #define CYTHON_FAST_PYCALL 0 #undef CYTHON_PEP489_MULTI_PHASE_INIT #define CYTHON_PEP489_MULTI_PHASE_INIT 0 #undef CYTHON_USE_TP_FINALIZE #define CYTHON_USE_TP_FINALIZE 0 #undef CYTHON_USE_DICT_VERSIONS #define CYTHON_USE_DICT_VERSIONS 0 #undef CYTHON_USE_EXC_INFO_STACK #define CYTHON_USE_EXC_INFO_STACK 0 #elif defined(PYSTON_VERSION) #define CYTHON_COMPILING_IN_PYPY 0 #define CYTHON_COMPILING_IN_PYSTON 1 #define CYTHON_COMPILING_IN_CPYTHON 0 #ifndef CYTHON_USE_TYPE_SLOTS #define CYTHON_USE_TYPE_SLOTS 1 #endif #undef CYTHON_USE_PYTYPE_LOOKUP #define CYTHON_USE_PYTYPE_LOOKUP 0 #undef CYTHON_USE_ASYNC_SLOTS #define CYTHON_USE_ASYNC_SLOTS 0 #undef CYTHON_USE_PYLIST_INTERNALS #define CYTHON_USE_PYLIST_INTERNALS 0 #ifndef CYTHON_USE_UNICODE_INTERNALS #define CYTHON_USE_UNICODE_INTERNALS 1 #endif #undef CYTHON_USE_UNICODE_WRITER #define CYTHON_USE_UNICODE_WRITER 0 #undef CYTHON_USE_PYLONG_INTERNALS #define CYTHON_USE_PYLONG_INTERNALS 0 #ifndef CYTHON_AVOID_BORROWED_REFS #define CYTHON_AVOID_BORROWED_REFS 0 #endif #ifndef CYTHON_ASSUME_SAFE_MACROS #define CYTHON_ASSUME_SAFE_MACROS 1 #endif #ifndef CYTHON_UNPACK_METHODS #define CYTHON_UNPACK_METHODS 1 #endif #undef CYTHON_FAST_THREAD_STATE #define CYTHON_FAST_THREAD_STATE 0 #undef CYTHON_FAST_PYCALL #define CYTHON_FAST_PYCALL 0 #undef CYTHON_PEP489_MULTI_PHASE_INIT #define CYTHON_PEP489_MULTI_PHASE_INIT 0 #undef CYTHON_USE_TP_FINALIZE #define CYTHON_USE_TP_FINALIZE 0 #undef CYTHON_USE_DICT_VERSIONS #define CYTHON_USE_DICT_VERSIONS 0 #undef CYTHON_USE_EXC_INFO_STACK #define CYTHON_USE_EXC_INFO_STACK 0 #else #define CYTHON_COMPILING_IN_PYPY 0 #define CYTHON_COMPILING_IN_PYSTON 0 #define CYTHON_COMPILING_IN_CPYTHON 1 #ifndef CYTHON_USE_TYPE_SLOTS #define CYTHON_USE_TYPE_SLOTS 1 #endif #if PY_VERSION_HEX < 0x02070000 #undef CYTHON_USE_PYTYPE_LOOKUP #define CYTHON_USE_PYTYPE_LOOKUP 0 #elif !defined(CYTHON_USE_PYTYPE_LOOKUP) #define CYTHON_USE_PYTYPE_LOOKUP 1 #endif #if PY_MAJOR_VERSION < 3 #undef CYTHON_USE_ASYNC_SLOTS #define CYTHON_USE_ASYNC_SLOTS 0 #elif !defined(CYTHON_USE_ASYNC_SLOTS) #define CYTHON_USE_ASYNC_SLOTS 1 #endif #if PY_VERSION_HEX < 0x02070000 #undef CYTHON_USE_PYLONG_INTERNALS #define CYTHON_USE_PYLONG_INTERNALS 0 #elif !defined(CYTHON_USE_PYLONG_INTERNALS) #define CYTHON_USE_PYLONG_INTERNALS 1 #endif #ifndef CYTHON_USE_PYLIST_INTERNALS #define CYTHON_USE_PYLIST_INTERNALS 1 #endif #ifndef CYTHON_USE_UNICODE_INTERNALS #define CYTHON_USE_UNICODE_INTERNALS 1 #endif #if PY_VERSION_HEX < 0x030300F0 #undef CYTHON_USE_UNICODE_WRITER #define CYTHON_USE_UNICODE_WRITER 0 #elif !defined(CYTHON_USE_UNICODE_WRITER) #define CYTHON_USE_UNICODE_WRITER 1 #endif #ifndef CYTHON_AVOID_BORROWED_REFS #define CYTHON_AVOID_BORROWED_REFS 0 #endif #ifndef CYTHON_ASSUME_SAFE_MACROS #define CYTHON_ASSUME_SAFE_MACROS 1 #endif #ifndef CYTHON_UNPACK_METHODS #define CYTHON_UNPACK_METHODS 1 #endif #ifndef CYTHON_FAST_THREAD_STATE #define CYTHON_FAST_THREAD_STATE 1 #endif #ifndef CYTHON_FAST_PYCALL #define CYTHON_FAST_PYCALL 1 #endif #ifndef CYTHON_PEP489_MULTI_PHASE_INIT #define CYTHON_PEP489_MULTI_PHASE_INIT (PY_VERSION_HEX >= 0x03050000) #endif #ifndef CYTHON_USE_TP_FINALIZE #define CYTHON_USE_TP_FINALIZE (PY_VERSION_HEX >= 0x030400a1) #endif #ifndef CYTHON_USE_DICT_VERSIONS #define CYTHON_USE_DICT_VERSIONS (PY_VERSION_HEX >= 0x030600B1) #endif #ifndef CYTHON_USE_EXC_INFO_STACK #define CYTHON_USE_EXC_INFO_STACK (PY_VERSION_HEX >= 0x030700A3) #endif #endif #if !defined(CYTHON_FAST_PYCCALL) #define CYTHON_FAST_PYCCALL (CYTHON_FAST_PYCALL && PY_VERSION_HEX >= 0x030600B1) #endif #if CYTHON_USE_PYLONG_INTERNALS #include "longintrepr.h" #undef SHIFT #undef BASE #undef MASK #ifdef SIZEOF_VOID_P enum { __pyx_check_sizeof_voidp = 1 / (int)(SIZEOF_VOID_P == sizeof(void*)) }; #endif #endif #ifndef __has_attribute #define __has_attribute(x) 0 #endif #ifndef __has_cpp_attribute #define __has_cpp_attribute(x) 0 #endif #ifndef CYTHON_RESTRICT #if defined(__GNUC__) #define CYTHON_RESTRICT __restrict__ #elif defined(_MSC_VER) && _MSC_VER >= 1400 #define CYTHON_RESTRICT __restrict #elif defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L #define CYTHON_RESTRICT restrict #else #define CYTHON_RESTRICT #endif #endif #ifndef CYTHON_UNUSED # if defined(__GNUC__) # if !(defined(__cplusplus)) || (__GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ >= 4)) # define CYTHON_UNUSED __attribute__ ((__unused__)) # else # define CYTHON_UNUSED # endif # elif defined(__ICC) || (defined(__INTEL_COMPILER) && !defined(_MSC_VER)) # define CYTHON_UNUSED __attribute__ ((__unused__)) # else # define CYTHON_UNUSED # endif #endif #ifndef CYTHON_MAYBE_UNUSED_VAR # if defined(__cplusplus) template void CYTHON_MAYBE_UNUSED_VAR( const T& ) { } # else # define CYTHON_MAYBE_UNUSED_VAR(x) (void)(x) # endif #endif #ifndef CYTHON_NCP_UNUSED # if CYTHON_COMPILING_IN_CPYTHON # define CYTHON_NCP_UNUSED # else # define CYTHON_NCP_UNUSED CYTHON_UNUSED # endif #endif #define __Pyx_void_to_None(void_result) ((void)(void_result), Py_INCREF(Py_None), Py_None) #ifdef _MSC_VER #ifndef _MSC_STDINT_H_ #if _MSC_VER < 1300 typedef unsigned char uint8_t; typedef unsigned int uint32_t; #else typedef unsigned __int8 uint8_t; typedef unsigned __int32 uint32_t; #endif #endif #else #include #endif #ifndef CYTHON_FALLTHROUGH #if defined(__cplusplus) && __cplusplus >= 201103L #if __has_cpp_attribute(fallthrough) #define CYTHON_FALLTHROUGH [[fallthrough]] #elif __has_cpp_attribute(clang::fallthrough) #define CYTHON_FALLTHROUGH [[clang::fallthrough]] #elif __has_cpp_attribute(gnu::fallthrough) #define CYTHON_FALLTHROUGH [[gnu::fallthrough]] #endif #endif #ifndef CYTHON_FALLTHROUGH #if __has_attribute(fallthrough) #define CYTHON_FALLTHROUGH __attribute__((fallthrough)) #else #define CYTHON_FALLTHROUGH #endif #endif #if defined(__clang__ ) && defined(__apple_build_version__) #if __apple_build_version__ < 7000000 #undef CYTHON_FALLTHROUGH #define CYTHON_FALLTHROUGH #endif #endif #endif #ifndef CYTHON_INLINE #if defined(__clang__) #define CYTHON_INLINE __inline__ __attribute__ ((__unused__)) #elif defined(__GNUC__) #define CYTHON_INLINE __inline__ #elif defined(_MSC_VER) #define CYTHON_INLINE __inline #elif defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L #define CYTHON_INLINE inline #else #define CYTHON_INLINE #endif #endif #if CYTHON_COMPILING_IN_PYPY && PY_VERSION_HEX < 0x02070600 && !defined(Py_OptimizeFlag) #define Py_OptimizeFlag 0 #endif #define __PYX_BUILD_PY_SSIZE_T "n" #define CYTHON_FORMAT_SSIZE_T "z" #if PY_MAJOR_VERSION < 3 #define __Pyx_BUILTIN_MODULE_NAME "__builtin__" #define __Pyx_PyCode_New(a, k, l, s, f, code, c, n, v, fv, cell, fn, name, fline, lnos)\ PyCode_New(a+k, l, s, f, code, c, n, v, fv, cell, fn, name, fline, lnos) #define __Pyx_DefaultClassType PyClass_Type #else #define __Pyx_BUILTIN_MODULE_NAME "builtins" #if PY_VERSION_HEX >= 0x030800A4 && PY_VERSION_HEX < 0x030800B2 #define __Pyx_PyCode_New(a, k, l, s, f, code, c, n, v, fv, cell, fn, name, fline, lnos)\ PyCode_New(a, 0, k, l, s, f, code, c, n, v, fv, cell, fn, name, fline, lnos) #else #define __Pyx_PyCode_New(a, k, l, s, f, code, c, n, v, fv, cell, fn, name, fline, lnos)\ PyCode_New(a, k, l, s, f, code, c, n, v, fv, cell, fn, name, fline, lnos) #endif #define __Pyx_DefaultClassType PyType_Type #endif #ifndef Py_TPFLAGS_CHECKTYPES #define Py_TPFLAGS_CHECKTYPES 0 #endif #ifndef Py_TPFLAGS_HAVE_INDEX #define Py_TPFLAGS_HAVE_INDEX 0 #endif #ifndef Py_TPFLAGS_HAVE_NEWBUFFER #define Py_TPFLAGS_HAVE_NEWBUFFER 0 #endif #ifndef Py_TPFLAGS_HAVE_FINALIZE #define Py_TPFLAGS_HAVE_FINALIZE 0 #endif #ifndef METH_STACKLESS #define METH_STACKLESS 0 #endif #if PY_VERSION_HEX <= 0x030700A3 || !defined(METH_FASTCALL) #ifndef METH_FASTCALL #define METH_FASTCALL 0x80 #endif typedef PyObject *(*__Pyx_PyCFunctionFast) (PyObject *self, PyObject *const *args, Py_ssize_t nargs); typedef PyObject *(*__Pyx_PyCFunctionFastWithKeywords) (PyObject *self, PyObject *const *args, Py_ssize_t nargs, PyObject *kwnames); #else #define __Pyx_PyCFunctionFast _PyCFunctionFast #define __Pyx_PyCFunctionFastWithKeywords _PyCFunctionFastWithKeywords #endif #if CYTHON_FAST_PYCCALL #define __Pyx_PyFastCFunction_Check(func)\ ((PyCFunction_Check(func) && (METH_FASTCALL == (PyCFunction_GET_FLAGS(func) & ~(METH_CLASS | METH_STATIC | METH_COEXIST | METH_KEYWORDS | METH_STACKLESS))))) #else #define __Pyx_PyFastCFunction_Check(func) 0 #endif #if CYTHON_COMPILING_IN_PYPY && !defined(PyObject_Malloc) #define PyObject_Malloc(s) PyMem_Malloc(s) #define PyObject_Free(p) PyMem_Free(p) #define PyObject_Realloc(p) PyMem_Realloc(p) #endif #if CYTHON_COMPILING_IN_CPYTHON && PY_VERSION_HEX < 0x030400A1 #define PyMem_RawMalloc(n) PyMem_Malloc(n) #define PyMem_RawRealloc(p, n) PyMem_Realloc(p, n) #define PyMem_RawFree(p) PyMem_Free(p) #endif #if CYTHON_COMPILING_IN_PYSTON #define __Pyx_PyCode_HasFreeVars(co) PyCode_HasFreeVars(co) #define __Pyx_PyFrame_SetLineNumber(frame, lineno) PyFrame_SetLineNumber(frame, lineno) #else #define __Pyx_PyCode_HasFreeVars(co) (PyCode_GetNumFree(co) > 0) #define __Pyx_PyFrame_SetLineNumber(frame, lineno) (frame)->f_lineno = (lineno) #endif #if !CYTHON_FAST_THREAD_STATE || PY_VERSION_HEX < 0x02070000 #define __Pyx_PyThreadState_Current PyThreadState_GET() #elif PY_VERSION_HEX >= 0x03060000 #define __Pyx_PyThreadState_Current _PyThreadState_UncheckedGet() #elif PY_VERSION_HEX >= 0x03000000 #define __Pyx_PyThreadState_Current PyThreadState_GET() #else #define __Pyx_PyThreadState_Current _PyThreadState_Current #endif #if PY_VERSION_HEX < 0x030700A2 && !defined(PyThread_tss_create) && !defined(Py_tss_NEEDS_INIT) #include "pythread.h" #define Py_tss_NEEDS_INIT 0 typedef int Py_tss_t; static CYTHON_INLINE int PyThread_tss_create(Py_tss_t *key) { *key = PyThread_create_key(); return 0; } static CYTHON_INLINE Py_tss_t * PyThread_tss_alloc(void) { Py_tss_t *key = (Py_tss_t *)PyObject_Malloc(sizeof(Py_tss_t)); *key = Py_tss_NEEDS_INIT; return key; } static CYTHON_INLINE void PyThread_tss_free(Py_tss_t *key) { PyObject_Free(key); } static CYTHON_INLINE int PyThread_tss_is_created(Py_tss_t *key) { return *key != Py_tss_NEEDS_INIT; } static CYTHON_INLINE void PyThread_tss_delete(Py_tss_t *key) { PyThread_delete_key(*key); *key = Py_tss_NEEDS_INIT; } static CYTHON_INLINE int PyThread_tss_set(Py_tss_t *key, void *value) { return PyThread_set_key_value(*key, value); } static CYTHON_INLINE void * PyThread_tss_get(Py_tss_t *key) { return PyThread_get_key_value(*key); } #endif #if CYTHON_COMPILING_IN_CPYTHON || defined(_PyDict_NewPresized) #define __Pyx_PyDict_NewPresized(n) ((n <= 8) ? PyDict_New() : _PyDict_NewPresized(n)) #else #define __Pyx_PyDict_NewPresized(n) PyDict_New() #endif #if PY_MAJOR_VERSION >= 3 || CYTHON_FUTURE_DIVISION #define __Pyx_PyNumber_Divide(x,y) PyNumber_TrueDivide(x,y) #define __Pyx_PyNumber_InPlaceDivide(x,y) PyNumber_InPlaceTrueDivide(x,y) #else #define __Pyx_PyNumber_Divide(x,y) PyNumber_Divide(x,y) #define __Pyx_PyNumber_InPlaceDivide(x,y) PyNumber_InPlaceDivide(x,y) #endif #if CYTHON_COMPILING_IN_CPYTHON && PY_VERSION_HEX >= 0x030500A1 && CYTHON_USE_UNICODE_INTERNALS #define __Pyx_PyDict_GetItemStr(dict, name) _PyDict_GetItem_KnownHash(dict, name, ((PyASCIIObject *) name)->hash) #else #define __Pyx_PyDict_GetItemStr(dict, name) PyDict_GetItem(dict, name) #endif #if PY_VERSION_HEX > 0x03030000 && defined(PyUnicode_KIND) #define CYTHON_PEP393_ENABLED 1 #define __Pyx_PyUnicode_READY(op) (likely(PyUnicode_IS_READY(op)) ?\ 0 : _PyUnicode_Ready((PyObject *)(op))) #define __Pyx_PyUnicode_GET_LENGTH(u) PyUnicode_GET_LENGTH(u) #define __Pyx_PyUnicode_READ_CHAR(u, i) PyUnicode_READ_CHAR(u, i) #define __Pyx_PyUnicode_MAX_CHAR_VALUE(u) PyUnicode_MAX_CHAR_VALUE(u) #define __Pyx_PyUnicode_KIND(u) PyUnicode_KIND(u) #define __Pyx_PyUnicode_DATA(u) PyUnicode_DATA(u) #define __Pyx_PyUnicode_READ(k, d, i) PyUnicode_READ(k, d, i) #define __Pyx_PyUnicode_WRITE(k, d, i, ch) PyUnicode_WRITE(k, d, i, ch) #define __Pyx_PyUnicode_IS_TRUE(u) (0 != (likely(PyUnicode_IS_READY(u)) ? PyUnicode_GET_LENGTH(u) : PyUnicode_GET_SIZE(u))) #else #define CYTHON_PEP393_ENABLED 0 #define PyUnicode_1BYTE_KIND 1 #define PyUnicode_2BYTE_KIND 2 #define PyUnicode_4BYTE_KIND 4 #define __Pyx_PyUnicode_READY(op) (0) #define __Pyx_PyUnicode_GET_LENGTH(u) PyUnicode_GET_SIZE(u) #define __Pyx_PyUnicode_READ_CHAR(u, i) ((Py_UCS4)(PyUnicode_AS_UNICODE(u)[i])) #define __Pyx_PyUnicode_MAX_CHAR_VALUE(u) ((sizeof(Py_UNICODE) == 2) ? 65535 : 1114111) #define __Pyx_PyUnicode_KIND(u) (sizeof(Py_UNICODE)) #define __Pyx_PyUnicode_DATA(u) ((void*)PyUnicode_AS_UNICODE(u)) #define __Pyx_PyUnicode_READ(k, d, i) ((void)(k), (Py_UCS4)(((Py_UNICODE*)d)[i])) #define __Pyx_PyUnicode_WRITE(k, d, i, ch) (((void)(k)), ((Py_UNICODE*)d)[i] = ch) #define __Pyx_PyUnicode_IS_TRUE(u) (0 != PyUnicode_GET_SIZE(u)) #endif #if CYTHON_COMPILING_IN_PYPY #define __Pyx_PyUnicode_Concat(a, b) PyNumber_Add(a, b) #define __Pyx_PyUnicode_ConcatSafe(a, b) PyNumber_Add(a, b) #else #define __Pyx_PyUnicode_Concat(a, b) PyUnicode_Concat(a, b) #define __Pyx_PyUnicode_ConcatSafe(a, b) ((unlikely((a) == Py_None) || unlikely((b) == Py_None)) ?\ PyNumber_Add(a, b) : __Pyx_PyUnicode_Concat(a, b)) #endif #if CYTHON_COMPILING_IN_PYPY && !defined(PyUnicode_Contains) #define PyUnicode_Contains(u, s) PySequence_Contains(u, s) #endif #if CYTHON_COMPILING_IN_PYPY && !defined(PyByteArray_Check) #define PyByteArray_Check(obj) PyObject_TypeCheck(obj, &PyByteArray_Type) #endif #if CYTHON_COMPILING_IN_PYPY && !defined(PyObject_Format) #define PyObject_Format(obj, fmt) PyObject_CallMethod(obj, "__format__", "O", fmt) #endif #define __Pyx_PyString_FormatSafe(a, b) ((unlikely((a) == Py_None || (PyString_Check(b) && !PyString_CheckExact(b)))) ? PyNumber_Remainder(a, b) : __Pyx_PyString_Format(a, b)) #define __Pyx_PyUnicode_FormatSafe(a, b) ((unlikely((a) == Py_None || (PyUnicode_Check(b) && !PyUnicode_CheckExact(b)))) ? PyNumber_Remainder(a, b) : PyUnicode_Format(a, b)) #if PY_MAJOR_VERSION >= 3 #define __Pyx_PyString_Format(a, b) PyUnicode_Format(a, b) #else #define __Pyx_PyString_Format(a, b) PyString_Format(a, b) #endif #if PY_MAJOR_VERSION < 3 && !defined(PyObject_ASCII) #define PyObject_ASCII(o) PyObject_Repr(o) #endif #if PY_MAJOR_VERSION >= 3 #define PyBaseString_Type PyUnicode_Type #define PyStringObject PyUnicodeObject #define PyString_Type PyUnicode_Type #define PyString_Check PyUnicode_Check #define PyString_CheckExact PyUnicode_CheckExact #define PyObject_Unicode PyObject_Str #endif #if PY_MAJOR_VERSION >= 3 #define __Pyx_PyBaseString_Check(obj) PyUnicode_Check(obj) #define __Pyx_PyBaseString_CheckExact(obj) PyUnicode_CheckExact(obj) #else #define __Pyx_PyBaseString_Check(obj) (PyString_Check(obj) || PyUnicode_Check(obj)) #define __Pyx_PyBaseString_CheckExact(obj) (PyString_CheckExact(obj) || PyUnicode_CheckExact(obj)) #endif #ifndef PySet_CheckExact #define PySet_CheckExact(obj) (Py_TYPE(obj) == &PySet_Type) #endif #if CYTHON_ASSUME_SAFE_MACROS #define __Pyx_PySequence_SIZE(seq) Py_SIZE(seq) #else #define __Pyx_PySequence_SIZE(seq) PySequence_Size(seq) #endif #if PY_MAJOR_VERSION >= 3 #define PyIntObject PyLongObject #define PyInt_Type PyLong_Type #define PyInt_Check(op) PyLong_Check(op) #define PyInt_CheckExact(op) PyLong_CheckExact(op) #define PyInt_FromString PyLong_FromString #define PyInt_FromUnicode PyLong_FromUnicode #define PyInt_FromLong PyLong_FromLong #define PyInt_FromSize_t PyLong_FromSize_t #define PyInt_FromSsize_t PyLong_FromSsize_t #define PyInt_AsLong PyLong_AsLong #define PyInt_AS_LONG PyLong_AS_LONG #define PyInt_AsSsize_t PyLong_AsSsize_t #define PyInt_AsUnsignedLongMask PyLong_AsUnsignedLongMask #define PyInt_AsUnsignedLongLongMask PyLong_AsUnsignedLongLongMask #define PyNumber_Int PyNumber_Long #endif #if PY_MAJOR_VERSION >= 3 #define PyBoolObject PyLongObject #endif #if PY_MAJOR_VERSION >= 3 && CYTHON_COMPILING_IN_PYPY #ifndef PyUnicode_InternFromString #define PyUnicode_InternFromString(s) PyUnicode_FromString(s) #endif #endif #if PY_VERSION_HEX < 0x030200A4 typedef long Py_hash_t; #define __Pyx_PyInt_FromHash_t PyInt_FromLong #define __Pyx_PyInt_AsHash_t PyInt_AsLong #else #define __Pyx_PyInt_FromHash_t PyInt_FromSsize_t #define __Pyx_PyInt_AsHash_t PyInt_AsSsize_t #endif #if PY_MAJOR_VERSION >= 3 #define __Pyx_PyMethod_New(func, self, klass) ((self) ? PyMethod_New(func, self) : (Py_INCREF(func), func)) #else #define __Pyx_PyMethod_New(func, self, klass) PyMethod_New(func, self, klass) #endif #if CYTHON_USE_ASYNC_SLOTS #if PY_VERSION_HEX >= 0x030500B1 #define __Pyx_PyAsyncMethodsStruct PyAsyncMethods #define __Pyx_PyType_AsAsync(obj) (Py_TYPE(obj)->tp_as_async) #else #define __Pyx_PyType_AsAsync(obj) ((__Pyx_PyAsyncMethodsStruct*) (Py_TYPE(obj)->tp_reserved)) #endif #else #define __Pyx_PyType_AsAsync(obj) NULL #endif #ifndef __Pyx_PyAsyncMethodsStruct typedef struct { unaryfunc am_await; unaryfunc am_aiter; unaryfunc am_anext; } __Pyx_PyAsyncMethodsStruct; #endif #if defined(WIN32) || defined(MS_WINDOWS) #define _USE_MATH_DEFINES #endif #include #ifdef NAN #define __PYX_NAN() ((float) NAN) #else static CYTHON_INLINE float __PYX_NAN() { float value; memset(&value, 0xFF, sizeof(value)); return value; } #endif #if defined(__CYGWIN__) && defined(_LDBL_EQ_DBL) #define __Pyx_truncl trunc #else #define __Pyx_truncl truncl #endif #define __PYX_ERR(f_index, lineno, Ln_error) \ { \ __pyx_filename = __pyx_f[f_index]; __pyx_lineno = lineno; __pyx_clineno = __LINE__; goto Ln_error; \ } #ifndef __PYX_EXTERN_C #ifdef __cplusplus #define __PYX_EXTERN_C extern "C" #else #define __PYX_EXTERN_C extern #endif #endif #define __PYX_HAVE__numpy__random__mtrand #define __PYX_HAVE_API__numpy__random__mtrand /* Early includes */ #include #include #include "pythread.h" #include "numpy/arrayobject.h" #include "numpy/ufuncobject.h" #include #include #include "numpy/random/bitgen.h" #include "src/aligned_malloc/aligned_malloc.h" #include "src/distributions/distributions.h" #include "legacy-distributions.h" #ifdef _OPENMP #include #endif /* _OPENMP */ #if defined(PYREX_WITHOUT_ASSERTIONS) && !defined(CYTHON_WITHOUT_ASSERTIONS) #define CYTHON_WITHOUT_ASSERTIONS #endif typedef struct {PyObject **p; const char *s; const Py_ssize_t n; const char* encoding; const char is_unicode; const char is_str; const char intern; } __Pyx_StringTabEntry; #define __PYX_DEFAULT_STRING_ENCODING_IS_ASCII 0 #define __PYX_DEFAULT_STRING_ENCODING_IS_UTF8 0 #define __PYX_DEFAULT_STRING_ENCODING_IS_DEFAULT (PY_MAJOR_VERSION >= 3 && __PYX_DEFAULT_STRING_ENCODING_IS_UTF8) #define __PYX_DEFAULT_STRING_ENCODING "" #define __Pyx_PyObject_FromString __Pyx_PyBytes_FromString #define __Pyx_PyObject_FromStringAndSize __Pyx_PyBytes_FromStringAndSize #define __Pyx_uchar_cast(c) ((unsigned char)c) #define __Pyx_long_cast(x) ((long)x) #define __Pyx_fits_Py_ssize_t(v, type, is_signed) (\ (sizeof(type) < sizeof(Py_ssize_t)) ||\ (sizeof(type) > sizeof(Py_ssize_t) &&\ likely(v < (type)PY_SSIZE_T_MAX ||\ v == (type)PY_SSIZE_T_MAX) &&\ (!is_signed || likely(v > (type)PY_SSIZE_T_MIN ||\ v == (type)PY_SSIZE_T_MIN))) ||\ (sizeof(type) == sizeof(Py_ssize_t) &&\ (is_signed || likely(v < (type)PY_SSIZE_T_MAX ||\ v == (type)PY_SSIZE_T_MAX))) ) static CYTHON_INLINE int __Pyx_is_valid_index(Py_ssize_t i, Py_ssize_t limit) { return (size_t) i < (size_t) limit; } #if defined (__cplusplus) && __cplusplus >= 201103L #include #define __Pyx_sst_abs(value) std::abs(value) #elif SIZEOF_INT >= SIZEOF_SIZE_T #define __Pyx_sst_abs(value) abs(value) #elif SIZEOF_LONG >= SIZEOF_SIZE_T #define __Pyx_sst_abs(value) labs(value) #elif defined (_MSC_VER) #define __Pyx_sst_abs(value) ((Py_ssize_t)_abs64(value)) #elif defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L #define __Pyx_sst_abs(value) llabs(value) #elif defined (__GNUC__) #define __Pyx_sst_abs(value) __builtin_llabs(value) #else #define __Pyx_sst_abs(value) ((value<0) ? -value : value) #endif static CYTHON_INLINE const char* __Pyx_PyObject_AsString(PyObject*); static CYTHON_INLINE const char* __Pyx_PyObject_AsStringAndSize(PyObject*, Py_ssize_t* length); #define __Pyx_PyByteArray_FromString(s) PyByteArray_FromStringAndSize((const char*)s, strlen((const char*)s)) #define __Pyx_PyByteArray_FromStringAndSize(s, l) PyByteArray_FromStringAndSize((const char*)s, l) #define __Pyx_PyBytes_FromString PyBytes_FromString #define __Pyx_PyBytes_FromStringAndSize PyBytes_FromStringAndSize static CYTHON_INLINE PyObject* __Pyx_PyUnicode_FromString(const char*); #if PY_MAJOR_VERSION < 3 #define __Pyx_PyStr_FromString __Pyx_PyBytes_FromString #define __Pyx_PyStr_FromStringAndSize __Pyx_PyBytes_FromStringAndSize #else #define __Pyx_PyStr_FromString __Pyx_PyUnicode_FromString #define __Pyx_PyStr_FromStringAndSize __Pyx_PyUnicode_FromStringAndSize #endif #define __Pyx_PyBytes_AsWritableString(s) ((char*) PyBytes_AS_STRING(s)) #define __Pyx_PyBytes_AsWritableSString(s) ((signed char*) PyBytes_AS_STRING(s)) #define __Pyx_PyBytes_AsWritableUString(s) ((unsigned char*) PyBytes_AS_STRING(s)) #define __Pyx_PyBytes_AsString(s) ((const char*) PyBytes_AS_STRING(s)) #define __Pyx_PyBytes_AsSString(s) ((const signed char*) PyBytes_AS_STRING(s)) #define __Pyx_PyBytes_AsUString(s) ((const unsigned char*) PyBytes_AS_STRING(s)) #define __Pyx_PyObject_AsWritableString(s) ((char*) __Pyx_PyObject_AsString(s)) #define __Pyx_PyObject_AsWritableSString(s) ((signed char*) __Pyx_PyObject_AsString(s)) #define __Pyx_PyObject_AsWritableUString(s) ((unsigned char*) __Pyx_PyObject_AsString(s)) #define __Pyx_PyObject_AsSString(s) ((const signed char*) __Pyx_PyObject_AsString(s)) #define __Pyx_PyObject_AsUString(s) ((const unsigned char*) __Pyx_PyObject_AsString(s)) #define __Pyx_PyObject_FromCString(s) __Pyx_PyObject_FromString((const char*)s) #define __Pyx_PyBytes_FromCString(s) __Pyx_PyBytes_FromString((const char*)s) #define __Pyx_PyByteArray_FromCString(s) __Pyx_PyByteArray_FromString((const char*)s) #define __Pyx_PyStr_FromCString(s) __Pyx_PyStr_FromString((const char*)s) #define __Pyx_PyUnicode_FromCString(s) __Pyx_PyUnicode_FromString((const char*)s) static CYTHON_INLINE size_t __Pyx_Py_UNICODE_strlen(const Py_UNICODE *u) { const Py_UNICODE *u_end = u; while (*u_end++) ; return (size_t)(u_end - u - 1); } #define __Pyx_PyUnicode_FromUnicode(u) PyUnicode_FromUnicode(u, __Pyx_Py_UNICODE_strlen(u)) #define __Pyx_PyUnicode_FromUnicodeAndLength PyUnicode_FromUnicode #define __Pyx_PyUnicode_AsUnicode PyUnicode_AsUnicode #define __Pyx_NewRef(obj) (Py_INCREF(obj), obj) #define __Pyx_Owned_Py_None(b) __Pyx_NewRef(Py_None) static CYTHON_INLINE PyObject * __Pyx_PyBool_FromLong(long b); static CYTHON_INLINE int __Pyx_PyObject_IsTrue(PyObject*); static CYTHON_INLINE int __Pyx_PyObject_IsTrueAndDecref(PyObject*); static CYTHON_INLINE PyObject* __Pyx_PyNumber_IntOrLong(PyObject* x); #define __Pyx_PySequence_Tuple(obj)\ (likely(PyTuple_CheckExact(obj)) ? __Pyx_NewRef(obj) : PySequence_Tuple(obj)) static CYTHON_INLINE Py_ssize_t __Pyx_PyIndex_AsSsize_t(PyObject*); static CYTHON_INLINE PyObject * __Pyx_PyInt_FromSize_t(size_t); #if CYTHON_ASSUME_SAFE_MACROS #define __pyx_PyFloat_AsDouble(x) (PyFloat_CheckExact(x) ? PyFloat_AS_DOUBLE(x) : PyFloat_AsDouble(x)) #else #define __pyx_PyFloat_AsDouble(x) PyFloat_AsDouble(x) #endif #define __pyx_PyFloat_AsFloat(x) ((float) __pyx_PyFloat_AsDouble(x)) #if PY_MAJOR_VERSION >= 3 #define __Pyx_PyNumber_Int(x) (PyLong_CheckExact(x) ? __Pyx_NewRef(x) : PyNumber_Long(x)) #else #define __Pyx_PyNumber_Int(x) (PyInt_CheckExact(x) ? __Pyx_NewRef(x) : PyNumber_Int(x)) #endif #define __Pyx_PyNumber_Float(x) (PyFloat_CheckExact(x) ? __Pyx_NewRef(x) : PyNumber_Float(x)) #if PY_MAJOR_VERSION < 3 && __PYX_DEFAULT_STRING_ENCODING_IS_ASCII static int __Pyx_sys_getdefaultencoding_not_ascii; static int __Pyx_init_sys_getdefaultencoding_params(void) { PyObject* sys; PyObject* default_encoding = NULL; PyObject* ascii_chars_u = NULL; PyObject* ascii_chars_b = NULL; const char* default_encoding_c; sys = PyImport_ImportModule("sys"); if (!sys) goto bad; default_encoding = PyObject_CallMethod(sys, (char*) "getdefaultencoding", NULL); Py_DECREF(sys); if (!default_encoding) goto bad; default_encoding_c = PyBytes_AsString(default_encoding); if (!default_encoding_c) goto bad; if (strcmp(default_encoding_c, "ascii") == 0) { __Pyx_sys_getdefaultencoding_not_ascii = 0; } else { char ascii_chars[128]; int c; for (c = 0; c < 128; c++) { ascii_chars[c] = c; } __Pyx_sys_getdefaultencoding_not_ascii = 1; ascii_chars_u = PyUnicode_DecodeASCII(ascii_chars, 128, NULL); if (!ascii_chars_u) goto bad; ascii_chars_b = PyUnicode_AsEncodedString(ascii_chars_u, default_encoding_c, NULL); if (!ascii_chars_b || !PyBytes_Check(ascii_chars_b) || memcmp(ascii_chars, PyBytes_AS_STRING(ascii_chars_b), 128) != 0) { PyErr_Format( PyExc_ValueError, "This module compiled with c_string_encoding=ascii, but default encoding '%.200s' is not a superset of ascii.", default_encoding_c); goto bad; } Py_DECREF(ascii_chars_u); Py_DECREF(ascii_chars_b); } Py_DECREF(default_encoding); return 0; bad: Py_XDECREF(default_encoding); Py_XDECREF(ascii_chars_u); Py_XDECREF(ascii_chars_b); return -1; } #endif #if __PYX_DEFAULT_STRING_ENCODING_IS_DEFAULT && PY_MAJOR_VERSION >= 3 #define __Pyx_PyUnicode_FromStringAndSize(c_str, size) PyUnicode_DecodeUTF8(c_str, size, NULL) #else #define __Pyx_PyUnicode_FromStringAndSize(c_str, size) PyUnicode_Decode(c_str, size, __PYX_DEFAULT_STRING_ENCODING, NULL) #if __PYX_DEFAULT_STRING_ENCODING_IS_DEFAULT static char* __PYX_DEFAULT_STRING_ENCODING; static int __Pyx_init_sys_getdefaultencoding_params(void) { PyObject* sys; PyObject* default_encoding = NULL; char* default_encoding_c; sys = PyImport_ImportModule("sys"); if (!sys) goto bad; default_encoding = PyObject_CallMethod(sys, (char*) (const char*) "getdefaultencoding", NULL); Py_DECREF(sys); if (!default_encoding) goto bad; default_encoding_c = PyBytes_AsString(default_encoding); if (!default_encoding_c) goto bad; __PYX_DEFAULT_STRING_ENCODING = (char*) malloc(strlen(default_encoding_c) + 1); if (!__PYX_DEFAULT_STRING_ENCODING) goto bad; strcpy(__PYX_DEFAULT_STRING_ENCODING, default_encoding_c); Py_DECREF(default_encoding); return 0; bad: Py_XDECREF(default_encoding); return -1; } #endif #endif /* Test for GCC > 2.95 */ #if defined(__GNUC__) && (__GNUC__ > 2 || (__GNUC__ == 2 && (__GNUC_MINOR__ > 95))) #define likely(x) __builtin_expect(!!(x), 1) #define unlikely(x) __builtin_expect(!!(x), 0) #else /* !__GNUC__ or GCC < 2.95 */ #define likely(x) (x) #define unlikely(x) (x) #endif /* __GNUC__ */ static CYTHON_INLINE void __Pyx_pretend_to_initialize(void* ptr) { (void)ptr; } static PyObject *__pyx_m = NULL; static PyObject *__pyx_d; static PyObject *__pyx_b; static PyObject *__pyx_cython_runtime = NULL; static PyObject *__pyx_empty_tuple; static PyObject *__pyx_empty_bytes; static PyObject *__pyx_empty_unicode; static int __pyx_lineno; static int __pyx_clineno = 0; static const char * __pyx_cfilenm= __FILE__; static const char *__pyx_filename; /* Header.proto */ #if !defined(CYTHON_CCOMPLEX) #if defined(__cplusplus) #define CYTHON_CCOMPLEX 1 #elif defined(_Complex_I) #define CYTHON_CCOMPLEX 1 #else #define CYTHON_CCOMPLEX 0 #endif #endif #if CYTHON_CCOMPLEX #ifdef __cplusplus #include #else #include #endif #endif #if CYTHON_CCOMPLEX && !defined(__cplusplus) && defined(__sun__) && defined(__GNUC__) #undef _Complex_I #define _Complex_I 1.0fj #endif static const char *__pyx_f[] = { "mtrand.pyx", "__init__.pxd", "type.pxd", "bool.pxd", "complex.pxd", }; /* NoFastGil.proto */ #define __Pyx_PyGILState_Ensure PyGILState_Ensure #define __Pyx_PyGILState_Release PyGILState_Release #define __Pyx_FastGIL_Remember() #define __Pyx_FastGIL_Forget() #define __Pyx_FastGilFuncInit() /* ForceInitThreads.proto */ #ifndef __PYX_FORCE_INIT_THREADS #define __PYX_FORCE_INIT_THREADS 0 #endif /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":776 * # in Cython to enable them only on the right systems. * * ctypedef npy_int8 int8_t # <<<<<<<<<<<<<< * ctypedef npy_int16 int16_t * ctypedef npy_int32 int32_t */ typedef npy_int8 __pyx_t_5numpy_int8_t; /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":777 * * ctypedef npy_int8 int8_t * ctypedef npy_int16 int16_t # <<<<<<<<<<<<<< * ctypedef npy_int32 int32_t * ctypedef npy_int64 int64_t */ typedef npy_int16 __pyx_t_5numpy_int16_t; /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":778 * ctypedef npy_int8 int8_t * ctypedef npy_int16 int16_t * ctypedef npy_int32 int32_t # <<<<<<<<<<<<<< * ctypedef npy_int64 int64_t * #ctypedef npy_int96 int96_t */ typedef npy_int32 __pyx_t_5numpy_int32_t; /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":779 * ctypedef npy_int16 int16_t * ctypedef npy_int32 int32_t * ctypedef npy_int64 int64_t # <<<<<<<<<<<<<< * #ctypedef npy_int96 int96_t * #ctypedef npy_int128 int128_t */ typedef npy_int64 __pyx_t_5numpy_int64_t; /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":783 * #ctypedef npy_int128 int128_t * * ctypedef npy_uint8 uint8_t # <<<<<<<<<<<<<< * ctypedef npy_uint16 uint16_t * ctypedef npy_uint32 uint32_t */ typedef npy_uint8 __pyx_t_5numpy_uint8_t; /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":784 * * ctypedef npy_uint8 uint8_t * ctypedef npy_uint16 uint16_t # <<<<<<<<<<<<<< * ctypedef npy_uint32 uint32_t * ctypedef npy_uint64 uint64_t */ typedef npy_uint16 __pyx_t_5numpy_uint16_t; /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":785 * ctypedef npy_uint8 uint8_t * ctypedef npy_uint16 uint16_t * ctypedef npy_uint32 uint32_t # <<<<<<<<<<<<<< * ctypedef npy_uint64 uint64_t * #ctypedef npy_uint96 uint96_t */ typedef npy_uint32 __pyx_t_5numpy_uint32_t; /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":786 * ctypedef npy_uint16 uint16_t * ctypedef npy_uint32 uint32_t * ctypedef npy_uint64 uint64_t # <<<<<<<<<<<<<< * #ctypedef npy_uint96 uint96_t * #ctypedef npy_uint128 uint128_t */ typedef npy_uint64 __pyx_t_5numpy_uint64_t; /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":790 * #ctypedef npy_uint128 uint128_t * * ctypedef npy_float32 float32_t # <<<<<<<<<<<<<< * ctypedef npy_float64 float64_t * #ctypedef npy_float80 float80_t */ typedef npy_float32 __pyx_t_5numpy_float32_t; /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":791 * * ctypedef npy_float32 float32_t * ctypedef npy_float64 float64_t # <<<<<<<<<<<<<< * #ctypedef npy_float80 float80_t * #ctypedef npy_float128 float128_t */ typedef npy_float64 __pyx_t_5numpy_float64_t; /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":800 * # The int types are mapped a bit surprising -- * # numpy.int corresponds to 'l' and numpy.long to 'q' * ctypedef npy_long int_t # <<<<<<<<<<<<<< * ctypedef npy_longlong long_t * ctypedef npy_longlong longlong_t */ typedef npy_long __pyx_t_5numpy_int_t; /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":801 * # numpy.int corresponds to 'l' and numpy.long to 'q' * ctypedef npy_long int_t * ctypedef npy_longlong long_t # <<<<<<<<<<<<<< * ctypedef npy_longlong longlong_t * */ typedef npy_longlong __pyx_t_5numpy_long_t; /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":802 * ctypedef npy_long int_t * ctypedef npy_longlong long_t * ctypedef npy_longlong longlong_t # <<<<<<<<<<<<<< * * ctypedef npy_ulong uint_t */ typedef npy_longlong __pyx_t_5numpy_longlong_t; /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":804 * ctypedef npy_longlong longlong_t * * ctypedef npy_ulong uint_t # <<<<<<<<<<<<<< * ctypedef npy_ulonglong ulong_t * ctypedef npy_ulonglong ulonglong_t */ typedef npy_ulong __pyx_t_5numpy_uint_t; /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":805 * * ctypedef npy_ulong uint_t * ctypedef npy_ulonglong ulong_t # <<<<<<<<<<<<<< * ctypedef npy_ulonglong ulonglong_t * */ typedef npy_ulonglong __pyx_t_5numpy_ulong_t; /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":806 * ctypedef npy_ulong uint_t * ctypedef npy_ulonglong ulong_t * ctypedef npy_ulonglong ulonglong_t # <<<<<<<<<<<<<< * * ctypedef npy_intp intp_t */ typedef npy_ulonglong __pyx_t_5numpy_ulonglong_t; /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":808 * ctypedef npy_ulonglong ulonglong_t * * ctypedef npy_intp intp_t # <<<<<<<<<<<<<< * ctypedef npy_uintp uintp_t * */ typedef npy_intp __pyx_t_5numpy_intp_t; /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":809 * * ctypedef npy_intp intp_t * ctypedef npy_uintp uintp_t # <<<<<<<<<<<<<< * * ctypedef npy_double float_t */ typedef npy_uintp __pyx_t_5numpy_uintp_t; /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":811 * ctypedef npy_uintp uintp_t * * ctypedef npy_double float_t # <<<<<<<<<<<<<< * ctypedef npy_double double_t * ctypedef npy_longdouble longdouble_t */ typedef npy_double __pyx_t_5numpy_float_t; /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":812 * * ctypedef npy_double float_t * ctypedef npy_double double_t # <<<<<<<<<<<<<< * ctypedef npy_longdouble longdouble_t * */ typedef npy_double __pyx_t_5numpy_double_t; /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":813 * ctypedef npy_double float_t * ctypedef npy_double double_t * ctypedef npy_longdouble longdouble_t # <<<<<<<<<<<<<< * * ctypedef npy_cfloat cfloat_t */ typedef npy_longdouble __pyx_t_5numpy_longdouble_t; /* "bounded_integers.pxd":5 * import numpy as np * cimport numpy as np * ctypedef np.npy_bool bool_t # <<<<<<<<<<<<<< * * from .common cimport bitgen_t */ typedef npy_bool __pyx_t_5numpy_6random_16bounded_integers_bool_t; /* Declarations.proto */ #if CYTHON_CCOMPLEX #ifdef __cplusplus typedef ::std::complex< float > __pyx_t_float_complex; #else typedef float _Complex __pyx_t_float_complex; #endif #else typedef struct { float real, imag; } __pyx_t_float_complex; #endif static CYTHON_INLINE __pyx_t_float_complex __pyx_t_float_complex_from_parts(float, float); /* Declarations.proto */ #if CYTHON_CCOMPLEX #ifdef __cplusplus typedef ::std::complex< double > __pyx_t_double_complex; #else typedef double _Complex __pyx_t_double_complex; #endif #else typedef struct { double real, imag; } __pyx_t_double_complex; #endif static CYTHON_INLINE __pyx_t_double_complex __pyx_t_double_complex_from_parts(double, double); /*--- Type declarations ---*/ struct __pyx_obj_5numpy_6random_6mtrand_RandomState; /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":815 * ctypedef npy_longdouble longdouble_t * * ctypedef npy_cfloat cfloat_t # <<<<<<<<<<<<<< * ctypedef npy_cdouble cdouble_t * ctypedef npy_clongdouble clongdouble_t */ typedef npy_cfloat __pyx_t_5numpy_cfloat_t; /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":816 * * ctypedef npy_cfloat cfloat_t * ctypedef npy_cdouble cdouble_t # <<<<<<<<<<<<<< * ctypedef npy_clongdouble clongdouble_t * */ typedef npy_cdouble __pyx_t_5numpy_cdouble_t; /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":817 * ctypedef npy_cfloat cfloat_t * ctypedef npy_cdouble cdouble_t * ctypedef npy_clongdouble clongdouble_t # <<<<<<<<<<<<<< * * ctypedef npy_cdouble complex_t */ typedef npy_clongdouble __pyx_t_5numpy_clongdouble_t; /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":819 * ctypedef npy_clongdouble clongdouble_t * * ctypedef npy_cdouble complex_t # <<<<<<<<<<<<<< * * cdef inline object PyArray_MultiIterNew1(a): */ typedef npy_cdouble __pyx_t_5numpy_complex_t; /* "common.pxd":25 * cdef uint64_t MAXSIZE * * cdef enum ConstraintType: # <<<<<<<<<<<<<< * CONS_NONE * CONS_NON_NEGATIVE */ enum __pyx_t_5numpy_6random_6common_ConstraintType { __pyx_e_5numpy_6random_6common_CONS_NONE, __pyx_e_5numpy_6random_6common_CONS_NON_NEGATIVE, __pyx_e_5numpy_6random_6common_CONS_POSITIVE, __pyx_e_5numpy_6random_6common_CONS_POSITIVE_NOT_NAN, __pyx_e_5numpy_6random_6common_CONS_BOUNDED_0_1, __pyx_e_5numpy_6random_6common_CONS_BOUNDED_0_1_NOTNAN, __pyx_e_5numpy_6random_6common_CONS_BOUNDED_GT_0_1, __pyx_e_5numpy_6random_6common_CONS_GT_1, __pyx_e_5numpy_6random_6common_CONS_GTE_1, __pyx_e_5numpy_6random_6common_CONS_POISSON, __pyx_e_5numpy_6random_6common_LEGACY_CONS_POISSON }; /* "common.pxd":38 * LEGACY_CONS_POISSON * * ctypedef ConstraintType constraint_type # <<<<<<<<<<<<<< * * cdef object benchmark(bitgen_t *bitgen, object lock, Py_ssize_t cnt, object method) */ typedef enum __pyx_t_5numpy_6random_6common_ConstraintType __pyx_t_5numpy_6random_6common_constraint_type; /* "common.pxd":53 * cdef void PyArray_free_aligned(void *p) * * ctypedef double (*random_double_fill)(bitgen_t *state, np.npy_intp count, double* out) nogil # <<<<<<<<<<<<<< * ctypedef double (*random_double_0)(void *state) nogil * ctypedef double (*random_double_1)(void *state, double a) nogil */ typedef double (*__pyx_t_5numpy_6random_6common_random_double_fill)(bitgen_t *, npy_intp, double *); /* "common.pxd":54 * * ctypedef double (*random_double_fill)(bitgen_t *state, np.npy_intp count, double* out) nogil * ctypedef double (*random_double_0)(void *state) nogil # <<<<<<<<<<<<<< * ctypedef double (*random_double_1)(void *state, double a) nogil * ctypedef double (*random_double_2)(void *state, double a, double b) nogil */ typedef double (*__pyx_t_5numpy_6random_6common_random_double_0)(void *); /* "common.pxd":55 * ctypedef double (*random_double_fill)(bitgen_t *state, np.npy_intp count, double* out) nogil * ctypedef double (*random_double_0)(void *state) nogil * ctypedef double (*random_double_1)(void *state, double a) nogil # <<<<<<<<<<<<<< * ctypedef double (*random_double_2)(void *state, double a, double b) nogil * ctypedef double (*random_double_3)(void *state, double a, double b, double c) nogil */ typedef double (*__pyx_t_5numpy_6random_6common_random_double_1)(void *, double); /* "common.pxd":56 * ctypedef double (*random_double_0)(void *state) nogil * ctypedef double (*random_double_1)(void *state, double a) nogil * ctypedef double (*random_double_2)(void *state, double a, double b) nogil # <<<<<<<<<<<<<< * ctypedef double (*random_double_3)(void *state, double a, double b, double c) nogil * */ typedef double (*__pyx_t_5numpy_6random_6common_random_double_2)(void *, double, double); /* "common.pxd":57 * ctypedef double (*random_double_1)(void *state, double a) nogil * ctypedef double (*random_double_2)(void *state, double a, double b) nogil * ctypedef double (*random_double_3)(void *state, double a, double b, double c) nogil # <<<<<<<<<<<<<< * * ctypedef float (*random_float_0)(bitgen_t *state) nogil */ typedef double (*__pyx_t_5numpy_6random_6common_random_double_3)(void *, double, double, double); /* "common.pxd":59 * ctypedef double (*random_double_3)(void *state, double a, double b, double c) nogil * * ctypedef float (*random_float_0)(bitgen_t *state) nogil # <<<<<<<<<<<<<< * ctypedef float (*random_float_1)(bitgen_t *state, float a) nogil * */ typedef float (*__pyx_t_5numpy_6random_6common_random_float_0)(bitgen_t *); /* "common.pxd":60 * * ctypedef float (*random_float_0)(bitgen_t *state) nogil * ctypedef float (*random_float_1)(bitgen_t *state, float a) nogil # <<<<<<<<<<<<<< * * ctypedef int64_t (*random_uint_0)(void *state) nogil */ typedef float (*__pyx_t_5numpy_6random_6common_random_float_1)(bitgen_t *, float); /* "common.pxd":62 * ctypedef float (*random_float_1)(bitgen_t *state, float a) nogil * * ctypedef int64_t (*random_uint_0)(void *state) nogil # <<<<<<<<<<<<<< * ctypedef int64_t (*random_uint_d)(void *state, double a) nogil * ctypedef int64_t (*random_uint_dd)(void *state, double a, double b) nogil */ typedef int64_t (*__pyx_t_5numpy_6random_6common_random_uint_0)(void *); /* "common.pxd":63 * * ctypedef int64_t (*random_uint_0)(void *state) nogil * ctypedef int64_t (*random_uint_d)(void *state, double a) nogil # <<<<<<<<<<<<<< * ctypedef int64_t (*random_uint_dd)(void *state, double a, double b) nogil * ctypedef int64_t (*random_uint_di)(void *state, double a, uint64_t b) nogil */ typedef int64_t (*__pyx_t_5numpy_6random_6common_random_uint_d)(void *, double); /* "common.pxd":64 * ctypedef int64_t (*random_uint_0)(void *state) nogil * ctypedef int64_t (*random_uint_d)(void *state, double a) nogil * ctypedef int64_t (*random_uint_dd)(void *state, double a, double b) nogil # <<<<<<<<<<<<<< * ctypedef int64_t (*random_uint_di)(void *state, double a, uint64_t b) nogil * ctypedef int64_t (*random_uint_i)(void *state, int64_t a) nogil */ typedef int64_t (*__pyx_t_5numpy_6random_6common_random_uint_dd)(void *, double, double); /* "common.pxd":65 * ctypedef int64_t (*random_uint_d)(void *state, double a) nogil * ctypedef int64_t (*random_uint_dd)(void *state, double a, double b) nogil * ctypedef int64_t (*random_uint_di)(void *state, double a, uint64_t b) nogil # <<<<<<<<<<<<<< * ctypedef int64_t (*random_uint_i)(void *state, int64_t a) nogil * ctypedef int64_t (*random_uint_iii)(void *state, int64_t a, int64_t b, int64_t c) nogil */ typedef int64_t (*__pyx_t_5numpy_6random_6common_random_uint_di)(void *, double, uint64_t); /* "common.pxd":66 * ctypedef int64_t (*random_uint_dd)(void *state, double a, double b) nogil * ctypedef int64_t (*random_uint_di)(void *state, double a, uint64_t b) nogil * ctypedef int64_t (*random_uint_i)(void *state, int64_t a) nogil # <<<<<<<<<<<<<< * ctypedef int64_t (*random_uint_iii)(void *state, int64_t a, int64_t b, int64_t c) nogil * */ typedef int64_t (*__pyx_t_5numpy_6random_6common_random_uint_i)(void *, int64_t); /* "common.pxd":67 * ctypedef int64_t (*random_uint_di)(void *state, double a, uint64_t b) nogil * ctypedef int64_t (*random_uint_i)(void *state, int64_t a) nogil * ctypedef int64_t (*random_uint_iii)(void *state, int64_t a, int64_t b, int64_t c) nogil # <<<<<<<<<<<<<< * * ctypedef uint32_t (*random_uint_0_32)(bitgen_t *state) nogil */ typedef int64_t (*__pyx_t_5numpy_6random_6common_random_uint_iii)(void *, int64_t, int64_t, int64_t); /* "common.pxd":69 * ctypedef int64_t (*random_uint_iii)(void *state, int64_t a, int64_t b, int64_t c) nogil * * ctypedef uint32_t (*random_uint_0_32)(bitgen_t *state) nogil # <<<<<<<<<<<<<< * ctypedef uint32_t (*random_uint_1_i_32)(bitgen_t *state, uint32_t a) nogil * */ typedef uint32_t (*__pyx_t_5numpy_6random_6common_random_uint_0_32)(bitgen_t *); /* "common.pxd":70 * * ctypedef uint32_t (*random_uint_0_32)(bitgen_t *state) nogil * ctypedef uint32_t (*random_uint_1_i_32)(bitgen_t *state, uint32_t a) nogil # <<<<<<<<<<<<<< * * ctypedef int32_t (*random_int_2_i_32)(bitgen_t *state, int32_t a, int32_t b) nogil */ typedef uint32_t (*__pyx_t_5numpy_6random_6common_random_uint_1_i_32)(bitgen_t *, uint32_t); /* "common.pxd":72 * ctypedef uint32_t (*random_uint_1_i_32)(bitgen_t *state, uint32_t a) nogil * * ctypedef int32_t (*random_int_2_i_32)(bitgen_t *state, int32_t a, int32_t b) nogil # <<<<<<<<<<<<<< * ctypedef int64_t (*random_int_2_i)(bitgen_t *state, int64_t a, int64_t b) nogil * */ typedef int32_t (*__pyx_t_5numpy_6random_6common_random_int_2_i_32)(bitgen_t *, int32_t, int32_t); /* "common.pxd":73 * * ctypedef int32_t (*random_int_2_i_32)(bitgen_t *state, int32_t a, int32_t b) nogil * ctypedef int64_t (*random_int_2_i)(bitgen_t *state, int64_t a, int64_t b) nogil # <<<<<<<<<<<<<< * * cdef double kahan_sum(double *darr, np.npy_intp n) */ typedef int64_t (*__pyx_t_5numpy_6random_6common_random_int_2_i)(bitgen_t *, int64_t, int64_t); /* "numpy/random/mtrand.pyx":37 * * * cdef class RandomState: # <<<<<<<<<<<<<< * """ * RandomState(seed=None) */ struct __pyx_obj_5numpy_6random_6mtrand_RandomState { PyObject_HEAD struct __pyx_vtabstruct_5numpy_6random_6mtrand_RandomState *__pyx_vtab; PyObject *_bit_generator; bitgen_t _bitgen; aug_bitgen_t _aug_state; binomial_t _binomial; PyObject *lock; }; struct __pyx_vtabstruct_5numpy_6random_6mtrand_RandomState { PyObject *(*_reset_gauss)(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *); PyObject *(*_shuffle_raw)(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *, npy_intp, npy_intp, npy_intp, char *, char *); }; static struct __pyx_vtabstruct_5numpy_6random_6mtrand_RandomState *__pyx_vtabptr_5numpy_6random_6mtrand_RandomState; static CYTHON_INLINE PyObject *__pyx_f_5numpy_6random_6mtrand_11RandomState__shuffle_raw(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *, npy_intp, npy_intp, npy_intp, char *, char *); /* --- Runtime support code (head) --- */ /* Refnanny.proto */ #ifndef CYTHON_REFNANNY #define CYTHON_REFNANNY 0 #endif #if CYTHON_REFNANNY typedef struct { void (*INCREF)(void*, PyObject*, int); void (*DECREF)(void*, PyObject*, int); void (*GOTREF)(void*, PyObject*, int); void (*GIVEREF)(void*, PyObject*, int); void* (*SetupContext)(const char*, int, const char*); void (*FinishContext)(void**); } __Pyx_RefNannyAPIStruct; static __Pyx_RefNannyAPIStruct *__Pyx_RefNanny = NULL; static __Pyx_RefNannyAPIStruct *__Pyx_RefNannyImportAPI(const char *modname); #define __Pyx_RefNannyDeclarations void *__pyx_refnanny = NULL; #ifdef WITH_THREAD #define __Pyx_RefNannySetupContext(name, acquire_gil)\ if (acquire_gil) {\ PyGILState_STATE __pyx_gilstate_save = PyGILState_Ensure();\ __pyx_refnanny = __Pyx_RefNanny->SetupContext((name), __LINE__, __FILE__);\ PyGILState_Release(__pyx_gilstate_save);\ } else {\ __pyx_refnanny = __Pyx_RefNanny->SetupContext((name), __LINE__, __FILE__);\ } #else #define __Pyx_RefNannySetupContext(name, acquire_gil)\ __pyx_refnanny = __Pyx_RefNanny->SetupContext((name), __LINE__, __FILE__) #endif #define __Pyx_RefNannyFinishContext()\ __Pyx_RefNanny->FinishContext(&__pyx_refnanny) #define __Pyx_INCREF(r) __Pyx_RefNanny->INCREF(__pyx_refnanny, (PyObject *)(r), __LINE__) #define __Pyx_DECREF(r) __Pyx_RefNanny->DECREF(__pyx_refnanny, (PyObject *)(r), __LINE__) #define __Pyx_GOTREF(r) __Pyx_RefNanny->GOTREF(__pyx_refnanny, (PyObject *)(r), __LINE__) #define __Pyx_GIVEREF(r) __Pyx_RefNanny->GIVEREF(__pyx_refnanny, (PyObject *)(r), __LINE__) #define __Pyx_XINCREF(r) do { if((r) != NULL) {__Pyx_INCREF(r); }} while(0) #define __Pyx_XDECREF(r) do { if((r) != NULL) {__Pyx_DECREF(r); }} while(0) #define __Pyx_XGOTREF(r) do { if((r) != NULL) {__Pyx_GOTREF(r); }} while(0) #define __Pyx_XGIVEREF(r) do { if((r) != NULL) {__Pyx_GIVEREF(r);}} while(0) #else #define __Pyx_RefNannyDeclarations #define __Pyx_RefNannySetupContext(name, acquire_gil) #define __Pyx_RefNannyFinishContext() #define __Pyx_INCREF(r) Py_INCREF(r) #define __Pyx_DECREF(r) Py_DECREF(r) #define __Pyx_GOTREF(r) #define __Pyx_GIVEREF(r) #define __Pyx_XINCREF(r) Py_XINCREF(r) #define __Pyx_XDECREF(r) Py_XDECREF(r) #define __Pyx_XGOTREF(r) #define __Pyx_XGIVEREF(r) #endif #define __Pyx_XDECREF_SET(r, v) do {\ PyObject *tmp = (PyObject *) r;\ r = v; __Pyx_XDECREF(tmp);\ } while (0) #define __Pyx_DECREF_SET(r, v) do {\ PyObject *tmp = (PyObject *) r;\ r = v; __Pyx_DECREF(tmp);\ } while (0) #define __Pyx_CLEAR(r) do { PyObject* tmp = ((PyObject*)(r)); r = NULL; __Pyx_DECREF(tmp);} while(0) #define __Pyx_XCLEAR(r) do { if((r) != NULL) {PyObject* tmp = ((PyObject*)(r)); r = NULL; __Pyx_DECREF(tmp);}} while(0) /* PyObjectGetAttrStr.proto */ #if CYTHON_USE_TYPE_SLOTS static CYTHON_INLINE PyObject* __Pyx_PyObject_GetAttrStr(PyObject* obj, PyObject* attr_name); #else #define __Pyx_PyObject_GetAttrStr(o,n) PyObject_GetAttr(o,n) #endif /* GetBuiltinName.proto */ static PyObject *__Pyx_GetBuiltinName(PyObject *name); /* PyDictVersioning.proto */ #if CYTHON_USE_DICT_VERSIONS && CYTHON_USE_TYPE_SLOTS #define __PYX_DICT_VERSION_INIT ((PY_UINT64_T) -1) #define __PYX_GET_DICT_VERSION(dict) (((PyDictObject*)(dict))->ma_version_tag) #define __PYX_UPDATE_DICT_CACHE(dict, value, cache_var, version_var)\ (version_var) = __PYX_GET_DICT_VERSION(dict);\ (cache_var) = (value); #define __PYX_PY_DICT_LOOKUP_IF_MODIFIED(VAR, DICT, LOOKUP) {\ static PY_UINT64_T __pyx_dict_version = 0;\ static PyObject *__pyx_dict_cached_value = NULL;\ if (likely(__PYX_GET_DICT_VERSION(DICT) == __pyx_dict_version)) {\ (VAR) = __pyx_dict_cached_value;\ } else {\ (VAR) = __pyx_dict_cached_value = (LOOKUP);\ __pyx_dict_version = __PYX_GET_DICT_VERSION(DICT);\ }\ } static CYTHON_INLINE PY_UINT64_T __Pyx_get_tp_dict_version(PyObject *obj); static CYTHON_INLINE PY_UINT64_T __Pyx_get_object_dict_version(PyObject *obj); static CYTHON_INLINE int __Pyx_object_dict_version_matches(PyObject* obj, PY_UINT64_T tp_dict_version, PY_UINT64_T obj_dict_version); #else #define __PYX_GET_DICT_VERSION(dict) (0) #define __PYX_UPDATE_DICT_CACHE(dict, value, cache_var, version_var) #define __PYX_PY_DICT_LOOKUP_IF_MODIFIED(VAR, DICT, LOOKUP) (VAR) = (LOOKUP); #endif /* GetModuleGlobalName.proto */ #if CYTHON_USE_DICT_VERSIONS #define __Pyx_GetModuleGlobalName(var, name) {\ static PY_UINT64_T __pyx_dict_version = 0;\ static PyObject *__pyx_dict_cached_value = NULL;\ (var) = (likely(__pyx_dict_version == __PYX_GET_DICT_VERSION(__pyx_d))) ?\ (likely(__pyx_dict_cached_value) ? __Pyx_NewRef(__pyx_dict_cached_value) : __Pyx_GetBuiltinName(name)) :\ __Pyx__GetModuleGlobalName(name, &__pyx_dict_version, &__pyx_dict_cached_value);\ } #define __Pyx_GetModuleGlobalNameUncached(var, name) {\ PY_UINT64_T __pyx_dict_version;\ PyObject *__pyx_dict_cached_value;\ (var) = __Pyx__GetModuleGlobalName(name, &__pyx_dict_version, &__pyx_dict_cached_value);\ } static PyObject *__Pyx__GetModuleGlobalName(PyObject *name, PY_UINT64_T *dict_version, PyObject **dict_cached_value); #else #define __Pyx_GetModuleGlobalName(var, name) (var) = __Pyx__GetModuleGlobalName(name) #define __Pyx_GetModuleGlobalNameUncached(var, name) (var) = __Pyx__GetModuleGlobalName(name) static CYTHON_INLINE PyObject *__Pyx__GetModuleGlobalName(PyObject *name); #endif /* PyCFunctionFastCall.proto */ #if CYTHON_FAST_PYCCALL static CYTHON_INLINE PyObject *__Pyx_PyCFunction_FastCall(PyObject *func, PyObject **args, Py_ssize_t nargs); #else #define __Pyx_PyCFunction_FastCall(func, args, nargs) (assert(0), NULL) #endif /* PyFunctionFastCall.proto */ #if CYTHON_FAST_PYCALL #define __Pyx_PyFunction_FastCall(func, args, nargs)\ __Pyx_PyFunction_FastCallDict((func), (args), (nargs), NULL) #if 1 || PY_VERSION_HEX < 0x030600B1 static PyObject *__Pyx_PyFunction_FastCallDict(PyObject *func, PyObject **args, Py_ssize_t nargs, PyObject *kwargs); #else #define __Pyx_PyFunction_FastCallDict(func, args, nargs, kwargs) _PyFunction_FastCallDict(func, args, nargs, kwargs) #endif #define __Pyx_BUILD_ASSERT_EXPR(cond)\ (sizeof(char [1 - 2*!(cond)]) - 1) #ifndef Py_MEMBER_SIZE #define Py_MEMBER_SIZE(type, member) sizeof(((type *)0)->member) #endif static size_t __pyx_pyframe_localsplus_offset = 0; #include "frameobject.h" #define __Pxy_PyFrame_Initialize_Offsets()\ ((void)__Pyx_BUILD_ASSERT_EXPR(sizeof(PyFrameObject) == offsetof(PyFrameObject, f_localsplus) + Py_MEMBER_SIZE(PyFrameObject, f_localsplus)),\ (void)(__pyx_pyframe_localsplus_offset = ((size_t)PyFrame_Type.tp_basicsize) - Py_MEMBER_SIZE(PyFrameObject, f_localsplus))) #define __Pyx_PyFrame_GetLocalsplus(frame)\ (assert(__pyx_pyframe_localsplus_offset), (PyObject **)(((char *)(frame)) + __pyx_pyframe_localsplus_offset)) #endif /* PyObjectCall.proto */ #if CYTHON_COMPILING_IN_CPYTHON static CYTHON_INLINE PyObject* __Pyx_PyObject_Call(PyObject *func, PyObject *arg, PyObject *kw); #else #define __Pyx_PyObject_Call(func, arg, kw) PyObject_Call(func, arg, kw) #endif /* PyObjectCall2Args.proto */ static CYTHON_UNUSED PyObject* __Pyx_PyObject_Call2Args(PyObject* function, PyObject* arg1, PyObject* arg2); /* PyObjectCallMethO.proto */ #if CYTHON_COMPILING_IN_CPYTHON static CYTHON_INLINE PyObject* __Pyx_PyObject_CallMethO(PyObject *func, PyObject *arg); #endif /* PyObjectCallOneArg.proto */ static CYTHON_INLINE PyObject* __Pyx_PyObject_CallOneArg(PyObject *func, PyObject *arg); /* RaiseDoubleKeywords.proto */ static void __Pyx_RaiseDoubleKeywordsError(const char* func_name, PyObject* kw_name); /* ParseKeywords.proto */ static int __Pyx_ParseOptionalKeywords(PyObject *kwds, PyObject **argnames[],\ PyObject *kwds2, PyObject *values[], Py_ssize_t num_pos_args,\ const char* function_name); /* RaiseArgTupleInvalid.proto */ static void __Pyx_RaiseArgtupleInvalid(const char* func_name, int exact, Py_ssize_t num_min, Py_ssize_t num_max, Py_ssize_t num_found); /* PyObjectCallNoArg.proto */ #if CYTHON_COMPILING_IN_CPYTHON static CYTHON_INLINE PyObject* __Pyx_PyObject_CallNoArg(PyObject *func); #else #define __Pyx_PyObject_CallNoArg(func) __Pyx_PyObject_Call(func, __pyx_empty_tuple, NULL) #endif /* GetAttr.proto */ static CYTHON_INLINE PyObject *__Pyx_GetAttr(PyObject *, PyObject *); /* HasAttr.proto */ static CYTHON_INLINE int __Pyx_HasAttr(PyObject *, PyObject *); /* PyThreadStateGet.proto */ #if CYTHON_FAST_THREAD_STATE #define __Pyx_PyThreadState_declare PyThreadState *__pyx_tstate; #define __Pyx_PyThreadState_assign __pyx_tstate = __Pyx_PyThreadState_Current; #define __Pyx_PyErr_Occurred() __pyx_tstate->curexc_type #else #define __Pyx_PyThreadState_declare #define __Pyx_PyThreadState_assign #define __Pyx_PyErr_Occurred() PyErr_Occurred() #endif /* PyErrFetchRestore.proto */ #if CYTHON_FAST_THREAD_STATE #define __Pyx_PyErr_Clear() __Pyx_ErrRestore(NULL, NULL, NULL) #define __Pyx_ErrRestoreWithState(type, value, tb) __Pyx_ErrRestoreInState(PyThreadState_GET(), type, value, tb) #define __Pyx_ErrFetchWithState(type, value, tb) __Pyx_ErrFetchInState(PyThreadState_GET(), type, value, tb) #define __Pyx_ErrRestore(type, value, tb) __Pyx_ErrRestoreInState(__pyx_tstate, type, value, tb) #define __Pyx_ErrFetch(type, value, tb) __Pyx_ErrFetchInState(__pyx_tstate, type, value, tb) static CYTHON_INLINE void __Pyx_ErrRestoreInState(PyThreadState *tstate, PyObject *type, PyObject *value, PyObject *tb); static CYTHON_INLINE void __Pyx_ErrFetchInState(PyThreadState *tstate, PyObject **type, PyObject **value, PyObject **tb); #if CYTHON_COMPILING_IN_CPYTHON #define __Pyx_PyErr_SetNone(exc) (Py_INCREF(exc), __Pyx_ErrRestore((exc), NULL, NULL)) #else #define __Pyx_PyErr_SetNone(exc) PyErr_SetNone(exc) #endif #else #define __Pyx_PyErr_Clear() PyErr_Clear() #define __Pyx_PyErr_SetNone(exc) PyErr_SetNone(exc) #define __Pyx_ErrRestoreWithState(type, value, tb) PyErr_Restore(type, value, tb) #define __Pyx_ErrFetchWithState(type, value, tb) PyErr_Fetch(type, value, tb) #define __Pyx_ErrRestoreInState(tstate, type, value, tb) PyErr_Restore(type, value, tb) #define __Pyx_ErrFetchInState(tstate, type, value, tb) PyErr_Fetch(type, value, tb) #define __Pyx_ErrRestore(type, value, tb) PyErr_Restore(type, value, tb) #define __Pyx_ErrFetch(type, value, tb) PyErr_Fetch(type, value, tb) #endif /* RaiseException.proto */ static void __Pyx_Raise(PyObject *type, PyObject *value, PyObject *tb, PyObject *cause); /* Import.proto */ static PyObject *__Pyx_Import(PyObject *name, PyObject *from_list, int level); /* ImportFrom.proto */ static PyObject* __Pyx_ImportFrom(PyObject* module, PyObject* name); /* DictGetItem.proto */ #if PY_MAJOR_VERSION >= 3 && !CYTHON_COMPILING_IN_PYPY static PyObject *__Pyx_PyDict_GetItem(PyObject *d, PyObject* key); #define __Pyx_PyObject_Dict_GetItem(obj, name)\ (likely(PyDict_CheckExact(obj)) ?\ __Pyx_PyDict_GetItem(obj, name) : PyObject_GetItem(obj, name)) #else #define __Pyx_PyDict_GetItem(d, key) PyObject_GetItem(d, key) #define __Pyx_PyObject_Dict_GetItem(obj, name) PyObject_GetItem(obj, name) #endif /* IncludeStringH.proto */ #include /* BytesEquals.proto */ static CYTHON_INLINE int __Pyx_PyBytes_Equals(PyObject* s1, PyObject* s2, int equals); /* UnicodeEquals.proto */ static CYTHON_INLINE int __Pyx_PyUnicode_Equals(PyObject* s1, PyObject* s2, int equals); /* PySequenceContains.proto */ static CYTHON_INLINE int __Pyx_PySequence_ContainsTF(PyObject* item, PyObject* seq, int eq) { int result = PySequence_Contains(seq, item); return unlikely(result < 0) ? result : (result == (eq == Py_EQ)); } /* GetItemInt.proto */ #define __Pyx_GetItemInt(o, i, type, is_signed, to_py_func, is_list, wraparound, boundscheck)\ (__Pyx_fits_Py_ssize_t(i, type, is_signed) ?\ __Pyx_GetItemInt_Fast(o, (Py_ssize_t)i, is_list, wraparound, boundscheck) :\ (is_list ? (PyErr_SetString(PyExc_IndexError, "list index out of range"), (PyObject*)NULL) :\ __Pyx_GetItemInt_Generic(o, to_py_func(i)))) #define __Pyx_GetItemInt_List(o, i, type, is_signed, to_py_func, is_list, wraparound, boundscheck)\ (__Pyx_fits_Py_ssize_t(i, type, is_signed) ?\ __Pyx_GetItemInt_List_Fast(o, (Py_ssize_t)i, wraparound, boundscheck) :\ (PyErr_SetString(PyExc_IndexError, "list index out of range"), (PyObject*)NULL)) static CYTHON_INLINE PyObject *__Pyx_GetItemInt_List_Fast(PyObject *o, Py_ssize_t i, int wraparound, int boundscheck); #define __Pyx_GetItemInt_Tuple(o, i, type, is_signed, to_py_func, is_list, wraparound, boundscheck)\ (__Pyx_fits_Py_ssize_t(i, type, is_signed) ?\ __Pyx_GetItemInt_Tuple_Fast(o, (Py_ssize_t)i, wraparound, boundscheck) :\ (PyErr_SetString(PyExc_IndexError, "tuple index out of range"), (PyObject*)NULL)) static CYTHON_INLINE PyObject *__Pyx_GetItemInt_Tuple_Fast(PyObject *o, Py_ssize_t i, int wraparound, int boundscheck); static PyObject *__Pyx_GetItemInt_Generic(PyObject *o, PyObject* j); static CYTHON_INLINE PyObject *__Pyx_GetItemInt_Fast(PyObject *o, Py_ssize_t i, int is_list, int wraparound, int boundscheck); /* PyObjectSetAttrStr.proto */ #if CYTHON_USE_TYPE_SLOTS #define __Pyx_PyObject_DelAttrStr(o,n) __Pyx_PyObject_SetAttrStr(o, n, NULL) static CYTHON_INLINE int __Pyx_PyObject_SetAttrStr(PyObject* obj, PyObject* attr_name, PyObject* value); #else #define __Pyx_PyObject_DelAttrStr(o,n) PyObject_DelAttr(o,n) #define __Pyx_PyObject_SetAttrStr(o,n,v) PyObject_SetAttr(o,n,v) #endif /* PyObjectLookupSpecial.proto */ #if CYTHON_USE_PYTYPE_LOOKUP && CYTHON_USE_TYPE_SLOTS static CYTHON_INLINE PyObject* __Pyx_PyObject_LookupSpecial(PyObject* obj, PyObject* attr_name) { PyObject *res; PyTypeObject *tp = Py_TYPE(obj); #if PY_MAJOR_VERSION < 3 if (unlikely(PyInstance_Check(obj))) return __Pyx_PyObject_GetAttrStr(obj, attr_name); #endif res = _PyType_Lookup(tp, attr_name); if (likely(res)) { descrgetfunc f = Py_TYPE(res)->tp_descr_get; if (!f) { Py_INCREF(res); } else { res = f(res, obj, (PyObject *)tp); } } else { PyErr_SetObject(PyExc_AttributeError, attr_name); } return res; } #else #define __Pyx_PyObject_LookupSpecial(o,n) __Pyx_PyObject_GetAttrStr(o,n) #endif /* GetTopmostException.proto */ #if CYTHON_USE_EXC_INFO_STACK static _PyErr_StackItem * __Pyx_PyErr_GetTopmostException(PyThreadState *tstate); #endif /* SaveResetException.proto */ #if CYTHON_FAST_THREAD_STATE #define __Pyx_ExceptionSave(type, value, tb) __Pyx__ExceptionSave(__pyx_tstate, type, value, tb) static CYTHON_INLINE void __Pyx__ExceptionSave(PyThreadState *tstate, PyObject **type, PyObject **value, PyObject **tb); #define __Pyx_ExceptionReset(type, value, tb) __Pyx__ExceptionReset(__pyx_tstate, type, value, tb) static CYTHON_INLINE void __Pyx__ExceptionReset(PyThreadState *tstate, PyObject *type, PyObject *value, PyObject *tb); #else #define __Pyx_ExceptionSave(type, value, tb) PyErr_GetExcInfo(type, value, tb) #define __Pyx_ExceptionReset(type, value, tb) PyErr_SetExcInfo(type, value, tb) #endif /* GetException.proto */ #if CYTHON_FAST_THREAD_STATE #define __Pyx_GetException(type, value, tb) __Pyx__GetException(__pyx_tstate, type, value, tb) static int __Pyx__GetException(PyThreadState *tstate, PyObject **type, PyObject **value, PyObject **tb); #else static int __Pyx_GetException(PyObject **type, PyObject **value, PyObject **tb); #endif /* None.proto */ static CYTHON_INLINE void __Pyx_RaiseUnboundLocalError(const char *varname); /* SliceObject.proto */ static CYTHON_INLINE PyObject* __Pyx_PyObject_GetSlice( PyObject* obj, Py_ssize_t cstart, Py_ssize_t cstop, PyObject** py_start, PyObject** py_stop, PyObject** py_slice, int has_cstart, int has_cstop, int wraparound); /* PyIntCompare.proto */ static CYTHON_INLINE PyObject* __Pyx_PyInt_EqObjC(PyObject *op1, PyObject *op2, long intval, long inplace); /* PyErrExceptionMatches.proto */ #if CYTHON_FAST_THREAD_STATE #define __Pyx_PyErr_ExceptionMatches(err) __Pyx_PyErr_ExceptionMatchesInState(__pyx_tstate, err) static CYTHON_INLINE int __Pyx_PyErr_ExceptionMatchesInState(PyThreadState* tstate, PyObject* err); #else #define __Pyx_PyErr_ExceptionMatches(err) PyErr_ExceptionMatches(err) #endif /* PyIntCompare.proto */ static CYTHON_INLINE PyObject* __Pyx_PyInt_NeObjC(PyObject *op1, PyObject *op2, long intval, long inplace); /* ExtTypeTest.proto */ static CYTHON_INLINE int __Pyx_TypeTest(PyObject *obj, PyTypeObject *type); /* RaiseTooManyValuesToUnpack.proto */ static CYTHON_INLINE void __Pyx_RaiseTooManyValuesError(Py_ssize_t expected); /* RaiseNeedMoreValuesToUnpack.proto */ static CYTHON_INLINE void __Pyx_RaiseNeedMoreValuesError(Py_ssize_t index); /* IterFinish.proto */ static CYTHON_INLINE int __Pyx_IterFinish(void); /* UnpackItemEndCheck.proto */ static int __Pyx_IternextUnpackEndCheck(PyObject *retval, Py_ssize_t expected); /* SliceObject.proto */ #define __Pyx_PyObject_DelSlice(obj, cstart, cstop, py_start, py_stop, py_slice, has_cstart, has_cstop, wraparound)\ __Pyx_PyObject_SetSlice(obj, (PyObject*)NULL, cstart, cstop, py_start, py_stop, py_slice, has_cstart, has_cstop, wraparound) static CYTHON_INLINE int __Pyx_PyObject_SetSlice( PyObject* obj, PyObject* value, Py_ssize_t cstart, Py_ssize_t cstop, PyObject** py_start, PyObject** py_stop, PyObject** py_slice, int has_cstart, int has_cstop, int wraparound); /* ObjectGetItem.proto */ #if CYTHON_USE_TYPE_SLOTS static CYTHON_INLINE PyObject *__Pyx_PyObject_GetItem(PyObject *obj, PyObject* key); #else #define __Pyx_PyObject_GetItem(obj, key) PyObject_GetItem(obj, key) #endif /* KeywordStringCheck.proto */ static int __Pyx_CheckKeywordStrings(PyObject *kwdict, const char* function_name, int kw_allowed); /* PyIntBinop.proto */ #if !CYTHON_COMPILING_IN_PYPY static PyObject* __Pyx_PyInt_AddObjC(PyObject *op1, PyObject *op2, long intval, int inplace, int zerodivision_check); #else #define __Pyx_PyInt_AddObjC(op1, op2, intval, inplace, zerodivision_check)\ (inplace ? PyNumber_InPlaceAdd(op1, op2) : PyNumber_Add(op1, op2)) #endif /* ListAppend.proto */ #if CYTHON_USE_PYLIST_INTERNALS && CYTHON_ASSUME_SAFE_MACROS static CYTHON_INLINE int __Pyx_PyList_Append(PyObject* list, PyObject* x) { PyListObject* L = (PyListObject*) list; Py_ssize_t len = Py_SIZE(list); if (likely(L->allocated > len) & likely(len > (L->allocated >> 1))) { Py_INCREF(x); PyList_SET_ITEM(list, len, x); Py_SIZE(list) = len+1; return 0; } return PyList_Append(list, x); } #else #define __Pyx_PyList_Append(L,x) PyList_Append(L,x) #endif /* SetItemInt.proto */ #define __Pyx_SetItemInt(o, i, v, type, is_signed, to_py_func, is_list, wraparound, boundscheck)\ (__Pyx_fits_Py_ssize_t(i, type, is_signed) ?\ __Pyx_SetItemInt_Fast(o, (Py_ssize_t)i, v, is_list, wraparound, boundscheck) :\ (is_list ? (PyErr_SetString(PyExc_IndexError, "list assignment index out of range"), -1) :\ __Pyx_SetItemInt_Generic(o, to_py_func(i), v))) static int __Pyx_SetItemInt_Generic(PyObject *o, PyObject *j, PyObject *v); static CYTHON_INLINE int __Pyx_SetItemInt_Fast(PyObject *o, Py_ssize_t i, PyObject *v, int is_list, int wraparound, int boundscheck); /* RaiseNoneIterError.proto */ static CYTHON_INLINE void __Pyx_RaiseNoneNotIterableError(void); /* PyObject_GenericGetAttrNoDict.proto */ #if CYTHON_USE_TYPE_SLOTS && CYTHON_USE_PYTYPE_LOOKUP && PY_VERSION_HEX < 0x03070000 static CYTHON_INLINE PyObject* __Pyx_PyObject_GenericGetAttrNoDict(PyObject* obj, PyObject* attr_name); #else #define __Pyx_PyObject_GenericGetAttrNoDict PyObject_GenericGetAttr #endif /* PyObject_GenericGetAttr.proto */ #if CYTHON_USE_TYPE_SLOTS && CYTHON_USE_PYTYPE_LOOKUP && PY_VERSION_HEX < 0x03070000 static PyObject* __Pyx_PyObject_GenericGetAttr(PyObject* obj, PyObject* attr_name); #else #define __Pyx_PyObject_GenericGetAttr PyObject_GenericGetAttr #endif /* SetVTable.proto */ static int __Pyx_SetVtable(PyObject *dict, void *vtable); /* TypeImport.proto */ #ifndef __PYX_HAVE_RT_ImportType_proto #define __PYX_HAVE_RT_ImportType_proto enum __Pyx_ImportType_CheckSize { __Pyx_ImportType_CheckSize_Error = 0, __Pyx_ImportType_CheckSize_Warn = 1, __Pyx_ImportType_CheckSize_Ignore = 2 }; static PyTypeObject *__Pyx_ImportType(PyObject* module, const char *module_name, const char *class_name, size_t size, enum __Pyx_ImportType_CheckSize check_size); #endif /* CLineInTraceback.proto */ #ifdef CYTHON_CLINE_IN_TRACEBACK #define __Pyx_CLineForTraceback(tstate, c_line) (((CYTHON_CLINE_IN_TRACEBACK)) ? c_line : 0) #else static int __Pyx_CLineForTraceback(PyThreadState *tstate, int c_line); #endif /* CodeObjectCache.proto */ typedef struct { PyCodeObject* code_object; int code_line; } __Pyx_CodeObjectCacheEntry; struct __Pyx_CodeObjectCache { int count; int max_count; __Pyx_CodeObjectCacheEntry* entries; }; static struct __Pyx_CodeObjectCache __pyx_code_cache = {0,0,NULL}; static int __pyx_bisect_code_objects(__Pyx_CodeObjectCacheEntry* entries, int count, int code_line); static PyCodeObject *__pyx_find_code_object(int code_line); static void __pyx_insert_code_object(int code_line, PyCodeObject* code_object); /* AddTraceback.proto */ static void __Pyx_AddTraceback(const char *funcname, int c_line, int py_line, const char *filename); /* CIntToPy.proto */ static CYTHON_INLINE PyObject* __Pyx_PyInt_From_long(long value); /* CIntToPy.proto */ static CYTHON_INLINE PyObject* __Pyx_PyInt_From_int(int value); /* CIntToPy.proto */ static CYTHON_INLINE PyObject* __Pyx_PyInt_From_int64_t(int64_t value); /* CIntToPy.proto */ static CYTHON_INLINE PyObject* __Pyx_PyInt_From_Py_intptr_t(Py_intptr_t value); /* RealImag.proto */ #if CYTHON_CCOMPLEX #ifdef __cplusplus #define __Pyx_CREAL(z) ((z).real()) #define __Pyx_CIMAG(z) ((z).imag()) #else #define __Pyx_CREAL(z) (__real__(z)) #define __Pyx_CIMAG(z) (__imag__(z)) #endif #else #define __Pyx_CREAL(z) ((z).real) #define __Pyx_CIMAG(z) ((z).imag) #endif #if defined(__cplusplus) && CYTHON_CCOMPLEX\ && (defined(_WIN32) || defined(__clang__) || (defined(__GNUC__) && (__GNUC__ >= 5 || __GNUC__ == 4 && __GNUC_MINOR__ >= 4 )) || __cplusplus >= 201103) #define __Pyx_SET_CREAL(z,x) ((z).real(x)) #define __Pyx_SET_CIMAG(z,y) ((z).imag(y)) #else #define __Pyx_SET_CREAL(z,x) __Pyx_CREAL(z) = (x) #define __Pyx_SET_CIMAG(z,y) __Pyx_CIMAG(z) = (y) #endif /* Arithmetic.proto */ #if CYTHON_CCOMPLEX #define __Pyx_c_eq_float(a, b) ((a)==(b)) #define __Pyx_c_sum_float(a, b) ((a)+(b)) #define __Pyx_c_diff_float(a, b) ((a)-(b)) #define __Pyx_c_prod_float(a, b) ((a)*(b)) #define __Pyx_c_quot_float(a, b) ((a)/(b)) #define __Pyx_c_neg_float(a) (-(a)) #ifdef __cplusplus #define __Pyx_c_is_zero_float(z) ((z)==(float)0) #define __Pyx_c_conj_float(z) (::std::conj(z)) #if 1 #define __Pyx_c_abs_float(z) (::std::abs(z)) #define __Pyx_c_pow_float(a, b) (::std::pow(a, b)) #endif #else #define __Pyx_c_is_zero_float(z) ((z)==0) #define __Pyx_c_conj_float(z) (conjf(z)) #if 1 #define __Pyx_c_abs_float(z) (cabsf(z)) #define __Pyx_c_pow_float(a, b) (cpowf(a, b)) #endif #endif #else static CYTHON_INLINE int __Pyx_c_eq_float(__pyx_t_float_complex, __pyx_t_float_complex); static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_sum_float(__pyx_t_float_complex, __pyx_t_float_complex); static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_diff_float(__pyx_t_float_complex, __pyx_t_float_complex); static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_prod_float(__pyx_t_float_complex, __pyx_t_float_complex); static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_quot_float(__pyx_t_float_complex, __pyx_t_float_complex); static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_neg_float(__pyx_t_float_complex); static CYTHON_INLINE int __Pyx_c_is_zero_float(__pyx_t_float_complex); static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_conj_float(__pyx_t_float_complex); #if 1 static CYTHON_INLINE float __Pyx_c_abs_float(__pyx_t_float_complex); static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_pow_float(__pyx_t_float_complex, __pyx_t_float_complex); #endif #endif /* Arithmetic.proto */ #if CYTHON_CCOMPLEX #define __Pyx_c_eq_double(a, b) ((a)==(b)) #define __Pyx_c_sum_double(a, b) ((a)+(b)) #define __Pyx_c_diff_double(a, b) ((a)-(b)) #define __Pyx_c_prod_double(a, b) ((a)*(b)) #define __Pyx_c_quot_double(a, b) ((a)/(b)) #define __Pyx_c_neg_double(a) (-(a)) #ifdef __cplusplus #define __Pyx_c_is_zero_double(z) ((z)==(double)0) #define __Pyx_c_conj_double(z) (::std::conj(z)) #if 1 #define __Pyx_c_abs_double(z) (::std::abs(z)) #define __Pyx_c_pow_double(a, b) (::std::pow(a, b)) #endif #else #define __Pyx_c_is_zero_double(z) ((z)==0) #define __Pyx_c_conj_double(z) (conj(z)) #if 1 #define __Pyx_c_abs_double(z) (cabs(z)) #define __Pyx_c_pow_double(a, b) (cpow(a, b)) #endif #endif #else static CYTHON_INLINE int __Pyx_c_eq_double(__pyx_t_double_complex, __pyx_t_double_complex); static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_sum_double(__pyx_t_double_complex, __pyx_t_double_complex); static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_diff_double(__pyx_t_double_complex, __pyx_t_double_complex); static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_prod_double(__pyx_t_double_complex, __pyx_t_double_complex); static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_quot_double(__pyx_t_double_complex, __pyx_t_double_complex); static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_neg_double(__pyx_t_double_complex); static CYTHON_INLINE int __Pyx_c_is_zero_double(__pyx_t_double_complex); static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_conj_double(__pyx_t_double_complex); #if 1 static CYTHON_INLINE double __Pyx_c_abs_double(__pyx_t_double_complex); static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_pow_double(__pyx_t_double_complex, __pyx_t_double_complex); #endif #endif /* CIntToPy.proto */ static CYTHON_INLINE PyObject* __Pyx_PyInt_From_enum__NPY_TYPES(enum NPY_TYPES value); /* CIntFromPy.proto */ static CYTHON_INLINE Py_intptr_t __Pyx_PyInt_As_Py_intptr_t(PyObject *); /* CIntFromPy.proto */ static CYTHON_INLINE int64_t __Pyx_PyInt_As_int64_t(PyObject *); /* CIntFromPy.proto */ static CYTHON_INLINE int __Pyx_PyInt_As_int(PyObject *); /* CIntFromPy.proto */ static CYTHON_INLINE long __Pyx_PyInt_As_long(PyObject *); /* CIntFromPy.proto */ static CYTHON_INLINE size_t __Pyx_PyInt_As_size_t(PyObject *); /* FastTypeChecks.proto */ #if CYTHON_COMPILING_IN_CPYTHON #define __Pyx_TypeCheck(obj, type) __Pyx_IsSubtype(Py_TYPE(obj), (PyTypeObject *)type) static CYTHON_INLINE int __Pyx_IsSubtype(PyTypeObject *a, PyTypeObject *b); static CYTHON_INLINE int __Pyx_PyErr_GivenExceptionMatches(PyObject *err, PyObject *type); static CYTHON_INLINE int __Pyx_PyErr_GivenExceptionMatches2(PyObject *err, PyObject *type1, PyObject *type2); #else #define __Pyx_TypeCheck(obj, type) PyObject_TypeCheck(obj, (PyTypeObject *)type) #define __Pyx_PyErr_GivenExceptionMatches(err, type) PyErr_GivenExceptionMatches(err, type) #define __Pyx_PyErr_GivenExceptionMatches2(err, type1, type2) (PyErr_GivenExceptionMatches(err, type1) || PyErr_GivenExceptionMatches(err, type2)) #endif #define __Pyx_PyException_Check(obj) __Pyx_TypeCheck(obj, PyExc_Exception) /* CheckBinaryVersion.proto */ static int __Pyx_check_binary_version(void); /* VoidPtrImport.proto */ static int __Pyx_ImportVoidPtr(PyObject *module, const char *name, void **p, const char *sig); /* FunctionImport.proto */ static int __Pyx_ImportFunction(PyObject *module, const char *funcname, void (**f)(void), const char *sig); /* InitStrings.proto */ static int __Pyx_InitStrings(__Pyx_StringTabEntry *t); static PyObject *__pyx_f_5numpy_6random_6mtrand_11RandomState__reset_gauss(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self); /* proto*/ static CYTHON_INLINE PyObject *__pyx_f_5numpy_6random_6mtrand_11RandomState__shuffle_raw(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, npy_intp __pyx_v_n, npy_intp __pyx_v_itemsize, npy_intp __pyx_v_stride, char *__pyx_v_data, char *__pyx_v_buf); /* proto*/ /* Module declarations from 'cpython.pycapsule' */ /* Module declarations from 'cpython.version' */ /* Module declarations from '__builtin__' */ /* Module declarations from 'cpython.type' */ static PyTypeObject *__pyx_ptype_7cpython_4type_type = 0; /* Module declarations from 'libc.string' */ /* Module declarations from 'libc.stdio' */ /* Module declarations from 'cpython.object' */ /* Module declarations from 'cpython.ref' */ /* Module declarations from 'cpython.exc' */ /* Module declarations from 'cpython.module' */ /* Module declarations from 'cpython.mem' */ /* Module declarations from 'cpython.tuple' */ /* Module declarations from 'cpython.list' */ /* Module declarations from 'cpython.sequence' */ /* Module declarations from 'cpython.mapping' */ /* Module declarations from 'cpython.iterator' */ /* Module declarations from 'cpython.number' */ /* Module declarations from 'cpython.int' */ /* Module declarations from '__builtin__' */ /* Module declarations from 'cpython.bool' */ static PyTypeObject *__pyx_ptype_7cpython_4bool_bool = 0; /* Module declarations from 'cpython.long' */ /* Module declarations from 'cpython.float' */ /* Module declarations from '__builtin__' */ /* Module declarations from 'cpython.complex' */ static PyTypeObject *__pyx_ptype_7cpython_7complex_complex = 0; /* Module declarations from 'cpython.string' */ /* Module declarations from 'cpython.unicode' */ /* Module declarations from 'cpython.dict' */ /* Module declarations from 'cpython.instance' */ /* Module declarations from 'cpython.function' */ /* Module declarations from 'cpython.method' */ /* Module declarations from 'cpython.weakref' */ /* Module declarations from 'cpython.getargs' */ /* Module declarations from 'cpython.pythread' */ /* Module declarations from 'cpython.pystate' */ /* Module declarations from 'cpython.cobject' */ /* Module declarations from 'cpython.oldbuffer' */ /* Module declarations from 'cpython.set' */ /* Module declarations from 'cpython.buffer' */ /* Module declarations from 'cpython.bytes' */ /* Module declarations from 'cpython' */ /* Module declarations from 'libc' */ /* Module declarations from 'cython' */ /* Module declarations from 'numpy' */ /* Module declarations from 'numpy' */ static PyTypeObject *__pyx_ptype_5numpy_dtype = 0; static PyTypeObject *__pyx_ptype_5numpy_flatiter = 0; static PyTypeObject *__pyx_ptype_5numpy_broadcast = 0; static PyTypeObject *__pyx_ptype_5numpy_ndarray = 0; static PyTypeObject *__pyx_ptype_5numpy_ufunc = 0; static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew2(PyObject *, PyObject *); /*proto*/ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew3(PyObject *, PyObject *, PyObject *); /*proto*/ static CYTHON_INLINE char *__pyx_f_5numpy__util_dtypestring(PyArray_Descr *, char *, char *, int *); /*proto*/ static CYTHON_INLINE int __pyx_f_5numpy_import_array(void); /*proto*/ /* Module declarations from 'libc.stdint' */ /* Module declarations from 'libc.math' */ /* Module declarations from 'numpy.random.common' */ static double *__pyx_vp_5numpy_6random_6common_POISSON_LAM_MAX = 0; #define __pyx_v_5numpy_6random_6common_POISSON_LAM_MAX (*__pyx_vp_5numpy_6random_6common_POISSON_LAM_MAX) static double *__pyx_vp_5numpy_6random_6common_LEGACY_POISSON_LAM_MAX = 0; #define __pyx_v_5numpy_6random_6common_LEGACY_POISSON_LAM_MAX (*__pyx_vp_5numpy_6random_6common_LEGACY_POISSON_LAM_MAX) static uint64_t *__pyx_vp_5numpy_6random_6common_MAXSIZE = 0; #define __pyx_v_5numpy_6random_6common_MAXSIZE (*__pyx_vp_5numpy_6random_6common_MAXSIZE) static int (*__pyx_f_5numpy_6random_6common_check_constraint)(double, PyObject *, __pyx_t_5numpy_6random_6common_constraint_type); /*proto*/ static int (*__pyx_f_5numpy_6random_6common_check_array_constraint)(PyArrayObject *, PyObject *, __pyx_t_5numpy_6random_6common_constraint_type); /*proto*/ static double (*__pyx_f_5numpy_6random_6common_kahan_sum)(double *, npy_intp); /*proto*/ static PyObject *(*__pyx_f_5numpy_6random_6common_double_fill)(void *, bitgen_t *, PyObject *, PyObject *, PyObject *); /*proto*/ static PyObject *(*__pyx_f_5numpy_6random_6common_cont)(void *, void *, PyObject *, PyObject *, int, PyObject *, PyObject *, __pyx_t_5numpy_6random_6common_constraint_type, PyObject *, PyObject *, __pyx_t_5numpy_6random_6common_constraint_type, PyObject *, PyObject *, __pyx_t_5numpy_6random_6common_constraint_type, PyObject *); /*proto*/ static PyObject *(*__pyx_f_5numpy_6random_6common_disc)(void *, void *, PyObject *, PyObject *, int, int, PyObject *, PyObject *, __pyx_t_5numpy_6random_6common_constraint_type, PyObject *, PyObject *, __pyx_t_5numpy_6random_6common_constraint_type, PyObject *, PyObject *, __pyx_t_5numpy_6random_6common_constraint_type); /*proto*/ static PyObject *(*__pyx_f_5numpy_6random_6common_cont_broadcast_3)(void *, void *, PyObject *, PyObject *, PyArrayObject *, PyObject *, __pyx_t_5numpy_6random_6common_constraint_type, PyArrayObject *, PyObject *, __pyx_t_5numpy_6random_6common_constraint_type, PyArrayObject *, PyObject *, __pyx_t_5numpy_6random_6common_constraint_type); /*proto*/ static PyObject *(*__pyx_f_5numpy_6random_6common_discrete_broadcast_iii)(void *, void *, PyObject *, PyObject *, PyArrayObject *, PyObject *, __pyx_t_5numpy_6random_6common_constraint_type, PyArrayObject *, PyObject *, __pyx_t_5numpy_6random_6common_constraint_type, PyArrayObject *, PyObject *, __pyx_t_5numpy_6random_6common_constraint_type); /*proto*/ /* Module declarations from 'numpy.random.bounded_integers' */ static PyObject *(*__pyx_f_5numpy_6random_16bounded_integers__rand_uint64)(PyObject *, PyObject *, PyObject *, int, int, bitgen_t *, PyObject *); /*proto*/ static PyObject *(*__pyx_f_5numpy_6random_16bounded_integers__rand_uint32)(PyObject *, PyObject *, PyObject *, int, int, bitgen_t *, PyObject *); /*proto*/ static PyObject *(*__pyx_f_5numpy_6random_16bounded_integers__rand_uint16)(PyObject *, PyObject *, PyObject *, int, int, bitgen_t *, PyObject *); /*proto*/ static PyObject *(*__pyx_f_5numpy_6random_16bounded_integers__rand_uint8)(PyObject *, PyObject *, PyObject *, int, int, bitgen_t *, PyObject *); /*proto*/ static PyObject *(*__pyx_f_5numpy_6random_16bounded_integers__rand_bool)(PyObject *, PyObject *, PyObject *, int, int, bitgen_t *, PyObject *); /*proto*/ static PyObject *(*__pyx_f_5numpy_6random_16bounded_integers__rand_int64)(PyObject *, PyObject *, PyObject *, int, int, bitgen_t *, PyObject *); /*proto*/ static PyObject *(*__pyx_f_5numpy_6random_16bounded_integers__rand_int32)(PyObject *, PyObject *, PyObject *, int, int, bitgen_t *, PyObject *); /*proto*/ static PyObject *(*__pyx_f_5numpy_6random_16bounded_integers__rand_int16)(PyObject *, PyObject *, PyObject *, int, int, bitgen_t *, PyObject *); /*proto*/ static PyObject *(*__pyx_f_5numpy_6random_16bounded_integers__rand_int8)(PyObject *, PyObject *, PyObject *, int, int, bitgen_t *, PyObject *); /*proto*/ /* Module declarations from 'numpy.random.distributions' */ /* Module declarations from 'numpy.random.legacy_distributions' */ /* Module declarations from 'numpy.random.mtrand' */ static PyTypeObject *__pyx_ptype_5numpy_6random_6mtrand_RandomState = 0; static PyObject *__pyx_f_5numpy_6random_6mtrand_int64_to_long(PyObject *); /*proto*/ #define __Pyx_MODULE_NAME "numpy.random.mtrand" extern int __pyx_module_is_main_numpy__random__mtrand; int __pyx_module_is_main_numpy__random__mtrand = 0; /* Implementation of 'numpy.random.mtrand' */ static PyObject *__pyx_builtin_ValueError; static PyObject *__pyx_builtin_id; static PyObject *__pyx_builtin_TypeError; static PyObject *__pyx_builtin_RuntimeWarning; static PyObject *__pyx_builtin_range; static PyObject *__pyx_builtin_DeprecationWarning; static PyObject *__pyx_builtin_OverflowError; static PyObject *__pyx_builtin_reversed; static PyObject *__pyx_builtin_IndexError; static PyObject *__pyx_builtin_RuntimeError; static PyObject *__pyx_builtin_ImportError; static const char __pyx_k_T[] = "T"; static const char __pyx_k_a[] = "a"; static const char __pyx_k_b[] = "b"; static const char __pyx_k_f[] = "f"; static const char __pyx_k_l[] = "l"; static const char __pyx_k_n[] = "n"; static const char __pyx_k_p[] = "p"; static const char __pyx_k__3[] = "("; static const char __pyx_k__4[] = ")"; static const char __pyx_k_df[] = "df"; static const char __pyx_k_id[] = "id"; static const char __pyx_k_mu[] = "mu"; static const char __pyx_k_np[] = "np"; static const char __pyx_k_u4[] = ">> s = np.random.dirichlet((10, 5, 3), 20).transpose()\n\n >>> import matplotlib.pyplot as plt\n >>> plt.barh(range(20), s[0])\n >>> plt.barh(range(20), s[1], left=s[0], color='g')\n >>> plt.barh(range(20), s[2], left=s[0]+s[1], color='r')\n >>> plt.title(\"Lengths of Strings\")\n\n "; static const char __pyx_k_laplace_loc_0_0_scale_1_0_size[] = "\n laplace(loc=0.0, scale=1.0, size=None)\n\n Draw samples from the Laplace or double exponential distribution with\n specified location (or mean) and scale (decay).\n\n The Laplace distribution is similar to the Gaussian/normal distribution,\n but is sharper at the peak and has fatter tails. It represents the\n difference between two independent, identically distributed exponential\n random variables.\n\n Parameters\n ----------\n loc : float or array_like of floats, optional\n The position, :math:`\\mu`, of the distribution peak. Default is 0.\n scale : float or array_like of floats, optional\n :math:`\\lambda`, the exponential decay. Default is 1. Must be non-\n negative.\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. If size is ``None`` (default),\n a single value is returned if ``loc`` and ``scale`` are both scalars.\n Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.\n\n Returns\n -------\n out : ndarray or scalar\n Drawn samples from the parameterized Laplace distribution.\n\n Notes\n -----\n It has the probability density function\n\n .. math:: f(x; \\mu, \\lambda) = \\frac{1}{2\\lambda}\n \\exp\\left(-\\frac{|x - \\mu|}{\\lambda}\\right).\n\n The first law of Laplace, from 1774, states that the frequency\n of an error can be expressed as an exponential function of the\n absolute magnitude of the error, which leads to the Laplace\n distribution. For many problems in economics and health\n sciences, this distribution seems to model the data better\n than the standard Gaussian distribution.\n\n References\n ----------\n .. [1] Abramowitz"", M. and Stegun, I. A. (Eds.). \"Handbook of\n Mathematical Functions with Formulas, Graphs, and Mathematical\n Tables, 9th printing,\" New York: Dover, 1972.\n .. [2] Kotz, Samuel, et. al. \"The Laplace Distribution and\n Generalizations, \" Birkhauser, 2001.\n .. [3] Weisstein, Eric W. \"Laplace Distribution.\"\n From MathWorld--A Wolfram Web Resource.\n http://mathworld.wolfram.com/LaplaceDistribution.html\n .. [4] Wikipedia, \"Laplace distribution\",\n https://en.wikipedia.org/wiki/Laplace_distribution\n\n Examples\n --------\n Draw samples from the distribution\n\n >>> loc, scale = 0., 1.\n >>> s = np.random.laplace(loc, scale, 1000)\n\n Display the histogram of the samples, along with\n the probability density function:\n\n >>> import matplotlib.pyplot as plt\n >>> count, bins, ignored = plt.hist(s, 30, density=True)\n >>> x = np.arange(-8., 8., .01)\n >>> pdf = np.exp(-abs(x-loc)/scale)/(2.*scale)\n >>> plt.plot(x, pdf)\n\n Plot Gaussian for comparison:\n\n >>> g = (1/(scale * np.sqrt(2 * np.pi)) *\n ... np.exp(-(x - loc)**2 / (2 * scale**2)))\n >>> plt.plot(x,g)\n\n "; static const char __pyx_k_permutation_x_Randomly_permute[] = "\n permutation(x)\n\n Randomly permute a sequence, or return a permuted range.\n\n If `x` is a multi-dimensional array, it is only shuffled along its\n first index.\n\n Parameters\n ----------\n x : int or array_like\n If `x` is an integer, randomly permute ``np.arange(x)``.\n If `x` is an array, make a copy and shuffle the elements\n randomly.\n\n Returns\n -------\n out : ndarray\n Permuted sequence or array range.\n\n\n Examples\n --------\n >>> np.random.permutation(10)\n array([1, 7, 4, 3, 0, 9, 2, 5, 8, 6]) # random\n\n >>> np.random.permutation([1, 4, 9, 12, 15])\n array([15, 1, 9, 4, 12]) # random\n\n >>> arr = np.arange(9).reshape((3, 3))\n >>> np.random.permutation(arr)\n array([[6, 7, 8], # random\n [0, 1, 2],\n [3, 4, 5]])\n\n "; static const char __pyx_k_poisson_lam_1_0_size_None_Draw[] = "\n poisson(lam=1.0, size=None)\n\n Draw samples from a Poisson distribution.\n\n The Poisson distribution is the limit of the binomial distribution\n for large N.\n\n Parameters\n ----------\n lam : float or array_like of floats\n Expectation of interval, must be >= 0. A sequence of expectation\n intervals must be broadcastable over the requested size.\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. If size is ``None`` (default),\n a single value is returned if ``lam`` is a scalar. Otherwise,\n ``np.array(lam).size`` samples are drawn.\n\n Returns\n -------\n out : ndarray or scalar\n Drawn samples from the parameterized Poisson distribution.\n\n Notes\n -----\n The Poisson distribution\n\n .. math:: f(k; \\lambda)=\\frac{\\lambda^k e^{-\\lambda}}{k!}\n\n For events with an expected separation :math:`\\lambda` the Poisson\n distribution :math:`f(k; \\lambda)` describes the probability of\n :math:`k` events occurring within the observed\n interval :math:`\\lambda`.\n\n Because the output is limited to the range of the C int64 type, a\n ValueError is raised when `lam` is within 10 sigma of the maximum\n representable value.\n\n References\n ----------\n .. [1] Weisstein, Eric W. \"Poisson Distribution.\"\n From MathWorld--A Wolfram Web Resource.\n http://mathworld.wolfram.com/PoissonDistribution.html\n .. [2] Wikipedia, \"Poisson distribution\",\n https://en.wikipedia.org/wiki/Poisson_distribution\n\n Examples\n --------\n Draw samples from the distribution:\n\n >>> import numpy as np\n >>> s = np.random.poisson(5, 10000)\n\n Display histo""gram of the sample:\n\n >>> import matplotlib.pyplot as plt\n >>> count, bins, ignored = plt.hist(s, 14, density=True)\n >>> plt.show()\n\n Draw each 100 values for lambda 100 and 500:\n\n >>> s = np.random.poisson(lam=(100., 500.), size=(100, 2))\n\n "; static const char __pyx_k_rand_d0_d1_dn_Random_values_in[] = "\n rand(d0, d1, ..., dn)\n\n Random values in a given shape.\n\n .. note::\n This is a convenience function for users porting code from Matlab,\n and wraps `numpy.random.random_sample`. That function takes a\n tuple to specify the size of the output, which is consistent with\n other NumPy functions like `numpy.zeros` and `numpy.ones`.\n\n Create an array of the given shape and populate it with\n random samples from a uniform distribution\n over ``[0, 1)``.\n\n Parameters\n ----------\n d0, d1, ..., dn : int, optional\n The dimensions of the returned array, must be non-negative.\n If no argument is given a single Python float is returned.\n\n Returns\n -------\n out : ndarray, shape ``(d0, d1, ..., dn)``\n Random values.\n\n See Also\n --------\n random\n\n Examples\n --------\n >>> np.random.rand(3,2)\n array([[ 0.14022471, 0.96360618], #random\n [ 0.37601032, 0.25528411], #random\n [ 0.49313049, 0.94909878]]) #random\n\n "; static const char __pyx_k_randn_d0_d1_dn_Return_a_sample[] = "\n randn(d0, d1, ..., dn)\n\n Return a sample (or samples) from the \"standard normal\" distribution.\n\n .. note::\n This is a convenience function for users porting code from Matlab,\n and wraps `numpy.random.standard_normal`. That function takes a\n tuple to specify the size of the output, which is consistent with\n other NumPy functions like `numpy.zeros` and `numpy.ones`.\n\n If positive int_like arguments are provided, `randn` generates an array\n of shape ``(d0, d1, ..., dn)``, filled\n with random floats sampled from a univariate \"normal\" (Gaussian)\n distribution of mean 0 and variance 1. A single float randomly sampled\n from the distribution is returned if no argument is provided.\n\n Parameters\n ----------\n d0, d1, ..., dn : int, optional\n The dimensions of the returned array, must be non-negative.\n If no argument is given a single Python float is returned.\n\n Returns\n -------\n Z : ndarray or float\n A ``(d0, d1, ..., dn)``-shaped array of floating-point samples from\n the standard normal distribution, or a single such float if\n no parameters were supplied.\n\n See Also\n --------\n standard_normal : Similar, but takes a tuple as its argument.\n normal : Also accepts mu and sigma arguments.\n\n Notes\n -----\n For random samples from :math:`N(\\mu, \\sigma^2)`, use:\n\n ``sigma * np.random.randn(...) + mu``\n\n Examples\n --------\n >>> np.random.randn()\n 2.1923875335537315 # random\n\n Two-by-four array of samples from N(3, 6.25):\n\n >>> 3 + 2.5 * np.random.randn(2, 4)\n array([[-4.49401501, 4.00950034, -1.81814867, 7.29718677], # random\n [ 0.39924804, 4.68456316, 4.99394529, 4.84057254]]) # random\n\n "; static const char __pyx_k_random_sample_size_None_Return[] = "\n random_sample(size=None)\n\n Return random floats in the half-open interval [0.0, 1.0).\n\n Results are from the \"continuous uniform\" distribution over the\n stated interval. To sample :math:`Unif[a, b), b > a` multiply\n the output of `random_sample` by `(b-a)` and add `a`::\n\n (b - a) * random_sample() + a\n\n Parameters\n ----------\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. Default is None, in which case a\n single value is returned.\n\n Returns\n -------\n out : float or ndarray of floats\n Array of random floats of shape `size` (unless ``size=None``, in which\n case a single float is returned).\n\n Examples\n --------\n >>> np.random.random_sample()\n 0.47108547995356098 # random\n >>> type(np.random.random_sample())\n \n >>> np.random.random_sample((5,))\n array([ 0.30220482, 0.86820401, 0.1654503 , 0.11659149, 0.54323428]) # random\n\n Three-by-two array of random numbers from [-5, 0):\n\n >>> 5 * np.random.random_sample((3, 2)) - 5\n array([[-3.99149989, -0.52338984], # random\n [-2.99091858, -0.79479508],\n [-1.23204345, -1.75224494]])\n\n "; static const char __pyx_k_shuffle_x_Modify_a_sequence_in[] = "\n shuffle(x)\n\n Modify a sequence in-place by shuffling its contents.\n\n This function only shuffles the array along the first axis of a\n multi-dimensional array. The order of sub-arrays is changed but\n their contents remains the same.\n\n Parameters\n ----------\n x : array_like\n The array or list to be shuffled.\n\n Returns\n -------\n None\n\n Examples\n --------\n >>> arr = np.arange(10)\n >>> np.random.shuffle(arr)\n >>> arr\n [1 7 5 2 9 4 3 6 0 8] # random\n\n Multi-dimensional arrays are only shuffled along the first axis:\n\n >>> arr = np.arange(9).reshape((3, 3))\n >>> np.random.shuffle(arr)\n >>> arr\n array([[3, 4, 5], # random\n [6, 7, 8],\n [0, 1, 2]])\n\n "; static const char __pyx_k_standard_cauchy_size_None_Draw[] = "\n standard_cauchy(size=None)\n\n Draw samples from a standard Cauchy distribution with mode = 0.\n\n Also known as the Lorentz distribution.\n\n Parameters\n ----------\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. Default is None, in which case a\n single value is returned.\n\n Returns\n -------\n samples : ndarray or scalar\n The drawn samples.\n\n Notes\n -----\n The probability density function for the full Cauchy distribution is\n\n .. math:: P(x; x_0, \\gamma) = \\frac{1}{\\pi \\gamma \\bigl[ 1+\n (\\frac{x-x_0}{\\gamma})^2 \\bigr] }\n\n and the Standard Cauchy distribution just sets :math:`x_0=0` and\n :math:`\\gamma=1`\n\n The Cauchy distribution arises in the solution to the driven harmonic\n oscillator problem, and also describes spectral line broadening. It\n also describes the distribution of values at which a line tilted at\n a random angle will cut the x axis.\n\n When studying hypothesis tests that assume normality, seeing how the\n tests perform on data from a Cauchy distribution is a good indicator of\n their sensitivity to a heavy-tailed distribution, since the Cauchy looks\n very much like a Gaussian distribution, but with heavier tails.\n\n References\n ----------\n .. [1] NIST/SEMATECH e-Handbook of Statistical Methods, \"Cauchy\n Distribution\",\n https://www.itl.nist.gov/div898/handbook/eda/section3/eda3663.htm\n .. [2] Weisstein, Eric W. \"Cauchy Distribution.\" From MathWorld--A\n Wolfram Web Resource.\n http://mathworld.wolfram.com/CauchyDistribution.html\n .. [3] Wikipedia, \"Cauchy distribution\"\n https://en.wikipedia.org/wiki""/Cauchy_distribution\n\n Examples\n --------\n Draw samples and plot the distribution:\n\n >>> import matplotlib.pyplot as plt\n >>> s = np.random.standard_cauchy(1000000)\n >>> s = s[(s>-25) & (s<25)] # truncate distribution so it plots well\n >>> plt.hist(s, bins=100)\n >>> plt.show()\n\n "; static const char __pyx_k_standard_exponential_size_None[] = "\n standard_exponential(size=None)\n\n Draw samples from the standard exponential distribution.\n\n `standard_exponential` is identical to the exponential distribution\n with a scale parameter of 1.\n\n Parameters\n ----------\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. Default is None, in which case a\n single value is returned.\n\n Returns\n -------\n out : float or ndarray\n Drawn samples.\n\n Examples\n --------\n Output a 3x8000 array:\n\n >>> n = np.random.standard_exponential((3, 8000))\n\n "; static const char __pyx_k_standard_gamma_shape_size_None[] = "\n standard_gamma(shape, size=None)\n\n Draw samples from a standard Gamma distribution.\n\n Samples are drawn from a Gamma distribution with specified parameters,\n shape (sometimes designated \"k\") and scale=1.\n\n Parameters\n ----------\n shape : float or array_like of floats\n Parameter, must be non-negative.\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. If size is ``None`` (default),\n a single value is returned if ``shape`` is a scalar. Otherwise,\n ``np.array(shape).size`` samples are drawn.\n\n Returns\n -------\n out : ndarray or scalar\n Drawn samples from the parameterized standard gamma distribution.\n\n See Also\n --------\n scipy.stats.gamma : probability density function, distribution or\n cumulative density function, etc.\n\n Notes\n -----\n The probability density for the Gamma distribution is\n\n .. math:: p(x) = x^{k-1}\\frac{e^{-x/\\theta}}{\\theta^k\\Gamma(k)},\n\n where :math:`k` is the shape and :math:`\\theta` the scale,\n and :math:`\\Gamma` is the Gamma function.\n\n The Gamma distribution is often used to model the times to failure of\n electronic components, and arises naturally in processes for which the\n waiting times between Poisson distributed events are relevant.\n\n References\n ----------\n .. [1] Weisstein, Eric W. \"Gamma Distribution.\" From MathWorld--A\n Wolfram Web Resource.\n http://mathworld.wolfram.com/GammaDistribution.html\n .. [2] Wikipedia, \"Gamma distribution\",\n https://en.wikipedia.org/wiki/Gamma_distribution\n\n Examples\n --------\n Draw samples from the distribution:\n\n >>> shape, s""cale = 2., 1. # mean and width\n >>> s = np.random.standard_gamma(shape, 1000000)\n\n Display the histogram of the samples, along with\n the probability density function:\n\n >>> import matplotlib.pyplot as plt\n >>> import scipy.special as sps # doctest: +SKIP\n >>> count, bins, ignored = plt.hist(s, 50, density=True)\n >>> y = bins**(shape-1) * ((np.exp(-bins/scale))/ # doctest: +SKIP\n ... (sps.gamma(shape) * scale**shape))\n >>> plt.plot(bins, y, linewidth=2, color='r') # doctest: +SKIP\n >>> plt.show()\n\n "; static const char __pyx_k_standard_normal_size_None_Draw[] = "\n standard_normal(size=None)\n\n Draw samples from a standard Normal distribution (mean=0, stdev=1).\n\n Parameters\n ----------\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. Default is None, in which case a\n single value is returned.\n\n Returns\n -------\n out : float or ndarray\n A floating-point array of shape ``size`` of drawn samples, or a\n single sample if ``size`` was not specified.\n\n Notes\n -----\n For random samples from :math:`N(\\mu, \\sigma^2)`, use one of::\n\n mu + sigma * np.random.standard_normal(size=...)\n np.random.normal(mu, sigma, size=...)\n\n See Also\n --------\n normal :\n Equivalent function with additional ``loc`` and ``scale`` arguments\n for setting the mean and standard deviation.\n\n Examples\n --------\n >>> np.random.standard_normal()\n 2.1923875335537315 #random\n\n >>> s = np.random.standard_normal(8000)\n >>> s\n array([ 0.6888893 , 0.78096262, -0.89086505, ..., 0.49876311, # random\n -0.38672696, -0.4685006 ]) # random\n >>> s.shape\n (8000,)\n >>> s = np.random.standard_normal(size=(3, 4, 2))\n >>> s.shape\n (3, 4, 2)\n\n Two-by-four array of samples from :math:`N(3, 6.25)`:\n\n >>> 3 + 2.5 * np.random.standard_normal(size=(2, 4))\n array([[-4.49401501, 4.00950034, -1.81814867, 7.29718677], # random\n [ 0.39924804, 4.68456316, 4.99394529, 4.84057254]]) # random\n\n "; static const char __pyx_k_wald_mean_scale_size_None_Draw[] = "\n wald(mean, scale, size=None)\n\n Draw samples from a Wald, or inverse Gaussian, distribution.\n\n As the scale approaches infinity, the distribution becomes more like a\n Gaussian. Some references claim that the Wald is an inverse Gaussian\n with mean equal to 1, but this is by no means universal.\n\n The inverse Gaussian distribution was first studied in relationship to\n Brownian motion. In 1956 M.C.K. Tweedie used the name inverse Gaussian\n because there is an inverse relationship between the time to cover a\n unit distance and distance covered in unit time.\n\n Parameters\n ----------\n mean : float or array_like of floats\n Distribution mean, must be > 0.\n scale : float or array_like of floats\n Scale parameter, must be > 0.\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. If size is ``None`` (default),\n a single value is returned if ``mean`` and ``scale`` are both scalars.\n Otherwise, ``np.broadcast(mean, scale).size`` samples are drawn.\n\n Returns\n -------\n out : ndarray or scalar\n Drawn samples from the parameterized Wald distribution.\n\n Notes\n -----\n The probability density function for the Wald distribution is\n\n .. math:: P(x;mean,scale) = \\sqrt{\\frac{scale}{2\\pi x^3}}e^\n \\frac{-scale(x-mean)^2}{2\\cdotp mean^2x}\n\n As noted above the inverse Gaussian distribution first arise\n from attempts to model Brownian motion. It is also a\n competitor to the Weibull for use in reliability modeling and\n modeling stock returns and interest rate processes.\n\n References\n ----------\n .. [1] Brighton Webs Ltd., Wald Distribution,\n http""s://web.archive.org/web/20090423014010/http://www.brighton-webs.co.uk:80/distributions/wald.asp\n .. [2] Chhikara, Raj S., and Folks, J. Leroy, \"The Inverse Gaussian\n Distribution: Theory : Methodology, and Applications\", CRC Press,\n 1988.\n .. [3] Wikipedia, \"Inverse Gaussian distribution\"\n https://en.wikipedia.org/wiki/Inverse_Gaussian_distribution\n\n Examples\n --------\n Draw values from the distribution and plot the histogram:\n\n >>> import matplotlib.pyplot as plt\n >>> h = plt.hist(np.random.wald(3, 2, 100000), bins=200, density=True)\n >>> plt.show()\n\n "; static const char __pyx_k_RandomState_chisquare_line_1659[] = "RandomState.chisquare (line 1659)"; static const char __pyx_k_RandomState_dirichlet_line_3892[] = "RandomState.dirichlet (line 3892)"; static const char __pyx_k_RandomState_geometric_line_3350[] = "RandomState.geometric (line 3350)"; static const char __pyx_k_RandomState_hypergeometric_line[] = "RandomState.hypergeometric (line 3403)"; static const char __pyx_k_RandomState_lognormal_line_2626[] = "RandomState.lognormal (line 2626)"; static const char __pyx_k_RandomState_logseries_line_3531[] = "RandomState.logseries (line 3531)"; static const char __pyx_k_RandomState_multivariate_normal[] = "RandomState.multivariate_normal (line 3614)"; static const char __pyx_k_RandomState_standard_gamma_line[] = "RandomState.standard_gamma (line 1341)"; static const char __pyx_k_Unsupported_dtype_s_for_randint[] = "Unsupported dtype \"%s\" for randint"; static const char __pyx_k_a_cannot_be_empty_unless_no_sam[] = "'a' cannot be empty unless no samples are taken"; static const char __pyx_k_a_must_be_greater_than_0_unless[] = "a must be greater than 0 unless no samples are taken"; static const char __pyx_k_binomial_n_p_size_None_Draw_sam[] = "\n binomial(n, p, size=None)\n\n Draw samples from a binomial distribution.\n\n Samples are drawn from a binomial distribution with specified\n parameters, n trials and p probability of success where\n n an integer >= 0 and p is in the interval [0,1]. (n may be\n input as a float, but it is truncated to an integer in use)\n\n Parameters\n ----------\n n : int or array_like of ints\n Parameter of the distribution, >= 0. Floats are also accepted,\n but they will be truncated to integers.\n p : float or array_like of floats\n Parameter of the distribution, >= 0 and <=1.\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. If size is ``None`` (default),\n a single value is returned if ``n`` and ``p`` are both scalars.\n Otherwise, ``np.broadcast(n, p).size`` samples are drawn.\n\n Returns\n -------\n out : ndarray or scalar\n Drawn samples from the parameterized binomial distribution, where\n each sample is equal to the number of successes over the n trials.\n\n See Also\n --------\n scipy.stats.binom : probability density function, distribution or\n cumulative density function, etc.\n\n Notes\n -----\n The probability density for the binomial distribution is\n\n .. math:: P(N) = \\binom{n}{N}p^N(1-p)^{n-N},\n\n where :math:`n` is the number of trials, :math:`p` is the probability\n of success, and :math:`N` is the number of successes.\n\n When estimating the standard error of a proportion in a population by\n using a random sample, the normal distribution works well unless the\n product p*n <=5, where p = population proportion estimate, and n =\n number of samples, in which case the binom""ial distribution is used\n instead. For example, a sample of 15 people shows 4 who are left\n handed, and 11 who are right handed. Then p = 4/15 = 27%. 0.27*15 = 4,\n so the binomial distribution should be used in this case.\n\n References\n ----------\n .. [1] Dalgaard, Peter, \"Introductory Statistics with R\",\n Springer-Verlag, 2002.\n .. [2] Glantz, Stanton A. \"Primer of Biostatistics.\", McGraw-Hill,\n Fifth Edition, 2002.\n .. [3] Lentner, Marvin, \"Elementary Applied Statistics\", Bogden\n and Quigley, 1972.\n .. [4] Weisstein, Eric W. \"Binomial Distribution.\" From MathWorld--A\n Wolfram Web Resource.\n http://mathworld.wolfram.com/BinomialDistribution.html\n .. [5] Wikipedia, \"Binomial distribution\",\n https://en.wikipedia.org/wiki/Binomial_distribution\n\n Examples\n --------\n Draw samples from the distribution:\n\n >>> n, p = 10, .5 # number of trials, probability of each trial\n >>> s = np.random.binomial(n, p, 1000)\n # result of flipping a coin 10 times, tested 1000 times.\n\n A real world example. A company drills 9 wild-cat oil exploration\n wells, each with an estimated probability of success of 0.1. All nine\n wells fail. What is the probability of that happening?\n\n Let's do 20,000 trials of the model, and count the number that\n generate zero positive results.\n\n >>> sum(np.random.binomial(9, 0.1, 20000) == 0)/20000.\n # answer = 0.38885, or 38%.\n\n "; static const char __pyx_k_bytes_length_Return_random_byte[] = "\n bytes(length)\n\n Return random bytes.\n\n Parameters\n ----------\n length : int\n Number of random bytes.\n\n Returns\n -------\n out : str\n String of length `length`.\n\n Examples\n --------\n >>> np.random.bytes(10)\n ' eh\\x85\\x022SZ\\xbf\\xa4' #random\n\n "; static const char __pyx_k_chisquare_df_size_None_Draw_sam[] = "\n chisquare(df, size=None)\n\n Draw samples from a chi-square distribution.\n\n When `df` independent random variables, each with standard normal\n distributions (mean 0, variance 1), are squared and summed, the\n resulting distribution is chi-square (see Notes). This distribution\n is often used in hypothesis testing.\n\n Parameters\n ----------\n df : float or array_like of floats\n Number of degrees of freedom, must be > 0.\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. If size is ``None`` (default),\n a single value is returned if ``df`` is a scalar. Otherwise,\n ``np.array(df).size`` samples are drawn.\n\n Returns\n -------\n out : ndarray or scalar\n Drawn samples from the parameterized chi-square distribution.\n\n Raises\n ------\n ValueError\n When `df` <= 0 or when an inappropriate `size` (e.g. ``size=-1``)\n is given.\n\n Notes\n -----\n The variable obtained by summing the squares of `df` independent,\n standard normally distributed random variables:\n\n .. math:: Q = \\sum_{i=0}^{\\mathtt{df}} X^2_i\n\n is chi-square distributed, denoted\n\n .. math:: Q \\sim \\chi^2_k.\n\n The probability density function of the chi-squared distribution is\n\n .. math:: p(x) = \\frac{(1/2)^{k/2}}{\\Gamma(k/2)}\n x^{k/2 - 1} e^{-x/2},\n\n where :math:`\\Gamma` is the gamma function,\n\n .. math:: \\Gamma(x) = \\int_0^{-\\infty} t^{x - 1} e^{-t} dt.\n\n References\n ----------\n .. [1] NIST \"Engineering Statistics Handbook\"\n https://www.itl.nist.gov/div898/handbook/eda/section3/eda3666.htm\n\n Examples\n --------\n >>> np"".random.chisquare(2,4)\n array([ 1.89920014, 9.00867716, 3.13710533, 5.62318272]) # random\n\n "; static const char __pyx_k_choice_a_size_None_replace_True[] = "\n choice(a, size=None, replace=True, p=None)\n\n Generates a random sample from a given 1-D array\n\n .. versionadded:: 1.7.0\n\n Parameters\n ----------\n a : 1-D array-like or int\n If an ndarray, a random sample is generated from its elements.\n If an int, the random sample is generated as if a were np.arange(a)\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. Default is None, in which case a\n single value is returned.\n replace : boolean, optional\n Whether the sample is with or without replacement\n p : 1-D array-like, optional\n The probabilities associated with each entry in a.\n If not given the sample assumes a uniform distribution over all\n entries in a.\n\n Returns\n -------\n samples : single item or ndarray\n The generated random samples\n\n Raises\n ------\n ValueError\n If a is an int and less than zero, if a or p are not 1-dimensional,\n if a is an array-like of size 0, if p is not a vector of\n probabilities, if a and p have different lengths, or if\n replace=False and the sample size is greater than the population\n size\n\n See Also\n --------\n randint, shuffle, permutation\n\n Examples\n --------\n Generate a uniform random sample from np.arange(5) of size 3:\n\n >>> np.random.choice(5, 3)\n array([0, 3, 4]) # random\n >>> #This is equivalent to np.random.randint(0,5,3)\n\n Generate a non-uniform random sample from np.arange(5) of size 3:\n\n >>> np.random.choice(5, 3, p=[0.1, 0, 0.3, 0.6, 0])\n array([3, 3, 0]) # random\n\n Generate a uniform random sample from np.arange(5) of size 3 with""out\n replacement:\n\n >>> np.random.choice(5, 3, replace=False)\n array([3,1,0]) # random\n >>> #This is equivalent to np.random.permutation(np.arange(5))[:3]\n\n Generate a non-uniform random sample from np.arange(5) of size\n 3 without replacement:\n\n >>> np.random.choice(5, 3, replace=False, p=[0.1, 0, 0.3, 0.6, 0])\n array([2, 3, 0]) # random\n\n Any of the above can be repeated with an arbitrary array-like\n instead of just integers. For instance:\n\n >>> aa_milne_arr = ['pooh', 'rabbit', 'piglet', 'Christopher']\n >>> np.random.choice(aa_milne_arr, 5, p=[0.5, 0.1, 0.1, 0.3])\n array(['pooh', 'pooh', 'pooh', 'Christopher', 'piglet'], # random\n dtype='>> dfnum = 1. # between group degrees of freedom\n >>> dfden = 48. # within groups degrees of freedom\n >>> s = np.random.f(dfnum, dfden, 1000)\n\n The lower bound for the top 1% of the samples is :\n\n >>> np.sort(s)[-10]\n 7.61988120985 # random\n\n So there is about a 1% chance that the F statistic will exceed 7.62,\n the measured value is 36, so the null hypothesis is rejected at the 1%\n level.\n\n "; static const char __pyx_k_gamma_shape_scale_1_0_size_None[] = "\n gamma(shape, scale=1.0, size=None)\n\n Draw samples from a Gamma distribution.\n\n Samples are drawn from a Gamma distribution with specified parameters,\n `shape` (sometimes designated \"k\") and `scale` (sometimes designated\n \"theta\"), where both parameters are > 0.\n\n Parameters\n ----------\n shape : float or array_like of floats\n The shape of the gamma distribution. Must be non-negative.\n scale : float or array_like of floats, optional\n The scale of the gamma distribution. Must be non-negative.\n Default is equal to 1.\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. If size is ``None`` (default),\n a single value is returned if ``shape`` and ``scale`` are both scalars.\n Otherwise, ``np.broadcast(shape, scale).size`` samples are drawn.\n\n Returns\n -------\n out : ndarray or scalar\n Drawn samples from the parameterized gamma distribution.\n\n See Also\n --------\n scipy.stats.gamma : probability density function, distribution or\n cumulative density function, etc.\n\n Notes\n -----\n The probability density for the Gamma distribution is\n\n .. math:: p(x) = x^{k-1}\\frac{e^{-x/\\theta}}{\\theta^k\\Gamma(k)},\n\n where :math:`k` is the shape and :math:`\\theta` the scale,\n and :math:`\\Gamma` is the Gamma function.\n\n The Gamma distribution is often used to model the times to failure of\n electronic components, and arises naturally in processes for which the\n waiting times between Poisson distributed events are relevant.\n\n References\n ----------\n .. [1] Weisstein, Eric W. \"Gamma Distribution.\" From MathWorld--A\n Wolfram Web Resource.\n "" http://mathworld.wolfram.com/GammaDistribution.html\n .. [2] Wikipedia, \"Gamma distribution\",\n https://en.wikipedia.org/wiki/Gamma_distribution\n\n Examples\n --------\n Draw samples from the distribution:\n\n >>> shape, scale = 2., 2. # mean=4, std=2*sqrt(2)\n >>> s = np.random.gamma(shape, scale, 1000)\n\n Display the histogram of the samples, along with\n the probability density function:\n\n >>> import matplotlib.pyplot as plt\n >>> import scipy.special as sps # doctest: +SKIP\n >>> count, bins, ignored = plt.hist(s, 50, density=True)\n >>> y = bins**(shape-1)*(np.exp(-bins/scale) / # doctest: +SKIP\n ... (sps.gamma(shape)*scale**shape))\n >>> plt.plot(bins, y, linewidth=2, color='r') # doctest: +SKIP\n >>> plt.show()\n\n "; static const char __pyx_k_geometric_p_size_None_Draw_samp[] = "\n geometric(p, size=None)\n\n Draw samples from the geometric distribution.\n\n Bernoulli trials are experiments with one of two outcomes:\n success or failure (an example of such an experiment is flipping\n a coin). The geometric distribution models the number of trials\n that must be run in order to achieve success. It is therefore\n supported on the positive integers, ``k = 1, 2, ...``.\n\n The probability mass function of the geometric distribution is\n\n .. math:: f(k) = (1 - p)^{k - 1} p\n\n where `p` is the probability of success of an individual trial.\n\n Parameters\n ----------\n p : float or array_like of floats\n The probability of success of an individual trial.\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. If size is ``None`` (default),\n a single value is returned if ``p`` is a scalar. Otherwise,\n ``np.array(p).size`` samples are drawn.\n\n Returns\n -------\n out : ndarray or scalar\n Drawn samples from the parameterized geometric distribution.\n\n Examples\n --------\n Draw ten thousand values from the geometric distribution,\n with the probability of an individual success equal to 0.35:\n\n >>> z = np.random.geometric(p=0.35, size=10000)\n\n How many trials succeeded after a single run?\n\n >>> (z == 1).sum() / 10000.\n 0.34889999999999999 #random\n\n "; static const char __pyx_k_gumbel_loc_0_0_scale_1_0_size_N[] = "\n gumbel(loc=0.0, scale=1.0, size=None)\n\n Draw samples from a Gumbel distribution.\n\n Draw samples from a Gumbel distribution with specified location and\n scale. For more information on the Gumbel distribution, see\n Notes and References below.\n\n Parameters\n ----------\n loc : float or array_like of floats, optional\n The location of the mode of the distribution. Default is 0.\n scale : float or array_like of floats, optional\n The scale parameter of the distribution. Default is 1. Must be non-\n negative.\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. If size is ``None`` (default),\n a single value is returned if ``loc`` and ``scale`` are both scalars.\n Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.\n\n Returns\n -------\n out : ndarray or scalar\n Drawn samples from the parameterized Gumbel distribution.\n\n See Also\n --------\n scipy.stats.gumbel_l\n scipy.stats.gumbel_r\n scipy.stats.genextreme\n weibull\n\n Notes\n -----\n The Gumbel (or Smallest Extreme Value (SEV) or the Smallest Extreme\n Value Type I) distribution is one of a class of Generalized Extreme\n Value (GEV) distributions used in modeling extreme value problems.\n The Gumbel is a special case of the Extreme Value Type I distribution\n for maximums from distributions with \"exponential-like\" tails.\n\n The probability density for the Gumbel distribution is\n\n .. math:: p(x) = \\frac{e^{-(x - \\mu)/ \\beta}}{\\beta} e^{ -e^{-(x - \\mu)/\n \\beta}},\n\n where :math:`\\mu` is the mode, a location parameter, and\n :math:`\\beta` is the scale parameter.\n\n The Gum""bel (named for German mathematician Emil Julius Gumbel) was used\n very early in the hydrology literature, for modeling the occurrence of\n flood events. It is also used for modeling maximum wind speed and\n rainfall rates. It is a \"fat-tailed\" distribution - the probability of\n an event in the tail of the distribution is larger than if one used a\n Gaussian, hence the surprisingly frequent occurrence of 100-year\n floods. Floods were initially modeled as a Gaussian process, which\n underestimated the frequency of extreme events.\n\n It is one of a class of extreme value distributions, the Generalized\n Extreme Value (GEV) distributions, which also includes the Weibull and\n Frechet.\n\n The function has a mean of :math:`\\mu + 0.57721\\beta` and a variance\n of :math:`\\frac{\\pi^2}{6}\\beta^2`.\n\n References\n ----------\n .. [1] Gumbel, E. J., \"Statistics of Extremes,\"\n New York: Columbia University Press, 1958.\n .. [2] Reiss, R.-D. and Thomas, M., \"Statistical Analysis of Extreme\n Values from Insurance, Finance, Hydrology and Other Fields,\"\n Basel: Birkhauser Verlag, 2001.\n\n Examples\n --------\n Draw samples from the distribution:\n\n >>> mu, beta = 0, 0.1 # location and scale\n >>> s = np.random.gumbel(mu, beta, 1000)\n\n Display the histogram of the samples, along with\n the probability density function:\n\n >>> import matplotlib.pyplot as plt\n >>> count, bins, ignored = plt.hist(s, 30, density=True)\n >>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta)\n ... * np.exp( -np.exp( -(bins - mu) /beta) ),\n ... linewidth=2, color='r')\n >>> plt.show()\n\n Show how an extreme value distribution can arise from a Gaussian process\n and compare to a Gaussian:\n\n >>> mean""s = []\n >>> maxima = []\n >>> for i in range(0,1000) :\n ... a = np.random.normal(mu, beta, 1000)\n ... means.append(a.mean())\n ... maxima.append(a.max())\n >>> count, bins, ignored = plt.hist(maxima, 30, density=True)\n >>> beta = np.std(maxima) * np.sqrt(6) / np.pi\n >>> mu = np.mean(maxima) - 0.57721*beta\n >>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta)\n ... * np.exp(-np.exp(-(bins - mu)/beta)),\n ... linewidth=2, color='r')\n >>> plt.plot(bins, 1/(beta * np.sqrt(2 * np.pi))\n ... * np.exp(-(bins - mu)**2 / (2 * beta**2)),\n ... linewidth=2, color='g')\n >>> plt.show()\n\n "; static const char __pyx_k_hypergeometric_ngood_nbad_nsamp[] = "\n hypergeometric(ngood, nbad, nsample, size=None)\n\n Draw samples from a Hypergeometric distribution.\n\n Samples are drawn from a hypergeometric distribution with specified\n parameters, `ngood` (ways to make a good selection), `nbad` (ways to make\n a bad selection), and `nsample` (number of items sampled, which is less\n than or equal to the sum ``ngood + nbad``).\n\n Parameters\n ----------\n ngood : int or array_like of ints\n Number of ways to make a good selection. Must be nonnegative.\n nbad : int or array_like of ints\n Number of ways to make a bad selection. Must be nonnegative.\n nsample : int or array_like of ints\n Number of items sampled. Must be at least 1 and at most\n ``ngood + nbad``.\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. If size is ``None`` (default),\n a single value is returned if `ngood`, `nbad`, and `nsample`\n are all scalars. Otherwise, ``np.broadcast(ngood, nbad, nsample).size``\n samples are drawn.\n\n Returns\n -------\n out : ndarray or scalar\n Drawn samples from the parameterized hypergeometric distribution. Each\n sample is the number of good items within a randomly selected subset of\n size `nsample` taken from a set of `ngood` good items and `nbad` bad items.\n\n See Also\n --------\n scipy.stats.hypergeom : probability density function, distribution or\n cumulative density function, etc.\n\n Notes\n -----\n The probability density for the Hypergeometric distribution is\n\n .. math:: P(x) = \\frac{\\binom{g}{x}\\binom{b}{n-x}}{\\binom{g+b}{n}},\n\n where :math:`0 \\le x \\le n` and :math:`n-b \\le x \\le g`\n\n for P(x)"" the probability of ``x`` good results in the drawn sample,\n g = `ngood`, b = `nbad`, and n = `nsample`.\n\n Consider an urn with black and white marbles in it, `ngood` of them\n are black and `nbad` are white. If you draw `nsample` balls without\n replacement, then the hypergeometric distribution describes the\n distribution of black balls in the drawn sample.\n\n Note that this distribution is very similar to the binomial\n distribution, except that in this case, samples are drawn without\n replacement, whereas in the Binomial case samples are drawn with\n replacement (or the sample space is infinite). As the sample space\n becomes large, this distribution approaches the binomial.\n\n References\n ----------\n .. [1] Lentner, Marvin, \"Elementary Applied Statistics\", Bogden\n and Quigley, 1972.\n .. [2] Weisstein, Eric W. \"Hypergeometric Distribution.\" From\n MathWorld--A Wolfram Web Resource.\n http://mathworld.wolfram.com/HypergeometricDistribution.html\n .. [3] Wikipedia, \"Hypergeometric distribution\",\n https://en.wikipedia.org/wiki/Hypergeometric_distribution\n\n Examples\n --------\n Draw samples from the distribution:\n\n >>> ngood, nbad, nsamp = 100, 2, 10\n # number of good, number of bad, and number of samples\n >>> s = np.random.hypergeometric(ngood, nbad, nsamp, 1000)\n >>> from matplotlib.pyplot import hist\n >>> hist(s)\n # note that it is very unlikely to grab both bad items\n\n Suppose you have an urn with 15 white and 15 black marbles.\n If you pull 15 marbles at random, how likely is it that\n 12 or more of them are one color?\n\n >>> s = np.random.hypergeometric(15, 15, 15, 100000)\n >>> sum(s>=12)/100000. + sum(s<=3)/100000.\n # answer = 0.003 ... pretty unlikely!\n\n "" "; static const char __pyx_k_logistic_loc_0_0_scale_1_0_size[] = "\n logistic(loc=0.0, scale=1.0, size=None)\n\n Draw samples from a logistic distribution.\n\n Samples are drawn from a logistic distribution with specified\n parameters, loc (location or mean, also median), and scale (>0).\n\n Parameters\n ----------\n loc : float or array_like of floats, optional\n Parameter of the distribution. Default is 0.\n scale : float or array_like of floats, optional\n Parameter of the distribution. Must be non-negative.\n Default is 1.\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. If size is ``None`` (default),\n a single value is returned if ``loc`` and ``scale`` are both scalars.\n Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.\n\n Returns\n -------\n out : ndarray or scalar\n Drawn samples from the parameterized logistic distribution.\n\n See Also\n --------\n scipy.stats.logistic : probability density function, distribution or\n cumulative density function, etc.\n\n Notes\n -----\n The probability density for the Logistic distribution is\n\n .. math:: P(x) = P(x) = \\frac{e^{-(x-\\mu)/s}}{s(1+e^{-(x-\\mu)/s})^2},\n\n where :math:`\\mu` = location and :math:`s` = scale.\n\n The Logistic distribution is used in Extreme Value problems where it\n can act as a mixture of Gumbel distributions, in Epidemiology, and by\n the World Chess Federation (FIDE) where it is used in the Elo ranking\n system, assuming the performance of each player is a logistically\n distributed random variable.\n\n References\n ----------\n .. [1] Reiss, R.-D. and Thomas M. (2001), \"Statistical Analysis of\n Extreme Values, from Insurance, Finance, Hydr""ology and Other\n Fields,\" Birkhauser Verlag, Basel, pp 132-133.\n .. [2] Weisstein, Eric W. \"Logistic Distribution.\" From\n MathWorld--A Wolfram Web Resource.\n http://mathworld.wolfram.com/LogisticDistribution.html\n .. [3] Wikipedia, \"Logistic-distribution\",\n https://en.wikipedia.org/wiki/Logistic_distribution\n\n Examples\n --------\n Draw samples from the distribution:\n\n >>> loc, scale = 10, 1\n >>> s = np.random.logistic(loc, scale, 10000)\n >>> import matplotlib.pyplot as plt\n >>> count, bins, ignored = plt.hist(s, bins=50)\n\n # plot against distribution\n\n >>> def logist(x, loc, scale):\n ... return np.exp((loc-x)/scale)/(scale*(1+np.exp((loc-x)/scale))**2)\n >>> lgst_val = logist(bins, loc, scale)\n >>> plt.plot(bins, lgst_val * count.max() / lgst_val.max())\n >>> plt.show()\n\n "; static const char __pyx_k_lognormal_mean_0_0_sigma_1_0_si[] = "\n lognormal(mean=0.0, sigma=1.0, size=None)\n\n Draw samples from a log-normal distribution.\n\n Draw samples from a log-normal distribution with specified mean,\n standard deviation, and array shape. Note that the mean and standard\n deviation are not the values for the distribution itself, but of the\n underlying normal distribution it is derived from.\n\n Parameters\n ----------\n mean : float or array_like of floats, optional\n Mean value of the underlying normal distribution. Default is 0.\n sigma : float or array_like of floats, optional\n Standard deviation of the underlying normal distribution. Must be\n non-negative. Default is 1.\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. If size is ``None`` (default),\n a single value is returned if ``mean`` and ``sigma`` are both scalars.\n Otherwise, ``np.broadcast(mean, sigma).size`` samples are drawn.\n\n Returns\n -------\n out : ndarray or scalar\n Drawn samples from the parameterized log-normal distribution.\n\n See Also\n --------\n scipy.stats.lognorm : probability density function, distribution,\n cumulative density function, etc.\n\n Notes\n -----\n A variable `x` has a log-normal distribution if `log(x)` is normally\n distributed. The probability density function for the log-normal\n distribution is:\n\n .. math:: p(x) = \\frac{1}{\\sigma x \\sqrt{2\\pi}}\n e^{(-\\frac{(ln(x)-\\mu)^2}{2\\sigma^2})}\n\n where :math:`\\mu` is the mean and :math:`\\sigma` is the standard\n deviation of the normally distributed logarithm of the variable.\n A log-normal distribution results if a random variable is the *product*\n "" of a large number of independent, identically-distributed variables in\n the same way that a normal distribution results if the variable is the\n *sum* of a large number of independent, identically-distributed\n variables.\n\n References\n ----------\n .. [1] Limpert, E., Stahel, W. A., and Abbt, M., \"Log-normal\n Distributions across the Sciences: Keys and Clues,\"\n BioScience, Vol. 51, No. 5, May, 2001.\n https://stat.ethz.ch/~stahel/lognormal/bioscience.pdf\n .. [2] Reiss, R.D. and Thomas, M., \"Statistical Analysis of Extreme\n Values,\" Basel: Birkhauser Verlag, 2001, pp. 31-32.\n\n Examples\n --------\n Draw samples from the distribution:\n\n >>> mu, sigma = 3., 1. # mean and standard deviation\n >>> s = np.random.lognormal(mu, sigma, 1000)\n\n Display the histogram of the samples, along with\n the probability density function:\n\n >>> import matplotlib.pyplot as plt\n >>> count, bins, ignored = plt.hist(s, 100, density=True, align='mid')\n\n >>> x = np.linspace(min(bins), max(bins), 10000)\n >>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2))\n ... / (x * sigma * np.sqrt(2 * np.pi)))\n\n >>> plt.plot(x, pdf, linewidth=2, color='r')\n >>> plt.axis('tight')\n >>> plt.show()\n\n Demonstrate that taking the products of random samples from a uniform\n distribution can be fit well by a log-normal probability density\n function.\n\n >>> # Generate a thousand samples: each is the product of 100 random\n >>> # values, drawn from a normal distribution.\n >>> b = []\n >>> for i in range(1000):\n ... a = 10. + np.random.standard_normal(100)\n ... b.append(np.product(a))\n\n >>> b = np.array(b) / np.min(b) # scale values to be positive\n >>> count, bins, ignored = p""lt.hist(b, 100, density=True, align='mid')\n >>> sigma = np.std(np.log(b))\n >>> mu = np.mean(np.log(b))\n\n >>> x = np.linspace(min(bins), max(bins), 10000)\n >>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2))\n ... / (x * sigma * np.sqrt(2 * np.pi)))\n\n >>> plt.plot(x, pdf, color='r', linewidth=2)\n >>> plt.show()\n\n "; static const char __pyx_k_logseries_p_size_None_Draw_samp[] = "\n logseries(p, size=None)\n\n Draw samples from a logarithmic series distribution.\n\n Samples are drawn from a log series distribution with specified\n shape parameter, 0 < ``p`` < 1.\n\n Parameters\n ----------\n p : float or array_like of floats\n Shape parameter for the distribution. Must be in the range (0, 1).\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. If size is ``None`` (default),\n a single value is returned if ``p`` is a scalar. Otherwise,\n ``np.array(p).size`` samples are drawn.\n\n Returns\n -------\n out : ndarray or scalar\n Drawn samples from the parameterized logarithmic series distribution.\n\n See Also\n --------\n scipy.stats.logser : probability density function, distribution or\n cumulative density function, etc.\n\n Notes\n -----\n The probability density for the Log Series distribution is\n\n .. math:: P(k) = \\frac{-p^k}{k \\ln(1-p)},\n\n where p = probability.\n\n The log series distribution is frequently used to represent species\n richness and occurrence, first proposed by Fisher, Corbet, and\n Williams in 1943 [2]. It may also be used to model the numbers of\n occupants seen in cars [3].\n\n References\n ----------\n .. [1] Buzas, Martin A.; Culver, Stephen J., Understanding regional\n species diversity through the log series distribution of\n occurrences: BIODIVERSITY RESEARCH Diversity & Distributions,\n Volume 5, Number 5, September 1999 , pp. 187-195(9).\n .. [2] Fisher, R.A,, A.S. Corbet, and C.B. Williams. 1943. The\n relation between the number of species and the number of\n individuals in a random ""sample of an animal population.\n Journal of Animal Ecology, 12:42-58.\n .. [3] D. J. Hand, F. Daly, D. Lunn, E. Ostrowski, A Handbook of Small\n Data Sets, CRC Press, 1994.\n .. [4] Wikipedia, \"Logarithmic distribution\",\n https://en.wikipedia.org/wiki/Logarithmic_distribution\n\n Examples\n --------\n Draw samples from the distribution:\n\n >>> a = .6\n >>> s = np.random.logseries(a, 10000)\n >>> import matplotlib.pyplot as plt\n >>> count, bins, ignored = plt.hist(s)\n\n # plot against distribution\n\n >>> def logseries(k, p):\n ... return -p**k/(k*np.log(1-p))\n >>> plt.plot(bins, logseries(bins, a)*count.max()/\n ... logseries(bins, a).max(), 'r')\n >>> plt.show()\n\n "; static const char __pyx_k_multinomial_n_pvals_size_None_D[] = "\n multinomial(n, pvals, size=None)\n\n Draw samples from a multinomial distribution.\n\n The multinomial distribution is a multivariate generalization of the\n binomial distribution. Take an experiment with one of ``p``\n possible outcomes. An example of such an experiment is throwing a dice,\n where the outcome can be 1 through 6. Each sample drawn from the\n distribution represents `n` such experiments. Its values,\n ``X_i = [X_0, X_1, ..., X_p]``, represent the number of times the\n outcome was ``i``.\n\n Parameters\n ----------\n n : int\n Number of experiments.\n pvals : sequence of floats, length p\n Probabilities of each of the ``p`` different outcomes. These\n must sum to 1 (however, the last element is always assumed to\n account for the remaining probability, as long as\n ``sum(pvals[:-1]) <= 1)``.\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. Default is None, in which case a\n single value is returned.\n\n Returns\n -------\n out : ndarray\n The drawn samples, of shape *size*, if that was provided. If not,\n the shape is ``(N,)``.\n\n In other words, each entry ``out[i,j,...,:]`` is an N-dimensional\n value drawn from the distribution.\n\n Examples\n --------\n Throw a dice 20 times:\n\n >>> np.random.multinomial(20, [1/6.]*6, size=1)\n array([[4, 1, 7, 5, 2, 1]]) # random\n\n It landed 4 times on 1, once on 2, etc.\n\n Now, throw the dice 20 times, and 20 times again:\n\n >>> np.random.multinomial(20, [1/6.]*6, size=2)\n array([[3, 4, 3, 3, 4, 3], # random\n [2, 4, 3, 4, 0, 7]])\n\n For the first run, we threw 3 times 1, 4 t""imes 2, etc. For the second,\n we threw 2 times 1, 4 times 2, etc.\n\n A loaded die is more likely to land on number 6:\n\n >>> np.random.multinomial(100, [1/7.]*5 + [2/7.])\n array([11, 16, 14, 17, 16, 26]) # random\n\n The probability inputs should be normalized. As an implementation\n detail, the value of the last entry is ignored and assumed to take\n up any leftover probability mass, but this should not be relied on.\n A biased coin which has twice as much weight on one side as on the\n other should be sampled like so:\n\n >>> np.random.multinomial(100, [1.0 / 3, 2.0 / 3]) # RIGHT\n array([38, 62]) # random\n\n not like:\n\n >>> np.random.multinomial(100, [1.0, 2.0]) # WRONG\n Traceback (most recent call last):\n ValueError: pvals < 0, pvals > 1 or pvals contains NaNs\n\n "; static const char __pyx_k_multivariate_normal_mean_cov_si[] = "\n multivariate_normal(mean, cov, size=None, check_valid='warn', tol=1e-8)\n\n Draw random samples from a multivariate normal distribution.\n\n The multivariate normal, multinormal or Gaussian distribution is a\n generalization of the one-dimensional normal distribution to higher\n dimensions. Such a distribution is specified by its mean and\n covariance matrix. These parameters are analogous to the mean\n (average or \"center\") and variance (standard deviation, or \"width,\"\n squared) of the one-dimensional normal distribution.\n\n Parameters\n ----------\n mean : 1-D array_like, of length N\n Mean of the N-dimensional distribution.\n cov : 2-D array_like, of shape (N, N)\n Covariance matrix of the distribution. It must be symmetric and\n positive-semidefinite for proper sampling.\n size : int or tuple of ints, optional\n Given a shape of, for example, ``(m,n,k)``, ``m*n*k`` samples are\n generated, and packed in an `m`-by-`n`-by-`k` arrangement. Because\n each sample is `N`-dimensional, the output shape is ``(m,n,k,N)``.\n If no shape is specified, a single (`N`-D) sample is returned.\n check_valid : { 'warn', 'raise', 'ignore' }, optional\n Behavior when the covariance matrix is not positive semidefinite.\n tol : float, optional\n Tolerance when checking the singular values in covariance matrix.\n cov is cast to double before the check.\n\n Returns\n -------\n out : ndarray\n The drawn samples, of shape *size*, if that was provided. If not,\n the shape is ``(N,)``.\n\n In other words, each entry ``out[i,j,...,:]`` is an N-dimensional\n value drawn from the distribution.\n\n Notes\n -----\n The mean is a coordinate in N-dimensional space, which represents the""\n location where samples are most likely to be generated. This is\n analogous to the peak of the bell curve for the one-dimensional or\n univariate normal distribution.\n\n Covariance indicates the level to which two variables vary together.\n From the multivariate normal distribution, we draw N-dimensional\n samples, :math:`X = [x_1, x_2, ... x_N]`. The covariance matrix\n element :math:`C_{ij}` is the covariance of :math:`x_i` and :math:`x_j`.\n The element :math:`C_{ii}` is the variance of :math:`x_i` (i.e. its\n \"spread\").\n\n Instead of specifying the full covariance matrix, popular\n approximations include:\n\n - Spherical covariance (`cov` is a multiple of the identity matrix)\n - Diagonal covariance (`cov` has non-negative elements, and only on\n the diagonal)\n\n This geometrical property can be seen in two dimensions by plotting\n generated data-points:\n\n >>> mean = [0, 0]\n >>> cov = [[1, 0], [0, 100]] # diagonal covariance\n\n Diagonal covariance means that points are oriented along x or y-axis:\n\n >>> import matplotlib.pyplot as plt\n >>> x, y = np.random.multivariate_normal(mean, cov, 5000).T\n >>> plt.plot(x, y, 'x')\n >>> plt.axis('equal')\n >>> plt.show()\n\n Note that the covariance matrix must be positive semidefinite (a.k.a.\n nonnegative-definite). Otherwise, the behavior of this method is\n undefined and backwards compatibility is not guaranteed.\n\n References\n ----------\n .. [1] Papoulis, A., \"Probability, Random Variables, and Stochastic\n Processes,\" 3rd ed., New York: McGraw-Hill, 1991.\n .. [2] Duda, R. O., Hart, P. E., and Stork, D. G., \"Pattern\n Classification,\" 2nd ed., New York: Wiley, 2001.\n\n Examples\n --------\n >>> mean = (1, 2)\n >>> co""v = [[1, 0], [0, 1]]\n >>> x = np.random.multivariate_normal(mean, cov, (3, 3))\n >>> x.shape\n (3, 3, 2)\n\n The following is probably true, given that 0.6 is roughly twice the\n standard deviation:\n\n >>> list((x[0,0,:] - mean) < 0.6)\n [True, True] # random\n\n "; static const char __pyx_k_negative_binomial_n_p_size_None[] = "\n negative_binomial(n, p, size=None)\n\n Draw samples from a negative binomial distribution.\n\n Samples are drawn from a negative binomial distribution with specified\n parameters, `n` successes and `p` probability of success where `n`\n is > 0 and `p` is in the interval [0, 1].\n\n Parameters\n ----------\n n : float or array_like of floats\n Parameter of the distribution, > 0.\n p : float or array_like of floats\n Parameter of the distribution, >= 0 and <=1.\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. If size is ``None`` (default),\n a single value is returned if ``n`` and ``p`` are both scalars.\n Otherwise, ``np.broadcast(n, p).size`` samples are drawn.\n\n Returns\n -------\n out : ndarray or scalar\n Drawn samples from the parameterized negative binomial distribution,\n where each sample is equal to N, the number of failures that\n occurred before a total of n successes was reached.\n\n Notes\n -----\n The probability mass function of the negative binomial distribution is\n\n .. math:: P(N;n,p) = \\frac{\\Gamma(N+n)}{N!\\Gamma(n)}p^{n}(1-p)^{N},\n\n where :math:`n` is the number of successes, :math:`p` is the\n probability of success, :math:`N+n` is the number of trials, and\n :math:`\\Gamma` is the gamma function. When :math:`n` is an integer,\n :math:`\\frac{\\Gamma(N+n)}{N!\\Gamma(n)} = \\binom{N+n-1}{N}`, which is\n the more common form of this term in the the pmf. The negative\n binomial distribution gives the probability of N failures given n\n successes, with a success on the last trial.\n\n If one throws a die repeatedly until the third time a \"1\" appears,\n then the probabili""ty distribution of the number of non-\"1\"s that\n appear before the third \"1\" is a negative binomial distribution.\n\n References\n ----------\n .. [1] Weisstein, Eric W. \"Negative Binomial Distribution.\" From\n MathWorld--A Wolfram Web Resource.\n http://mathworld.wolfram.com/NegativeBinomialDistribution.html\n .. [2] Wikipedia, \"Negative binomial distribution\",\n https://en.wikipedia.org/wiki/Negative_binomial_distribution\n\n Examples\n --------\n Draw samples from the distribution:\n\n A real world example. A company drills wild-cat oil\n exploration wells, each with an estimated probability of\n success of 0.1. What is the probability of having one success\n for each successive well, that is what is the probability of a\n single success after drilling 5 wells, after 6 wells, etc.?\n\n >>> s = np.random.negative_binomial(1, 0.1, 100000)\n >>> for i in range(1, 11): # doctest: +SKIP\n ... probability = sum(s>> import matplotlib.pyplot as plt\n >>> values = plt.hist(np.random.noncentral_chisquare(3, 20, 100000),\n ... bins=200, density=True)\n >>> plt.show()\n\n Draw values from a noncent""ral chisquare with very small noncentrality,\n and compare to a chisquare.\n\n >>> plt.figure()\n >>> values = plt.hist(np.random.noncentral_chisquare(3, .0000001, 100000),\n ... bins=np.arange(0., 25, .1), density=True)\n >>> values2 = plt.hist(np.random.chisquare(3, 100000),\n ... bins=np.arange(0., 25, .1), density=True)\n >>> plt.plot(values[1][0:-1], values[0]-values2[0], 'ob')\n >>> plt.show()\n\n Demonstrate how large values of non-centrality lead to a more symmetric\n distribution.\n\n >>> plt.figure()\n >>> values = plt.hist(np.random.noncentral_chisquare(3, 20, 100000),\n ... bins=200, density=True)\n >>> plt.show()\n\n "; static const char __pyx_k_noncentral_f_dfnum_dfden_nonc_s[] = "\n noncentral_f(dfnum, dfden, nonc, size=None)\n\n Draw samples from the noncentral F distribution.\n\n Samples are drawn from an F distribution with specified parameters,\n `dfnum` (degrees of freedom in numerator) and `dfden` (degrees of\n freedom in denominator), where both parameters > 1.\n `nonc` is the non-centrality parameter.\n\n Parameters\n ----------\n dfnum : float or array_like of floats\n Numerator degrees of freedom, must be > 0.\n\n .. versionchanged:: 1.14.0\n Earlier NumPy versions required dfnum > 1.\n dfden : float or array_like of floats\n Denominator degrees of freedom, must be > 0.\n nonc : float or array_like of floats\n Non-centrality parameter, the sum of the squares of the numerator\n means, must be >= 0.\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. If size is ``None`` (default),\n a single value is returned if ``dfnum``, ``dfden``, and ``nonc``\n are all scalars. Otherwise, ``np.broadcast(dfnum, dfden, nonc).size``\n samples are drawn.\n\n Returns\n -------\n out : ndarray or scalar\n Drawn samples from the parameterized noncentral Fisher distribution.\n\n Notes\n -----\n When calculating the power of an experiment (power = probability of\n rejecting the null hypothesis when a specific alternative is true) the\n non-central F statistic becomes important. When the null hypothesis is\n true, the F statistic follows a central F distribution. When the null\n hypothesis is not true, then it follows a non-central F statistic.\n\n References\n ----------\n .. [1] Weisstein, Eric W. \"Noncentral F-Distribution.\"\n From MathWorld--""A Wolfram Web Resource.\n http://mathworld.wolfram.com/NoncentralF-Distribution.html\n .. [2] Wikipedia, \"Noncentral F-distribution\",\n https://en.wikipedia.org/wiki/Noncentral_F-distribution\n\n Examples\n --------\n In a study, testing for a specific alternative to the null hypothesis\n requires use of the Noncentral F distribution. We need to calculate the\n area in the tail of the distribution that exceeds the value of the F\n distribution for the null hypothesis. We'll plot the two probability\n distributions for comparison.\n\n >>> dfnum = 3 # between group deg of freedom\n >>> dfden = 20 # within groups degrees of freedom\n >>> nonc = 3.0\n >>> nc_vals = np.random.noncentral_f(dfnum, dfden, nonc, 1000000)\n >>> NF = np.histogram(nc_vals, bins=50, density=True)\n >>> c_vals = np.random.f(dfnum, dfden, 1000000)\n >>> F = np.histogram(c_vals, bins=50, density=True)\n >>> import matplotlib.pyplot as plt\n >>> plt.plot(F[1][1:], F[0])\n >>> plt.plot(NF[1][1:], NF[0])\n >>> plt.show()\n\n "; static const char __pyx_k_normal_loc_0_0_scale_1_0_size_N[] = "\n normal(loc=0.0, scale=1.0, size=None)\n\n Draw random samples from a normal (Gaussian) distribution.\n\n The probability density function of the normal distribution, first\n derived by De Moivre and 200 years later by both Gauss and Laplace\n independently [2]_, is often called the bell curve because of\n its characteristic shape (see the example below).\n\n The normal distributions occurs often in nature. For example, it\n describes the commonly occurring distribution of samples influenced\n by a large number of tiny, random disturbances, each with its own\n unique distribution [2]_.\n\n Parameters\n ----------\n loc : float or array_like of floats\n Mean (\"centre\") of the distribution.\n scale : float or array_like of floats\n Standard deviation (spread or \"width\") of the distribution. Must be\n non-negative.\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. If size is ``None`` (default),\n a single value is returned if ``loc`` and ``scale`` are both scalars.\n Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.\n\n Returns\n -------\n out : ndarray or scalar\n Drawn samples from the parameterized normal distribution.\n\n See Also\n --------\n scipy.stats.norm : probability density function, distribution or\n cumulative density function, etc.\n\n Notes\n -----\n The probability density for the Gaussian distribution is\n\n .. math:: p(x) = \\frac{1}{\\sqrt{ 2 \\pi \\sigma^2 }}\n e^{ - \\frac{ (x - \\mu)^2 } {2 \\sigma^2} },\n\n where :math:`\\mu` is the mean and :math:`\\sigma` the standard\n deviation. The square of the standard deviation, :math:`""\\sigma^2`,\n is called the variance.\n\n The function has its peak at the mean, and its \"spread\" increases with\n the standard deviation (the function reaches 0.607 times its maximum at\n :math:`x + \\sigma` and :math:`x - \\sigma` [2]_). This implies that\n `numpy.random.normal` is more likely to return samples lying close to\n the mean, rather than those far away.\n\n References\n ----------\n .. [1] Wikipedia, \"Normal distribution\",\n https://en.wikipedia.org/wiki/Normal_distribution\n .. [2] P. R. Peebles Jr., \"Central Limit Theorem\" in \"Probability,\n Random Variables and Random Signal Principles\", 4th ed., 2001,\n pp. 51, 51, 125.\n\n Examples\n --------\n Draw samples from the distribution:\n\n >>> mu, sigma = 0, 0.1 # mean and standard deviation\n >>> s = np.random.normal(mu, sigma, 1000)\n\n Verify the mean and the variance:\n\n >>> abs(mu - np.mean(s))\n 0.0 # may vary\n\n >>> abs(sigma - np.std(s, ddof=1))\n 0.1 # may vary\n\n Display the histogram of the samples, along with\n the probability density function:\n\n >>> import matplotlib.pyplot as plt\n >>> count, bins, ignored = plt.hist(s, 30, density=True)\n >>> plt.plot(bins, 1/(sigma * np.sqrt(2 * np.pi)) *\n ... np.exp( - (bins - mu)**2 / (2 * sigma**2) ),\n ... linewidth=2, color='r')\n >>> plt.show()\n\n Two-by-four array of samples from N(3, 6.25):\n\n >>> np.random.normal(3, 2.5, size=(2, 4))\n array([[-4.49401501, 4.00950034, -1.81814867, 7.29718677], # random\n [ 0.39924804, 4.68456316, 4.99394529, 4.84057254]]) # random\n\n "; static const char __pyx_k_numpy_core_multiarray_failed_to[] = "numpy.core.multiarray failed to import"; static const char __pyx_k_pareto_a_size_None_Draw_samples[] = "\n pareto(a, size=None)\n\n Draw samples from a Pareto II or Lomax distribution with\n specified shape.\n\n The Lomax or Pareto II distribution is a shifted Pareto\n distribution. The classical Pareto distribution can be\n obtained from the Lomax distribution by adding 1 and\n multiplying by the scale parameter ``m`` (see Notes). The\n smallest value of the Lomax distribution is zero while for the\n classical Pareto distribution it is ``mu``, where the standard\n Pareto distribution has location ``mu = 1``. Lomax can also\n be considered as a simplified version of the Generalized\n Pareto distribution (available in SciPy), with the scale set\n to one and the location set to zero.\n\n The Pareto distribution must be greater than zero, and is\n unbounded above. It is also known as the \"80-20 rule\". In\n this distribution, 80 percent of the weights are in the lowest\n 20 percent of the range, while the other 20 percent fill the\n remaining 80 percent of the range.\n\n Parameters\n ----------\n a : float or array_like of floats\n Shape of the distribution. Must be positive.\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. If size is ``None`` (default),\n a single value is returned if ``a`` is a scalar. Otherwise,\n ``np.array(a).size`` samples are drawn.\n\n Returns\n -------\n out : ndarray or scalar\n Drawn samples from the parameterized Pareto distribution.\n\n See Also\n --------\n scipy.stats.lomax : probability density function, distribution or\n cumulative density function, etc.\n scipy.stats.genpareto : probability density function, distribution or\n cumulative density function,"" etc.\n\n Notes\n -----\n The probability density for the Pareto distribution is\n\n .. math:: p(x) = \\frac{am^a}{x^{a+1}}\n\n where :math:`a` is the shape and :math:`m` the scale.\n\n The Pareto distribution, named after the Italian economist\n Vilfredo Pareto, is a power law probability distribution\n useful in many real world problems. Outside the field of\n economics it is generally referred to as the Bradford\n distribution. Pareto developed the distribution to describe\n the distribution of wealth in an economy. It has also found\n use in insurance, web page access statistics, oil field sizes,\n and many other problems, including the download frequency for\n projects in Sourceforge [1]_. It is one of the so-called\n \"fat-tailed\" distributions.\n\n References\n ----------\n .. [1] Francis Hunt and Paul Johnson, On the Pareto Distribution of\n Sourceforge projects.\n .. [2] Pareto, V. (1896). Course of Political Economy. Lausanne.\n .. [3] Reiss, R.D., Thomas, M.(2001), Statistical Analysis of Extreme\n Values, Birkhauser Verlag, Basel, pp 23-30.\n .. [4] Wikipedia, \"Pareto distribution\",\n https://en.wikipedia.org/wiki/Pareto_distribution\n\n Examples\n --------\n Draw samples from the distribution:\n\n >>> a, m = 3., 2. # shape and mode\n >>> s = (np.random.pareto(a, 1000) + 1) * m\n\n Display the histogram of the samples, along with the probability\n density function:\n\n >>> import matplotlib.pyplot as plt\n >>> count, bins, _ = plt.hist(s, 100, density=True)\n >>> fit = a*m**a / bins**(a+1)\n >>> plt.plot(bins, max(count)*fit/max(fit), linewidth=2, color='r')\n >>> plt.show()\n\n "; static const char __pyx_k_power_a_size_None_Draws_samples[] = "\n power(a, size=None)\n\n Draws samples in [0, 1] from a power distribution with positive\n exponent a - 1.\n\n Also known as the power function distribution.\n\n Parameters\n ----------\n a : float or array_like of floats\n Parameter of the distribution. Must be non-negative.\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. If size is ``None`` (default),\n a single value is returned if ``a`` is a scalar. Otherwise,\n ``np.array(a).size`` samples are drawn.\n\n Returns\n -------\n out : ndarray or scalar\n Drawn samples from the parameterized power distribution.\n\n Raises\n ------\n ValueError\n If a < 1.\n\n Notes\n -----\n The probability density function is\n\n .. math:: P(x; a) = ax^{a-1}, 0 \\le x \\le 1, a>0.\n\n The power function distribution is just the inverse of the Pareto\n distribution. It may also be seen as a special case of the Beta\n distribution.\n\n It is used, for example, in modeling the over-reporting of insurance\n claims.\n\n References\n ----------\n .. [1] Christian Kleiber, Samuel Kotz, \"Statistical size distributions\n in economics and actuarial sciences\", Wiley, 2003.\n .. [2] Heckert, N. A. and Filliben, James J. \"NIST Handbook 148:\n Dataplot Reference Manual, Volume 2: Let Subcommands and Library\n Functions\", National Institute of Standards and Technology\n Handbook Series, June 2003.\n https://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/powpdf.pdf\n\n Examples\n --------\n Draw samples from the distribution:\n\n >>> a = 5. # shape\n >>> samples = 1000\n "" >>> s = np.random.power(a, samples)\n\n Display the histogram of the samples, along with\n the probability density function:\n\n >>> import matplotlib.pyplot as plt\n >>> count, bins, ignored = plt.hist(s, bins=30)\n >>> x = np.linspace(0, 1, 100)\n >>> y = a*x**(a-1.)\n >>> normed_y = samples*np.diff(bins)[0]*y\n >>> plt.plot(x, normed_y)\n >>> plt.show()\n\n Compare the power function distribution to the inverse of the Pareto.\n\n >>> from scipy import stats # doctest: +SKIP\n >>> rvs = np.random.power(5, 1000000)\n >>> rvsp = np.random.pareto(5, 1000000)\n >>> xx = np.linspace(0,1,100)\n >>> powpdf = stats.powerlaw.pdf(xx,5) # doctest: +SKIP\n\n >>> plt.figure()\n >>> plt.hist(rvs, bins=50, density=True)\n >>> plt.plot(xx,powpdf,'r-') # doctest: +SKIP\n >>> plt.title('np.random.power(5)')\n\n >>> plt.figure()\n >>> plt.hist(1./(1.+rvsp), bins=50, density=True)\n >>> plt.plot(xx,powpdf,'r-') # doctest: +SKIP\n >>> plt.title('inverse of 1 + np.random.pareto(5)')\n\n >>> plt.figure()\n >>> plt.hist(1./(1.+rvsp), bins=50, density=True)\n >>> plt.plot(xx,powpdf,'r-') # doctest: +SKIP\n >>> plt.title('inverse of stats.pareto(5)')\n\n "; static const char __pyx_k_randint_low_high_None_size_None[] = "\n randint(low, high=None, size=None, dtype='l')\n\n Return random integers from `low` (inclusive) to `high` (exclusive).\n\n Return random integers from the \"discrete uniform\" distribution of\n the specified dtype in the \"half-open\" interval [`low`, `high`). If\n `high` is None (the default), then results are from [0, `low`).\n\n Parameters\n ----------\n low : int or array-like of ints\n Lowest (signed) integers to be drawn from the distribution (unless\n ``high=None``, in which case this parameter is one above the\n *highest* such integer).\n high : int or array-like of ints, optional\n If provided, one above the largest (signed) integer to be drawn\n from the distribution (see above for behavior if ``high=None``).\n If array-like, must contain integer values\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. Default is None, in which case a\n single value is returned.\n dtype : dtype, optional\n Desired dtype of the result. All dtypes are determined by their\n name, i.e., 'int64', 'int', etc, so byteorder is not available\n and a specific precision may have different C types depending\n on the platform. The default value is 'np.int'.\n\n .. versionadded:: 1.11.0\n\n Returns\n -------\n out : int or ndarray of ints\n `size`-shaped array of random integers from the appropriate\n distribution, or a single such random int if `size` not provided.\n\n See Also\n --------\n random.random_integers : similar to `randint`, only for the closed\n interval [`low`, `high`], and 1 is the lowest value if `high` is\n omitted.\n\n Examples\n --------\n >>""> np.random.randint(2, size=10)\n array([1, 0, 0, 0, 1, 1, 0, 0, 1, 0]) # random\n >>> np.random.randint(1, size=10)\n array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])\n\n Generate a 2 x 4 array of ints between 0 and 4, inclusive:\n\n >>> np.random.randint(5, size=(2, 4))\n array([[4, 0, 2, 1], # random\n [3, 2, 2, 0]])\n\n Generate a 1 x 3 array with 3 different upper bounds\n\n >>> np.random.randint(1, [3, 5, 10])\n array([2, 2, 9]) # random\n\n Generate a 1 by 3 array with 3 different lower bounds\n\n >>> np.random.randint([1, 5, 7], 10)\n array([9, 8, 7]) # random\n\n Generate a 2 by 4 array using broadcasting with dtype of uint8\n\n >>> np.random.randint([1, 3, 5, 7], [[10], [20]], dtype=np.uint8)\n array([[ 8, 6, 9, 7], # random\n [ 1, 16, 9, 12]], dtype=uint8)\n "; static const char __pyx_k_random_integers_low_high_None_s[] = "\n random_integers(low, high=None, size=None)\n\n Random integers of type np.int between `low` and `high`, inclusive.\n\n Return random integers of type np.int from the \"discrete uniform\"\n distribution in the closed interval [`low`, `high`]. If `high` is\n None (the default), then results are from [1, `low`]. The np.int\n type translates to the C long integer type and its precision\n is platform dependent.\n\n This function has been deprecated. Use randint instead.\n\n .. deprecated:: 1.11.0\n\n Parameters\n ----------\n low : int\n Lowest (signed) integer to be drawn from the distribution (unless\n ``high=None``, in which case this parameter is the *highest* such\n integer).\n high : int, optional\n If provided, the largest (signed) integer to be drawn from the\n distribution (see above for behavior if ``high=None``).\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. Default is None, in which case a\n single value is returned.\n\n Returns\n -------\n out : int or ndarray of ints\n `size`-shaped array of random integers from the appropriate\n distribution, or a single such random int if `size` not provided.\n\n See Also\n --------\n randint : Similar to `random_integers`, only for the half-open\n interval [`low`, `high`), and 0 is the lowest value if `high` is\n omitted.\n\n Notes\n -----\n To sample from N evenly spaced floating-point numbers between a and b,\n use::\n\n a + (b - a) * (np.random.random_integers(N) - 1) / (N - 1.)\n\n Examples\n --------\n >>> np.random.random_integers(5)\n 4 # random\n >>> type(np.random.random_integ""ers(5))\n \n >>> np.random.random_integers(5, size=(3,2))\n array([[5, 4], # random\n [3, 3],\n [4, 5]])\n\n Choose five random numbers from the set of five evenly-spaced\n numbers between 0 and 2.5, inclusive (*i.e.*, from the set\n :math:`{0, 5/8, 10/8, 15/8, 20/8}`):\n\n >>> 2.5 * (np.random.random_integers(5, size=(5,)) - 1) / 4.\n array([ 0.625, 1.25 , 0.625, 0.625, 2.5 ]) # random\n\n Roll two six sided dice 1000 times and sum the results:\n\n >>> d1 = np.random.random_integers(1, 6, 1000)\n >>> d2 = np.random.random_integers(1, 6, 1000)\n >>> dsums = d1 + d2\n\n Display results as a histogram:\n\n >>> import matplotlib.pyplot as plt\n >>> count, bins, ignored = plt.hist(dsums, 11, density=True)\n >>> plt.show()\n\n "; static const char __pyx_k_rayleigh_scale_1_0_size_None_Dr[] = "\n rayleigh(scale=1.0, size=None)\n\n Draw samples from a Rayleigh distribution.\n\n The :math:`\\chi` and Weibull distributions are generalizations of the\n Rayleigh.\n\n Parameters\n ----------\n scale : float or array_like of floats, optional\n Scale, also equals the mode. Must be non-negative. Default is 1.\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. If size is ``None`` (default),\n a single value is returned if ``scale`` is a scalar. Otherwise,\n ``np.array(scale).size`` samples are drawn.\n\n Returns\n -------\n out : ndarray or scalar\n Drawn samples from the parameterized Rayleigh distribution.\n\n Notes\n -----\n The probability density function for the Rayleigh distribution is\n\n .. math:: P(x;scale) = \\frac{x}{scale^2}e^{\\frac{-x^2}{2 \\cdotp scale^2}}\n\n The Rayleigh distribution would arise, for example, if the East\n and North components of the wind velocity had identical zero-mean\n Gaussian distributions. Then the wind speed would have a Rayleigh\n distribution.\n\n References\n ----------\n .. [1] Brighton Webs Ltd., \"Rayleigh Distribution,\"\n https://web.archive.org/web/20090514091424/http://brighton-webs.co.uk:80/distributions/rayleigh.asp\n .. [2] Wikipedia, \"Rayleigh distribution\"\n https://en.wikipedia.org/wiki/Rayleigh_distribution\n\n Examples\n --------\n Draw values from the distribution and plot the histogram\n\n >>> from matplotlib.pyplot import hist\n >>> values = hist(np.random.rayleigh(3, 100000), bins=200, density=True)\n\n Wave heights tend to follow a Rayleigh distribution. If the mean wave\n height is 1 meter, what fraction of ""waves are likely to be larger than 3\n meters?\n\n >>> meanvalue = 1\n >>> modevalue = np.sqrt(2 / np.pi) * meanvalue\n >>> s = np.random.rayleigh(modevalue, 1000000)\n\n The percentage of waves larger than 3 meters is:\n\n >>> 100.*sum(s>3)/1000000.\n 0.087300000000000003 # random\n\n "; static const char __pyx_k_seed_self_seed_None_Reseed_a_le[] = "\n seed(self, seed=None)\n\n Reseed a legacy MT19937 BitGenerator\n\n Notes\n -----\n This is a convenience, legacy function.\n\n The best practice is to **not** reseed a BitGenerator, rather to\n recreate a new one. This method is here for legacy reasons.\n This example demonstrates best practice.\n\n >>> from numpy.random import MT19937\n >>> from numpy.random import RandomState, SeedSequence\n >>> rs = RandomState(MT19937(SeedSequence(123456789)))\n # Later, you want to restart the stream\n >>> rs = RandomState(MT19937(SeedSequence(987654321)))\n "; static const char __pyx_k_set_state_can_only_be_used_with[] = "set_state can only be used with legacy MT19937state instances."; static const char __pyx_k_standard_t_df_size_None_Draw_sa[] = "\n standard_t(df, size=None)\n\n Draw samples from a standard Student's t distribution with `df` degrees\n of freedom.\n\n A special case of the hyperbolic distribution. As `df` gets\n large, the result resembles that of the standard normal\n distribution (`standard_normal`).\n\n Parameters\n ----------\n df : float or array_like of floats\n Degrees of freedom, must be > 0.\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. If size is ``None`` (default),\n a single value is returned if ``df`` is a scalar. Otherwise,\n ``np.array(df).size`` samples are drawn.\n\n Returns\n -------\n out : ndarray or scalar\n Drawn samples from the parameterized standard Student's t distribution.\n\n Notes\n -----\n The probability density function for the t distribution is\n\n .. math:: P(x, df) = \\frac{\\Gamma(\\frac{df+1}{2})}{\\sqrt{\\pi df}\n \\Gamma(\\frac{df}{2})}\\Bigl( 1+\\frac{x^2}{df} \\Bigr)^{-(df+1)/2}\n\n The t test is based on an assumption that the data come from a\n Normal distribution. The t test provides a way to test whether\n the sample mean (that is the mean calculated from the data) is\n a good estimate of the true mean.\n\n The derivation of the t-distribution was first published in\n 1908 by William Gosset while working for the Guinness Brewery\n in Dublin. Due to proprietary issues, he had to publish under\n a pseudonym, and so he used the name Student.\n\n References\n ----------\n .. [1] Dalgaard, Peter, \"Introductory Statistics With R\",\n Springer, 2002.\n .. [2] Wikipedia, \"Student's t-distribution\"\n https://en.wikipedia.org/wiki/Student's_t-distribu""tion\n\n Examples\n --------\n From Dalgaard page 83 [1]_, suppose the daily energy intake for 11\n women in kilojoules (kJ) is:\n\n >>> intake = np.array([5260., 5470, 5640, 6180, 6390, 6515, 6805, 7515, \\\n ... 7515, 8230, 8770])\n\n Does their energy intake deviate systematically from the recommended\n value of 7725 kJ?\n\n We have 10 degrees of freedom, so is the sample mean within 95% of the\n recommended value?\n\n >>> s = np.random.standard_t(10, size=100000)\n >>> np.mean(intake)\n 6753.636363636364\n >>> intake.std(ddof=1)\n 1142.1232221373727\n\n Calculate the t statistic, setting the ddof parameter to the unbiased\n value so the divisor in the standard deviation will be degrees of\n freedom, N-1.\n\n >>> t = (np.mean(intake)-7725)/(intake.std(ddof=1)/np.sqrt(len(intake)))\n >>> import matplotlib.pyplot as plt\n >>> h = plt.hist(s, bins=100, density=True)\n\n For a one-sided t-test, how far out in the distribution does the t\n statistic appear?\n\n >>> np.sum(s>> import matplotlib.pyplot as plt\n >>> h = plt.hist(np.random.triangular(-3, 0, 8, 100000), bins=200,\n ... density=True)\n >>> plt.show()\n\n "; static const char __pyx_k_uniform_low_0_0_high_1_0_size_N[] = "\n uniform(low=0.0, high=1.0, size=None)\n\n Draw samples from a uniform distribution.\n\n Samples are uniformly distributed over the half-open interval\n ``[low, high)`` (includes low, but excludes high). In other words,\n any value within the given interval is equally likely to be drawn\n by `uniform`.\n\n Parameters\n ----------\n low : float or array_like of floats, optional\n Lower boundary of the output interval. All values generated will be\n greater than or equal to low. The default value is 0.\n high : float or array_like of floats\n Upper boundary of the output interval. All values generated will be\n less than high. The default value is 1.0.\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. If size is ``None`` (default),\n a single value is returned if ``low`` and ``high`` are both scalars.\n Otherwise, ``np.broadcast(low, high).size`` samples are drawn.\n\n Returns\n -------\n out : ndarray or scalar\n Drawn samples from the parameterized uniform distribution.\n\n See Also\n --------\n randint : Discrete uniform distribution, yielding integers.\n random_integers : Discrete uniform distribution over the closed\n interval ``[low, high]``.\n random_sample : Floats uniformly distributed over ``[0, 1)``.\n random : Alias for `random_sample`.\n rand : Convenience function that accepts dimensions as input, e.g.,\n ``rand(2,2)`` would generate a 2-by-2 array of floats,\n uniformly distributed over ``[0, 1)``.\n\n Notes\n -----\n The probability density function of the uniform distribution is\n\n .. math:: p(x) = \\frac{1}{b - a}\n\n anywhe""re within the interval ``[a, b)``, and zero elsewhere.\n\n When ``high`` == ``low``, values of ``low`` will be returned.\n If ``high`` < ``low``, the results are officially undefined\n and may eventually raise an error, i.e. do not rely on this\n function to behave when passed arguments satisfying that\n inequality condition.\n\n Examples\n --------\n Draw samples from the distribution:\n\n >>> s = np.random.uniform(-1,0,1000)\n\n All values are within the given interval:\n\n >>> np.all(s >= -1)\n True\n >>> np.all(s < 0)\n True\n\n Display the histogram of the samples, along with the\n probability density function:\n\n >>> import matplotlib.pyplot as plt\n >>> count, bins, ignored = plt.hist(s, 15, density=True)\n >>> plt.plot(bins, np.ones_like(bins), linewidth=2, color='r')\n >>> plt.show()\n\n "; static const char __pyx_k_unknown_dtype_code_in_numpy_pxd[] = "unknown dtype code in numpy.pxd (%d)"; static const char __pyx_k_vonmises_mu_kappa_size_None_Dra[] = "\n vonmises(mu, kappa, size=None)\n\n Draw samples from a von Mises distribution.\n\n Samples are drawn from a von Mises distribution with specified mode\n (mu) and dispersion (kappa), on the interval [-pi, pi].\n\n The von Mises distribution (also known as the circular normal\n distribution) is a continuous probability distribution on the unit\n circle. It may be thought of as the circular analogue of the normal\n distribution.\n\n Parameters\n ----------\n mu : float or array_like of floats\n Mode (\"center\") of the distribution.\n kappa : float or array_like of floats\n Dispersion of the distribution, has to be >=0.\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. If size is ``None`` (default),\n a single value is returned if ``mu`` and ``kappa`` are both scalars.\n Otherwise, ``np.broadcast(mu, kappa).size`` samples are drawn.\n\n Returns\n -------\n out : ndarray or scalar\n Drawn samples from the parameterized von Mises distribution.\n\n See Also\n --------\n scipy.stats.vonmises : probability density function, distribution, or\n cumulative density function, etc.\n\n Notes\n -----\n The probability density for the von Mises distribution is\n\n .. math:: p(x) = \\frac{e^{\\kappa cos(x-\\mu)}}{2\\pi I_0(\\kappa)},\n\n where :math:`\\mu` is the mode and :math:`\\kappa` the dispersion,\n and :math:`I_0(\\kappa)` is the modified Bessel function of order 0.\n\n The von Mises is named for Richard Edler von Mises, who was born in\n Austria-Hungary, in what is now the Ukraine. He fled to the United\n States in 1939 and became a professor at Harvard. He worked in\n probability theory, aero""dynamics, fluid mechanics, and philosophy of\n science.\n\n References\n ----------\n .. [1] Abramowitz, M. and Stegun, I. A. (Eds.). \"Handbook of\n Mathematical Functions with Formulas, Graphs, and Mathematical\n Tables, 9th printing,\" New York: Dover, 1972.\n .. [2] von Mises, R., \"Mathematical Theory of Probability\n and Statistics\", New York: Academic Press, 1964.\n\n Examples\n --------\n Draw samples from the distribution:\n\n >>> mu, kappa = 0.0, 4.0 # mean and dispersion\n >>> s = np.random.vonmises(mu, kappa, 1000)\n\n Display the histogram of the samples, along with\n the probability density function:\n\n >>> import matplotlib.pyplot as plt\n >>> from scipy.special import i0 # doctest: +SKIP\n >>> plt.hist(s, 50, density=True)\n >>> x = np.linspace(-np.pi, np.pi, num=51)\n >>> y = np.exp(kappa*np.cos(x-mu))/(2*np.pi*i0(kappa)) # doctest: +SKIP\n >>> plt.plot(x, y, linewidth=2, color='r') # doctest: +SKIP\n >>> plt.show()\n\n "; static const char __pyx_k_weibull_a_size_None_Draw_sample[] = "\n weibull(a, size=None)\n\n Draw samples from a Weibull distribution.\n\n Draw samples from a 1-parameter Weibull distribution with the given\n shape parameter `a`.\n\n .. math:: X = (-ln(U))^{1/a}\n\n Here, U is drawn from the uniform distribution over (0,1].\n\n The more common 2-parameter Weibull, including a scale parameter\n :math:`\\lambda` is just :math:`X = \\lambda(-ln(U))^{1/a}`.\n\n Parameters\n ----------\n a : float or array_like of floats\n Shape parameter of the distribution. Must be nonnegative.\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. If size is ``None`` (default),\n a single value is returned if ``a`` is a scalar. Otherwise,\n ``np.array(a).size`` samples are drawn.\n\n Returns\n -------\n out : ndarray or scalar\n Drawn samples from the parameterized Weibull distribution.\n\n See Also\n --------\n scipy.stats.weibull_max\n scipy.stats.weibull_min\n scipy.stats.genextreme\n gumbel\n\n Notes\n -----\n The Weibull (or Type III asymptotic extreme value distribution\n for smallest values, SEV Type III, or Rosin-Rammler\n distribution) is one of a class of Generalized Extreme Value\n (GEV) distributions used in modeling extreme value problems.\n This class includes the Gumbel and Frechet distributions.\n\n The probability density for the Weibull distribution is\n\n .. math:: p(x) = \\frac{a}\n {\\lambda}(\\frac{x}{\\lambda})^{a-1}e^{-(x/\\lambda)^a},\n\n where :math:`a` is the shape and :math:`\\lambda` the scale.\n\n The function has its peak (the mode) at\n :math:`\\lambda(\\frac{a-1}{a})^{1/a}`.\n\n When ``a = 1``, the Weibull"" distribution reduces to the exponential\n distribution.\n\n References\n ----------\n .. [1] Waloddi Weibull, Royal Technical University, Stockholm,\n 1939 \"A Statistical Theory Of The Strength Of Materials\",\n Ingeniorsvetenskapsakademiens Handlingar Nr 151, 1939,\n Generalstabens Litografiska Anstalts Forlag, Stockholm.\n .. [2] Waloddi Weibull, \"A Statistical Distribution Function of\n Wide Applicability\", Journal Of Applied Mechanics ASME Paper\n 1951.\n .. [3] Wikipedia, \"Weibull distribution\",\n https://en.wikipedia.org/wiki/Weibull_distribution\n\n Examples\n --------\n Draw samples from the distribution:\n\n >>> a = 5. # shape\n >>> s = np.random.weibull(a, 1000)\n\n Display the histogram of the samples, along with\n the probability density function:\n\n >>> import matplotlib.pyplot as plt\n >>> x = np.arange(1,100.)/50.\n >>> def weib(x,n,a):\n ... return (a / n) * (x / n)**(a - 1) * np.exp(-(x / n)**a)\n\n >>> count, bins, ignored = plt.hist(np.random.weibull(5.,1000))\n >>> x = np.arange(1,100.)/50.\n >>> scale = count.max()/weib(x, 1., 5.).max()\n >>> plt.plot(x, weib(x, 1., 5.)*scale)\n >>> plt.show()\n\n "; static const char __pyx_k_zipf_a_size_None_Draw_samples_f[] = "\n zipf(a, size=None)\n\n Draw samples from a Zipf distribution.\n\n Samples are drawn from a Zipf distribution with specified parameter\n `a` > 1.\n\n The Zipf distribution (also known as the zeta distribution) is a\n continuous probability distribution that satisfies Zipf's law: the\n frequency of an item is inversely proportional to its rank in a\n frequency table.\n\n Parameters\n ----------\n a : float or array_like of floats\n Distribution parameter. Must be greater than 1.\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. If size is ``None`` (default),\n a single value is returned if ``a`` is a scalar. Otherwise,\n ``np.array(a).size`` samples are drawn.\n\n Returns\n -------\n out : ndarray or scalar\n Drawn samples from the parameterized Zipf distribution.\n\n See Also\n --------\n scipy.stats.zipf : probability density function, distribution, or\n cumulative density function, etc.\n\n Notes\n -----\n The probability density for the Zipf distribution is\n\n .. math:: p(x) = \\frac{x^{-a}}{\\zeta(a)},\n\n where :math:`\\zeta` is the Riemann Zeta function.\n\n It is named for the American linguist George Kingsley Zipf, who noted\n that the frequency of any word in a sample of a language is inversely\n proportional to its rank in the frequency table.\n\n References\n ----------\n .. [1] Zipf, G. K., \"Selected Studies of the Principle of Relative\n Frequency in Language,\" Cambridge, MA: Harvard Univ. Press,\n 1932.\n\n Examples\n --------\n Draw samples from the distribution:\n\n >>> a = 2. # parameter\n >>> s = np.random.zipf(a, 10""00)\n\n Display the histogram of the samples, along with\n the probability density function:\n\n >>> import matplotlib.pyplot as plt\n >>> from scipy import special # doctest: +SKIP\n\n Truncate s values at 50 so plot is interesting:\n\n >>> count, bins, ignored = plt.hist(s[s<50], 50, density=True)\n >>> x = np.arange(1., 50.)\n >>> y = x**(-a) / special.zetac(a) # doctest: +SKIP\n >>> plt.plot(x, y/max(y), linewidth=2, color='r') # doctest: +SKIP\n >>> plt.show()\n\n "; static const char __pyx_k_Cannot_take_a_larger_sample_than[] = "Cannot take a larger sample than population when 'replace=False'"; static const char __pyx_k_Fewer_non_zero_entries_in_p_than[] = "Fewer non-zero entries in p than size"; static const char __pyx_k_Format_string_allocated_too_shor[] = "Format string allocated too short, see comment in numpy.pxd"; static const char __pyx_k_Invalid_bit_generator_The_bit_ge[] = "Invalid bit generator. The bit generator must be instantized."; static const char __pyx_k_Non_native_byte_order_not_suppor[] = "Non-native byte order not supported"; static const char __pyx_k_Providing_a_dtype_with_a_non_nat[] = "Providing a dtype with a non-native byteorder is not supported. If you require platform-independent byteorder, call byteswap when required.\nIn future version, providing byteorder will raise a ValueError"; static const char __pyx_k_RandomState_multinomial_line_378[] = "RandomState.multinomial (line 3780)"; static const char __pyx_k_RandomState_negative_binomial_li[] = "RandomState.negative_binomial (line 3118)"; static const char __pyx_k_RandomState_noncentral_chisquare[] = "RandomState.noncentral_chisquare (line 1727)"; static const char __pyx_k_RandomState_noncentral_f_line_15[] = "RandomState.noncentral_f (line 1582)"; static const char __pyx_k_RandomState_permutation_line_411[] = "RandomState.permutation (line 4119)"; static const char __pyx_k_RandomState_random_integers_line[] = "RandomState.random_integers (line 1083)"; static const char __pyx_k_RandomState_random_sample_line_2[] = "RandomState.random_sample (line 289)"; static const char __pyx_k_RandomState_standard_cauchy_line[] = "RandomState.standard_cauchy (line 1806)"; static const char __pyx_k_RandomState_standard_exponential[] = "RandomState.standard_exponential (line 438)"; static const char __pyx_k_RandomState_standard_normal_line[] = "RandomState.standard_normal (line 1179)"; static const char __pyx_k_RandomState_standard_t_line_1871[] = "RandomState.standard_t (line 1871)"; static const char __pyx_k_RandomState_triangular_line_2872[] = "RandomState.triangular (line 2872)"; static const char __pyx_k_This_function_is_deprecated_Plea[] = "This function is deprecated. Please call randint(1, {low} + 1) instead"; static const char __pyx_k_a_must_be_1_dimensional_or_an_in[] = "a must be 1-dimensional or an integer"; static const char __pyx_k_can_only_re_seed_a_MT19937_BitGe[] = "can only re-seed a MT19937 BitGenerator"; static const char __pyx_k_check_valid_must_equal_warn_rais[] = "check_valid must equal 'warn', 'raise', or 'ignore'"; static const char __pyx_k_cov_must_be_2_dimensional_and_sq[] = "cov must be 2 dimensional and square"; static const char __pyx_k_covariance_is_not_positive_semid[] = "covariance is not positive-semidefinite."; static const char __pyx_k_get_state_and_legacy_can_only_be[] = "get_state and legacy can only be used with the MT19937 BitGenerator. To silence this warning, set `legacy` to False."; static const char __pyx_k_mean_and_cov_must_have_same_leng[] = "mean and cov must have same length"; static const char __pyx_k_ndarray_is_not_Fortran_contiguou[] = "ndarray is not Fortran contiguous"; static const char __pyx_k_negative_dimensions_are_not_allo[] = "negative dimensions are not allowed"; static const char __pyx_k_numpy_core_umath_failed_to_impor[] = "numpy.core.umath failed to import"; static const char __pyx_k_probabilities_are_not_non_negati[] = "probabilities are not non-negative"; static const char __pyx_k_x_must_be_an_integer_or_at_least[] = "x must be an integer or at least 1-dimensional"; static const char __pyx_k_Format_string_allocated_too_shor_2[] = "Format string allocated too short."; static const char __pyx_k_This_function_is_deprecated_Plea_2[] = "This function is deprecated. Please call randint({low}, {high} + 1) instead"; static PyObject *__pyx_kp_u_Cannot_take_a_larger_sample_than; static PyObject *__pyx_n_s_DeprecationWarning; static PyObject *__pyx_kp_u_Fewer_non_zero_entries_in_p_than; static PyObject *__pyx_kp_u_Format_string_allocated_too_shor; static PyObject *__pyx_kp_u_Format_string_allocated_too_shor_2; static PyObject *__pyx_n_s_ImportError; static PyObject *__pyx_n_s_IndexError; static PyObject *__pyx_kp_u_Invalid_bit_generator_The_bit_ge; static PyObject *__pyx_n_s_MT19937; static PyObject *__pyx_n_s_MT19937_2; static PyObject *__pyx_n_u_MT19937_2; static PyObject *__pyx_kp_u_Non_native_byte_order_not_suppor; static PyObject *__pyx_n_s_OverflowError; static PyObject *__pyx_kp_u_Providing_a_dtype_with_a_non_nat; static PyObject *__pyx_n_s_RandomState; static PyObject *__pyx_n_u_RandomState; static PyObject *__pyx_kp_u_RandomState_binomial_line_2972; static PyObject *__pyx_kp_u_RandomState_bytes_line_651; static PyObject *__pyx_kp_u_RandomState_chisquare_line_1659; static PyObject *__pyx_kp_u_RandomState_choice_line_680; static PyObject *__pyx_kp_u_RandomState_dirichlet_line_3892; static PyObject *__pyx_kp_u_RandomState_f_line_1494; static PyObject *__pyx_kp_u_RandomState_gamma_line_1416; static PyObject *__pyx_kp_u_RandomState_geometric_line_3350; static PyObject *__pyx_kp_u_RandomState_gumbel_line_2428; static PyObject *__pyx_kp_u_RandomState_hypergeometric_line; static PyObject *__pyx_kp_u_RandomState_laplace_line_2343; static PyObject *__pyx_kp_u_RandomState_logistic_line_2546; static PyObject *__pyx_kp_u_RandomState_lognormal_line_2626; static PyObject *__pyx_kp_u_RandomState_logseries_line_3531; static PyObject *__pyx_kp_u_RandomState_multinomial_line_378; static PyObject *__pyx_kp_u_RandomState_multivariate_normal; static PyObject *__pyx_kp_u_RandomState_negative_binomial_li; static PyObject *__pyx_kp_u_RandomState_noncentral_chisquare; static PyObject *__pyx_kp_u_RandomState_noncentral_f_line_15; static PyObject *__pyx_kp_u_RandomState_normal_line_1239; static PyObject *__pyx_kp_u_RandomState_pareto_line_2048; static PyObject *__pyx_kp_u_RandomState_permutation_line_411; static PyObject *__pyx_kp_u_RandomState_poisson_line_3196; static PyObject *__pyx_kp_u_RandomState_power_line_2243; static PyObject *__pyx_kp_u_RandomState_rand_line_980; static PyObject *__pyx_kp_u_RandomState_randint_line_530; static PyObject *__pyx_kp_u_RandomState_randn_line_1024; static PyObject *__pyx_kp_u_RandomState_random_integers_line; static PyObject *__pyx_kp_u_RandomState_random_sample_line_2; static PyObject *__pyx_kp_u_RandomState_rayleigh_line_2736; static PyObject *__pyx_kp_u_RandomState_seed_line_141; static PyObject *__pyx_kp_u_RandomState_shuffle_line_4031; static PyObject *__pyx_kp_u_RandomState_standard_cauchy_line; static PyObject *__pyx_kp_u_RandomState_standard_exponential; static PyObject *__pyx_kp_u_RandomState_standard_gamma_line; static PyObject *__pyx_kp_u_RandomState_standard_normal_line; static PyObject *__pyx_kp_u_RandomState_standard_t_line_1871; static PyObject *__pyx_kp_u_RandomState_tomaxint_line_472; static PyObject *__pyx_kp_u_RandomState_triangular_line_2872; static PyObject *__pyx_kp_u_RandomState_uniform_line_869; static PyObject *__pyx_kp_u_RandomState_vonmises_line_1965; static PyObject *__pyx_kp_u_RandomState_wald_line_2804; static PyObject *__pyx_kp_u_RandomState_weibull_line_2145; static PyObject *__pyx_kp_u_RandomState_zipf_line_3269; static PyObject *__pyx_kp_u_Range_exceeds_valid_bounds; static PyObject *__pyx_n_s_RuntimeError; static PyObject *__pyx_n_s_RuntimeWarning; static PyObject *__pyx_n_s_T; static PyObject *__pyx_kp_u_This_function_is_deprecated_Plea; static PyObject *__pyx_kp_u_This_function_is_deprecated_Plea_2; static PyObject *__pyx_n_s_TypeError; static PyObject *__pyx_kp_u_Unsupported_dtype_s_for_randint; static PyObject *__pyx_n_s_ValueError; static PyObject *__pyx_kp_u__12; static PyObject *__pyx_kp_u__3; static PyObject *__pyx_kp_u__4; static PyObject *__pyx_n_s_a; static PyObject *__pyx_n_u_a; static PyObject *__pyx_kp_u_a_and_p_must_have_same_size; static PyObject *__pyx_kp_u_a_cannot_be_empty_unless_no_sam; static PyObject *__pyx_kp_u_a_must_be_1_dimensional; static PyObject *__pyx_kp_u_a_must_be_1_dimensional_or_an_in; static PyObject *__pyx_kp_u_a_must_be_greater_than_0_unless; static PyObject *__pyx_n_s_add; static PyObject *__pyx_n_s_all; static PyObject *__pyx_n_s_all_2; static PyObject *__pyx_n_s_allclose; static PyObject *__pyx_n_s_alpha; static PyObject *__pyx_kp_u_alpha_0; static PyObject *__pyx_n_s_any; static PyObject *__pyx_n_s_arange; static PyObject *__pyx_n_s_args; static PyObject *__pyx_n_s_array; static PyObject *__pyx_n_s_asarray; static PyObject *__pyx_n_s_astype; static PyObject *__pyx_kp_u_at_0x_X; static PyObject *__pyx_n_s_atol; static PyObject *__pyx_n_s_b; static PyObject *__pyx_n_u_b; static PyObject *__pyx_n_s_beta; static PyObject *__pyx_n_u_beta; static PyObject *__pyx_n_s_binomial; static PyObject *__pyx_n_u_binomial; static PyObject *__pyx_kp_u_binomial_n_p_size_None_Draw_sam; static PyObject *__pyx_n_u_bit_generator; static PyObject *__pyx_n_s_bool; static PyObject *__pyx_n_u_bool; static PyObject *__pyx_n_s_bounded_integers; static PyObject *__pyx_n_s_bytes; static PyObject *__pyx_n_u_bytes; static PyObject *__pyx_kp_u_bytes_length_Return_random_byte; static PyObject *__pyx_kp_u_can_only_re_seed_a_MT19937_BitGe; static PyObject *__pyx_n_s_capsule; static PyObject *__pyx_n_u_capsule; static PyObject *__pyx_n_s_casting; static PyObject *__pyx_n_s_check_valid; static PyObject *__pyx_kp_u_check_valid_must_equal_warn_rais; static PyObject *__pyx_n_s_chisquare; static PyObject *__pyx_n_u_chisquare; static PyObject *__pyx_kp_u_chisquare_df_size_None_Draw_sam; static PyObject *__pyx_n_s_choice; static PyObject *__pyx_n_u_choice; static PyObject *__pyx_kp_u_choice_a_size_None_replace_True; static PyObject *__pyx_n_s_class; static PyObject *__pyx_n_s_cline_in_traceback; static PyObject *__pyx_n_s_copy; static PyObject *__pyx_n_s_count_nonzero; static PyObject *__pyx_n_s_cov; static PyObject *__pyx_kp_u_cov_must_be_2_dimensional_and_sq; static PyObject *__pyx_kp_u_covariance_is_not_positive_semid; static PyObject *__pyx_n_s_ctypes; static PyObject *__pyx_n_s_cumsum; static PyObject *__pyx_n_s_data; static PyObject *__pyx_n_s_df; static PyObject *__pyx_n_u_df; static PyObject *__pyx_n_s_dfden; static PyObject *__pyx_n_u_dfden; static PyObject *__pyx_n_s_dfnum; static PyObject *__pyx_n_u_dfnum; static PyObject *__pyx_n_s_dirichlet; static PyObject *__pyx_n_u_dirichlet; static PyObject *__pyx_kp_u_dirichlet_alpha_size_None_Draw; static PyObject *__pyx_n_s_dot; static PyObject *__pyx_n_s_double; static PyObject *__pyx_n_s_dtype; static PyObject *__pyx_n_s_empty; static PyObject *__pyx_n_s_empty_like; static PyObject *__pyx_n_s_enter; static PyObject *__pyx_n_s_eps; static PyObject *__pyx_n_s_equal; static PyObject *__pyx_n_s_exit; static PyObject *__pyx_n_s_exponential; static PyObject *__pyx_n_u_exponential; static PyObject *__pyx_n_s_f; static PyObject *__pyx_n_u_f; static PyObject *__pyx_kp_u_f_dfnum_dfden_size_None_Draw_sa; static PyObject *__pyx_n_s_finfo; static PyObject *__pyx_n_s_float64; static PyObject *__pyx_n_s_floating; static PyObject *__pyx_n_s_format; static PyObject *__pyx_n_s_gamma; static PyObject *__pyx_n_u_gamma; static PyObject *__pyx_kp_u_gamma_shape_scale_1_0_size_None; static PyObject *__pyx_n_u_gauss; static PyObject *__pyx_n_s_geometric; static PyObject *__pyx_n_u_geometric; static PyObject *__pyx_kp_u_geometric_p_size_None_Draw_samp; static PyObject *__pyx_n_s_get; static PyObject *__pyx_n_s_get_state; static PyObject *__pyx_n_u_get_state; static PyObject *__pyx_kp_u_get_state_and_legacy_can_only_be; static PyObject *__pyx_n_s_greater; static PyObject *__pyx_n_s_gumbel; static PyObject *__pyx_n_u_gumbel; static PyObject *__pyx_kp_u_gumbel_loc_0_0_scale_1_0_size_N; static PyObject *__pyx_n_u_has_gauss; static PyObject *__pyx_n_s_high; static PyObject *__pyx_n_s_hypergeometric; static PyObject *__pyx_n_u_hypergeometric; static PyObject *__pyx_kp_u_hypergeometric_ngood_nbad_nsamp; static PyObject *__pyx_n_s_id; static PyObject *__pyx_n_u_ignore; static PyObject *__pyx_n_s_import; static PyObject *__pyx_n_s_index; static PyObject *__pyx_n_s_int; static PyObject *__pyx_n_u_int16; static PyObject *__pyx_n_u_int32; static PyObject *__pyx_n_s_int64; static PyObject *__pyx_n_u_int64; static PyObject *__pyx_n_s_int8; static PyObject *__pyx_n_u_int8; static PyObject *__pyx_n_s_integer; static PyObject *__pyx_n_s_integers_types; static PyObject *__pyx_n_s_intp; static PyObject *__pyx_n_s_isfinite; static PyObject *__pyx_n_s_isnan; static PyObject *__pyx_n_s_isnative; static PyObject *__pyx_n_s_isscalar; static PyObject *__pyx_n_s_issubdtype; static PyObject *__pyx_n_s_item; static PyObject *__pyx_n_s_itemsize; static PyObject *__pyx_n_s_kappa; static PyObject *__pyx_n_u_kappa; static PyObject *__pyx_n_u_key; static PyObject *__pyx_n_s_kwargs; static PyObject *__pyx_n_u_l; static PyObject *__pyx_n_s_lam; static PyObject *__pyx_n_u_lam; static PyObject *__pyx_n_s_laplace; static PyObject *__pyx_n_u_laplace; static PyObject *__pyx_kp_u_laplace_loc_0_0_scale_1_0_size; static PyObject *__pyx_n_s_left; static PyObject *__pyx_kp_u_left_mode; static PyObject *__pyx_kp_u_left_right; static PyObject *__pyx_n_s_legacy; static PyObject *__pyx_n_s_legacy_seeding; static PyObject *__pyx_n_s_less; static PyObject *__pyx_n_s_less_equal; static PyObject *__pyx_n_s_loc; static PyObject *__pyx_n_u_loc; static PyObject *__pyx_n_s_lock; static PyObject *__pyx_n_s_logical_or; static PyObject *__pyx_n_s_logistic; static PyObject *__pyx_n_u_logistic; static PyObject *__pyx_kp_u_logistic_loc_0_0_scale_1_0_size; static PyObject *__pyx_n_s_lognormal; static PyObject *__pyx_n_u_lognormal; static PyObject *__pyx_kp_u_lognormal_mean_0_0_sigma_1_0_si; static PyObject *__pyx_n_s_logseries; static PyObject *__pyx_n_u_logseries; static PyObject *__pyx_kp_u_logseries_p_size_None_Draw_samp; static PyObject *__pyx_n_s_long; static PyObject *__pyx_n_s_low; static PyObject *__pyx_n_s_main; static PyObject *__pyx_n_s_may_share_memory; static PyObject *__pyx_n_s_mean; static PyObject *__pyx_n_u_mean; static PyObject *__pyx_kp_u_mean_and_cov_must_have_same_leng; static PyObject *__pyx_kp_u_mean_must_be_1_dimensional; static PyObject *__pyx_n_s_mode; static PyObject *__pyx_kp_u_mode_right; static PyObject *__pyx_n_s_mt19937; static PyObject *__pyx_kp_s_mtrand_pyx; static PyObject *__pyx_n_s_mu; static PyObject *__pyx_n_u_mu; static PyObject *__pyx_n_s_multinomial; static PyObject *__pyx_n_u_multinomial; static PyObject *__pyx_kp_u_multinomial_n_pvals_size_None_D; static PyObject *__pyx_n_s_multivariate_normal; static PyObject *__pyx_n_u_multivariate_normal; static PyObject *__pyx_kp_u_multivariate_normal_mean_cov_si; static PyObject *__pyx_n_s_n; static PyObject *__pyx_n_u_n; static PyObject *__pyx_n_s_name; static PyObject *__pyx_n_s_name_2; static PyObject *__pyx_n_s_nbad; static PyObject *__pyx_n_u_nbad; static PyObject *__pyx_kp_u_ndarray_is_not_C_contiguous; static PyObject *__pyx_kp_u_ndarray_is_not_Fortran_contiguou; static PyObject *__pyx_n_s_ndim; static PyObject *__pyx_n_s_negative_binomial; static PyObject *__pyx_n_u_negative_binomial; static PyObject *__pyx_kp_u_negative_binomial_n_p_size_None; static PyObject *__pyx_kp_u_negative_dimensions_are_not_allo; static PyObject *__pyx_n_s_ngood; static PyObject *__pyx_n_u_ngood; static PyObject *__pyx_kp_u_ngood_nbad_nsample; static PyObject *__pyx_n_s_nonc; static PyObject *__pyx_n_u_nonc; static PyObject *__pyx_n_s_noncentral_chisquare; static PyObject *__pyx_n_u_noncentral_chisquare; static PyObject *__pyx_kp_u_noncentral_chisquare_df_nonc_si; static PyObject *__pyx_n_s_noncentral_f; static PyObject *__pyx_n_u_noncentral_f; static PyObject *__pyx_kp_u_noncentral_f_dfnum_dfden_nonc_s; static PyObject *__pyx_n_s_normal; static PyObject *__pyx_n_u_normal; static PyObject *__pyx_kp_u_normal_loc_0_0_scale_1_0_size_N; static PyObject *__pyx_n_s_np; static PyObject *__pyx_n_s_nsample; static PyObject *__pyx_n_u_nsample; static PyObject *__pyx_n_s_numpy; static PyObject *__pyx_kp_u_numpy_core_multiarray_failed_to; static PyObject *__pyx_kp_u_numpy_core_umath_failed_to_impor; static PyObject *__pyx_n_s_numpy_dual; static PyObject *__pyx_n_s_numpy_random_mtrand; static PyObject *__pyx_n_s_operator; static PyObject *__pyx_n_s_p; static PyObject *__pyx_n_u_p; static PyObject *__pyx_kp_u_p_must_be_1_dimensional; static PyObject *__pyx_n_s_pareto; static PyObject *__pyx_n_u_pareto; static PyObject *__pyx_kp_u_pareto_a_size_None_Draw_samples; static PyObject *__pyx_n_s_permutation; static PyObject *__pyx_n_u_permutation; static PyObject *__pyx_kp_u_permutation_x_Randomly_permute; static PyObject *__pyx_n_s_pickle; static PyObject *__pyx_n_s_poisson; static PyObject *__pyx_n_u_poisson; static PyObject *__pyx_kp_u_poisson_lam_1_0_size_None_Draw; static PyObject *__pyx_n_s_poisson_lam_max; static PyObject *__pyx_n_u_pos; static PyObject *__pyx_n_s_power; static PyObject *__pyx_n_u_power; static PyObject *__pyx_kp_u_power_a_size_None_Draws_samples; static PyObject *__pyx_kp_u_probabilities_are_not_non_negati; static PyObject *__pyx_kp_u_probabilities_contain_NaN; static PyObject *__pyx_kp_u_probabilities_do_not_sum_to_1; static PyObject *__pyx_n_s_prod; static PyObject *__pyx_n_s_pvals; static PyObject *__pyx_n_u_pvals; static PyObject *__pyx_n_s_pyx_vtable; static PyObject *__pyx_n_u_raise; static PyObject *__pyx_n_s_rand; static PyObject *__pyx_n_u_rand; static PyObject *__pyx_n_s_rand_2; static PyObject *__pyx_kp_u_rand_d0_d1_dn_Random_values_in; static PyObject *__pyx_n_s_randint; static PyObject *__pyx_n_u_randint; static PyObject *__pyx_kp_u_randint_low_high_None_size_None; static PyObject *__pyx_n_s_randn; static PyObject *__pyx_n_u_randn; static PyObject *__pyx_kp_u_randn_d0_d1_dn_Return_a_sample; static PyObject *__pyx_n_s_random; static PyObject *__pyx_n_u_random; static PyObject *__pyx_n_s_random_integers; static PyObject *__pyx_n_u_random_integers; static PyObject *__pyx_kp_u_random_integers_low_high_None_s; static PyObject *__pyx_n_s_random_sample; static PyObject *__pyx_n_u_random_sample; static PyObject *__pyx_kp_u_random_sample_size_None_Return; static PyObject *__pyx_n_s_randomstate_ctor; static PyObject *__pyx_n_s_ranf; static PyObject *__pyx_n_u_ranf; static PyObject *__pyx_n_s_range; static PyObject *__pyx_n_s_ravel; static PyObject *__pyx_n_s_rayleigh; static PyObject *__pyx_n_u_rayleigh; static PyObject *__pyx_kp_u_rayleigh_scale_1_0_size_None_Dr; static PyObject *__pyx_n_s_reduce; static PyObject *__pyx_n_s_replace; static PyObject *__pyx_n_s_reshape; static PyObject *__pyx_n_s_return_index; static PyObject *__pyx_n_s_reversed; static PyObject *__pyx_n_s_right; static PyObject *__pyx_n_u_right; static PyObject *__pyx_n_s_rtol; static PyObject *__pyx_n_s_sample; static PyObject *__pyx_n_u_sample; static PyObject *__pyx_n_s_scale; static PyObject *__pyx_n_u_scale; static PyObject *__pyx_n_s_searchsorted; static PyObject *__pyx_n_s_seed; static PyObject *__pyx_n_u_seed; static PyObject *__pyx_kp_u_seed_self_seed_None_Reseed_a_le; static PyObject *__pyx_n_s_set_state; static PyObject *__pyx_n_u_set_state; static PyObject *__pyx_kp_u_set_state_can_only_be_used_with; static PyObject *__pyx_n_s_shape; static PyObject *__pyx_n_u_shape; static PyObject *__pyx_n_s_shuffle; static PyObject *__pyx_n_u_shuffle; static PyObject *__pyx_kp_u_shuffle_x_Modify_a_sequence_in; static PyObject *__pyx_n_s_side; static PyObject *__pyx_n_s_sigma; static PyObject *__pyx_n_u_sigma; static PyObject *__pyx_n_s_size; static PyObject *__pyx_n_s_sort; static PyObject *__pyx_n_s_sqrt; static PyObject *__pyx_n_s_standard_cauchy; static PyObject *__pyx_n_u_standard_cauchy; static PyObject *__pyx_kp_u_standard_cauchy_size_None_Draw; static PyObject *__pyx_n_s_standard_exponential; static PyObject *__pyx_n_u_standard_exponential; static PyObject *__pyx_kp_u_standard_exponential_size_None; static PyObject *__pyx_n_s_standard_gamma; static PyObject *__pyx_n_u_standard_gamma; static PyObject *__pyx_kp_u_standard_gamma_shape_size_None; static PyObject *__pyx_n_s_standard_normal; static PyObject *__pyx_n_u_standard_normal; static PyObject *__pyx_kp_u_standard_normal_size_None_Draw; static PyObject *__pyx_n_s_standard_t; static PyObject *__pyx_n_u_standard_t; static PyObject *__pyx_kp_u_standard_t_df_size_None_Draw_sa; static PyObject *__pyx_n_s_state; static PyObject *__pyx_n_u_state; static PyObject *__pyx_kp_u_state_dictionary_is_not_valid; static PyObject *__pyx_kp_u_state_must_be_a_dict_or_a_tuple; static PyObject *__pyx_n_s_str; static PyObject *__pyx_n_s_strides; static PyObject *__pyx_n_s_subtract; static PyObject *__pyx_kp_u_sum_pvals_1_1_0; static PyObject *__pyx_n_s_svd; static PyObject *__pyx_n_s_take; static PyObject *__pyx_n_s_test; static PyObject *__pyx_n_s_tobytes; static PyObject *__pyx_n_s_tol; static PyObject *__pyx_kp_u_tomaxint_size_None_Return_a_sam; static PyObject *__pyx_n_s_triangular; static PyObject *__pyx_n_u_triangular; static PyObject *__pyx_kp_u_triangular_left_mode_right_size; static PyObject *__pyx_kp_u_u4; static PyObject *__pyx_n_u_uint16; static PyObject *__pyx_n_s_uint32; static PyObject *__pyx_n_u_uint32; static PyObject *__pyx_n_u_uint64; static PyObject *__pyx_n_u_uint8; static PyObject *__pyx_n_s_uniform; static PyObject *__pyx_n_u_uniform; static PyObject *__pyx_kp_u_uniform_low_0_0_high_1_0_size_N; static PyObject *__pyx_n_s_unique; static PyObject *__pyx_kp_u_unknown_dtype_code_in_numpy_pxd; static PyObject *__pyx_n_u_unsafe; static PyObject *__pyx_n_s_vonmises; static PyObject *__pyx_n_u_vonmises; static PyObject *__pyx_kp_u_vonmises_mu_kappa_size_None_Dra; static PyObject *__pyx_n_s_wald; static PyObject *__pyx_n_u_wald; static PyObject *__pyx_kp_u_wald_mean_scale_size_None_Draw; static PyObject *__pyx_n_s_warn; static PyObject *__pyx_n_u_warn; static PyObject *__pyx_n_s_warnings; static PyObject *__pyx_n_s_weibull; static PyObject *__pyx_n_u_weibull; static PyObject *__pyx_kp_u_weibull_a_size_None_Draw_sample; static PyObject *__pyx_kp_u_x_must_be_an_integer_or_at_least; static PyObject *__pyx_n_s_zeros; static PyObject *__pyx_n_s_zipf; static PyObject *__pyx_n_u_zipf; static PyObject *__pyx_kp_u_zipf_a_size_None_Draw_samples_f; static int __pyx_pf_5numpy_6random_6mtrand_11RandomState___init__(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_seed); /* proto */ static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_2__repr__(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self); /* proto */ static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_4__str__(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self); /* proto */ static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_6__getstate__(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self); /* proto */ static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_8__setstate__(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_state); /* proto */ static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_10__reduce__(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self); /* proto */ static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_12seed(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_seed); /* proto */ static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_14get_state(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_legacy); /* proto */ static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_16set_state(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_state); /* proto */ static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_18random_sample(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_size); /* proto */ static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_20random(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_size); /* proto */ static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_22beta(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_a, PyObject *__pyx_v_b, PyObject *__pyx_v_size); /* proto */ static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_24exponential(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_scale, PyObject *__pyx_v_size); /* proto */ static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_26standard_exponential(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_size); /* proto */ static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_28tomaxint(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_size); /* proto */ static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_30randint(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_low, PyObject *__pyx_v_high, PyObject *__pyx_v_size, PyObject *__pyx_v_dtype); /* proto */ static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_32bytes(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, npy_intp __pyx_v_length); /* proto */ static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_34choice(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_a, PyObject *__pyx_v_size, PyObject *__pyx_v_replace, PyObject *__pyx_v_p); /* proto */ static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_36uniform(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_low, PyObject *__pyx_v_high, PyObject *__pyx_v_size); /* proto */ static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_38rand(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_args); /* proto */ static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_40randn(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_args); /* proto */ static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_42random_integers(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_low, PyObject *__pyx_v_high, PyObject *__pyx_v_size); /* proto */ static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_44standard_normal(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_size); /* proto */ static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_46normal(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_loc, PyObject *__pyx_v_scale, PyObject *__pyx_v_size); /* proto */ static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_48standard_gamma(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_shape, PyObject *__pyx_v_size); /* proto */ static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_50gamma(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_shape, PyObject *__pyx_v_scale, PyObject *__pyx_v_size); /* proto */ static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_52f(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_dfnum, PyObject *__pyx_v_dfden, PyObject *__pyx_v_size); /* proto */ static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_54noncentral_f(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_dfnum, PyObject *__pyx_v_dfden, PyObject *__pyx_v_nonc, PyObject *__pyx_v_size); /* proto */ static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_56chisquare(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_df, PyObject *__pyx_v_size); /* proto */ static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_58noncentral_chisquare(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_df, PyObject *__pyx_v_nonc, PyObject *__pyx_v_size); /* proto */ static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_60standard_cauchy(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_size); /* proto */ static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_62standard_t(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_df, PyObject *__pyx_v_size); /* proto */ static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_64vonmises(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_mu, PyObject *__pyx_v_kappa, PyObject *__pyx_v_size); /* proto */ static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_66pareto(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_a, PyObject *__pyx_v_size); /* proto */ static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_68weibull(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_a, PyObject *__pyx_v_size); /* proto */ static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_70power(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_a, PyObject *__pyx_v_size); /* proto */ static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_72laplace(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_loc, PyObject *__pyx_v_scale, PyObject *__pyx_v_size); /* proto */ static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_74gumbel(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_loc, PyObject *__pyx_v_scale, PyObject *__pyx_v_size); /* proto */ static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_76logistic(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_loc, PyObject *__pyx_v_scale, PyObject *__pyx_v_size); /* proto */ static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_78lognormal(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_mean, PyObject *__pyx_v_sigma, PyObject *__pyx_v_size); /* proto */ static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_80rayleigh(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_scale, PyObject *__pyx_v_size); /* proto */ static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_82wald(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_mean, PyObject *__pyx_v_scale, PyObject *__pyx_v_size); /* proto */ static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_84triangular(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_left, PyObject *__pyx_v_mode, PyObject *__pyx_v_right, PyObject *__pyx_v_size); /* proto */ static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_86binomial(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_n, PyObject *__pyx_v_p, PyObject *__pyx_v_size); /* proto */ static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_88negative_binomial(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_n, PyObject *__pyx_v_p, PyObject *__pyx_v_size); /* proto */ static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_90poisson(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_lam, PyObject *__pyx_v_size); /* proto */ static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_92zipf(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_a, PyObject *__pyx_v_size); /* proto */ static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_94geometric(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_p, PyObject *__pyx_v_size); /* proto */ static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_96hypergeometric(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_ngood, PyObject *__pyx_v_nbad, PyObject *__pyx_v_nsample, PyObject *__pyx_v_size); /* proto */ static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_98logseries(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_p, PyObject *__pyx_v_size); /* proto */ static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_100multivariate_normal(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_mean, PyObject *__pyx_v_cov, PyObject *__pyx_v_size, PyObject *__pyx_v_check_valid, PyObject *__pyx_v_tol); /* proto */ static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_102multinomial(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, npy_intp __pyx_v_n, PyObject *__pyx_v_pvals, PyObject *__pyx_v_size); /* proto */ static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_104dirichlet(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_alpha, PyObject *__pyx_v_size); /* proto */ static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_106shuffle(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_x); /* proto */ static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_108permutation(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_x); /* proto */ static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_14_bit_generator___get__(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self); /* proto */ static int __pyx_pf_5numpy_6random_6mtrand_11RandomState_14_bit_generator_2__set__(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_value); /* proto */ static int __pyx_pf_5numpy_6random_6mtrand_11RandomState_14_bit_generator_4__del__(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self); /* proto */ static PyObject *__pyx_pf_5numpy_6random_6mtrand_sample(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_args, PyObject *__pyx_v_kwargs); /* proto */ static PyObject *__pyx_pf_5numpy_6random_6mtrand_2ranf(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_args, PyObject *__pyx_v_kwargs); /* proto */ static int __pyx_pf_5numpy_7ndarray___getbuffer__(PyArrayObject *__pyx_v_self, Py_buffer *__pyx_v_info, int __pyx_v_flags); /* proto */ static void __pyx_pf_5numpy_7ndarray_2__releasebuffer__(PyArrayObject *__pyx_v_self, Py_buffer *__pyx_v_info); /* proto */ static PyObject *__pyx_tp_new_5numpy_6random_6mtrand_RandomState(PyTypeObject *t, PyObject *a, PyObject *k); /*proto*/ static PyObject *__pyx_float_0_0; static PyObject *__pyx_float_1_0; static PyObject *__pyx_float_1eneg_8; static PyObject *__pyx_int_0; static PyObject *__pyx_int_1; static PyObject *__pyx_int_4294967296; static PyObject *__pyx_int_neg_1; static PyObject *__pyx_k__14; static PyObject *__pyx_tuple_; static PyObject *__pyx_tuple__2; static PyObject *__pyx_tuple__5; static PyObject *__pyx_tuple__6; static PyObject *__pyx_tuple__7; static PyObject *__pyx_tuple__8; static PyObject *__pyx_tuple__9; static PyObject *__pyx_slice__38; static PyObject *__pyx_tuple__10; static PyObject *__pyx_tuple__11; static PyObject *__pyx_tuple__13; static PyObject *__pyx_tuple__15; static PyObject *__pyx_tuple__16; static PyObject *__pyx_tuple__17; static PyObject *__pyx_tuple__18; static PyObject *__pyx_tuple__19; static PyObject *__pyx_tuple__20; static PyObject *__pyx_tuple__21; static PyObject *__pyx_tuple__22; static PyObject *__pyx_tuple__23; static PyObject *__pyx_tuple__24; static PyObject *__pyx_tuple__25; static PyObject *__pyx_tuple__26; static PyObject *__pyx_tuple__27; static PyObject *__pyx_tuple__28; static PyObject *__pyx_tuple__29; static PyObject *__pyx_tuple__30; static PyObject *__pyx_tuple__31; static PyObject *__pyx_tuple__32; static PyObject *__pyx_tuple__33; static PyObject *__pyx_tuple__34; static PyObject *__pyx_tuple__35; static PyObject *__pyx_tuple__36; static PyObject *__pyx_tuple__37; static PyObject *__pyx_tuple__39; static PyObject *__pyx_tuple__40; static PyObject *__pyx_tuple__41; static PyObject *__pyx_tuple__42; static PyObject *__pyx_tuple__43; static PyObject *__pyx_tuple__44; static PyObject *__pyx_tuple__45; static PyObject *__pyx_tuple__46; static PyObject *__pyx_tuple__47; static PyObject *__pyx_tuple__48; static PyObject *__pyx_tuple__49; static PyObject *__pyx_tuple__50; static PyObject *__pyx_tuple__51; static PyObject *__pyx_tuple__52; static PyObject *__pyx_tuple__53; static PyObject *__pyx_tuple__54; static PyObject *__pyx_tuple__56; static PyObject *__pyx_codeobj__55; static PyObject *__pyx_codeobj__57; /* Late includes */ /* "numpy/random/mtrand.pyx":24 * np.import_array() * * cdef object int64_to_long(object x): # <<<<<<<<<<<<<< * """ * Convert int64 to long for legacy compatibility, which used long for integer */ static PyObject *__pyx_f_5numpy_6random_6mtrand_int64_to_long(PyObject *__pyx_v_x) { int64_t __pyx_v_x64; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; int __pyx_t_4; int64_t __pyx_t_5; __Pyx_RefNannySetupContext("int64_to_long", 0); /* "numpy/random/mtrand.pyx":31 * cdef int64_t x64 * * if np.isscalar(x): # <<<<<<<<<<<<<< * x64 = x * return x64 */ __Pyx_GetModuleGlobalName(__pyx_t_2, __pyx_n_s_np); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 31, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_isscalar); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 31, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = NULL; if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_3))) { __pyx_t_2 = PyMethod_GET_SELF(__pyx_t_3); if (likely(__pyx_t_2)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_3); __Pyx_INCREF(__pyx_t_2); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_3, function); } } __pyx_t_1 = (__pyx_t_2) ? __Pyx_PyObject_Call2Args(__pyx_t_3, __pyx_t_2, __pyx_v_x) : __Pyx_PyObject_CallOneArg(__pyx_t_3, __pyx_v_x); __Pyx_XDECREF(__pyx_t_2); __pyx_t_2 = 0; if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 31, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_4 = __Pyx_PyObject_IsTrue(__pyx_t_1); if (unlikely(__pyx_t_4 < 0)) __PYX_ERR(0, 31, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; if (__pyx_t_4) { /* "numpy/random/mtrand.pyx":32 * * if np.isscalar(x): * x64 = x # <<<<<<<<<<<<<< * return x64 * return x.astype('l', casting='unsafe') */ __pyx_t_5 = __Pyx_PyInt_As_int64_t(__pyx_v_x); if (unlikely((__pyx_t_5 == ((int64_t)-1)) && PyErr_Occurred())) __PYX_ERR(0, 32, __pyx_L1_error) __pyx_v_x64 = __pyx_t_5; /* "numpy/random/mtrand.pyx":33 * if np.isscalar(x): * x64 = x * return x64 # <<<<<<<<<<<<<< * return x.astype('l', casting='unsafe') * */ __Pyx_XDECREF(__pyx_r); __pyx_t_1 = __Pyx_PyInt_From_long(((long)__pyx_v_x64)); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 33, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_r = __pyx_t_1; __pyx_t_1 = 0; goto __pyx_L0; /* "numpy/random/mtrand.pyx":31 * cdef int64_t x64 * * if np.isscalar(x): # <<<<<<<<<<<<<< * x64 = x * return x64 */ } /* "numpy/random/mtrand.pyx":34 * x64 = x * return x64 * return x.astype('l', casting='unsafe') # <<<<<<<<<<<<<< * * */ __Pyx_XDECREF(__pyx_r); __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_x, __pyx_n_s_astype); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 34, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_3 = __Pyx_PyDict_NewPresized(1); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 34, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); if (PyDict_SetItem(__pyx_t_3, __pyx_n_s_casting, __pyx_n_u_unsafe) < 0) __PYX_ERR(0, 34, __pyx_L1_error) __pyx_t_2 = __Pyx_PyObject_Call(__pyx_t_1, __pyx_tuple_, __pyx_t_3); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 34, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_r = __pyx_t_2; __pyx_t_2 = 0; goto __pyx_L0; /* "numpy/random/mtrand.pyx":24 * np.import_array() * * cdef object int64_to_long(object x): # <<<<<<<<<<<<<< * """ * Convert int64 to long for legacy compatibility, which used long for integer */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __Pyx_AddTraceback("numpy.random.mtrand.int64_to_long", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = 0; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "numpy/random/mtrand.pyx":97 * _poisson_lam_max = POISSON_LAM_MAX * * def __init__(self, seed=None): # <<<<<<<<<<<<<< * if seed is None: * bit_generator = _MT19937() */ /* Python wrapper */ static int __pyx_pw_5numpy_6random_6mtrand_11RandomState_1__init__(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static int __pyx_pw_5numpy_6random_6mtrand_11RandomState_1__init__(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_seed = 0; int __pyx_r; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__init__ (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_seed,0}; PyObject* values[1] = {0}; values[0] = ((PyObject *)Py_None); if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); CYTHON_FALLTHROUGH; case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_seed); if (value) { values[0] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "__init__") < 0)) __PYX_ERR(0, 97, __pyx_L3_error) } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); CYTHON_FALLTHROUGH; case 0: break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_seed = values[0]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("__init__", 0, 0, 1, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(0, 97, __pyx_L3_error) __pyx_L3_error:; __Pyx_AddTraceback("numpy.random.mtrand.RandomState.__init__", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return -1; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_5numpy_6random_6mtrand_11RandomState___init__(((struct __pyx_obj_5numpy_6random_6mtrand_RandomState *)__pyx_v_self), __pyx_v_seed); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static int __pyx_pf_5numpy_6random_6mtrand_11RandomState___init__(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_seed) { PyObject *__pyx_v_bit_generator = NULL; PyObject *__pyx_v_capsule = NULL; char const *__pyx_v_name; int __pyx_r; __Pyx_RefNannyDeclarations int __pyx_t_1; int __pyx_t_2; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; PyObject *__pyx_t_5 = NULL; void *__pyx_t_6; __Pyx_RefNannySetupContext("__init__", 0); /* "numpy/random/mtrand.pyx":98 * * def __init__(self, seed=None): * if seed is None: # <<<<<<<<<<<<<< * bit_generator = _MT19937() * elif not hasattr(seed, 'capsule'): */ __pyx_t_1 = (__pyx_v_seed == Py_None); __pyx_t_2 = (__pyx_t_1 != 0); if (__pyx_t_2) { /* "numpy/random/mtrand.pyx":99 * def __init__(self, seed=None): * if seed is None: * bit_generator = _MT19937() # <<<<<<<<<<<<<< * elif not hasattr(seed, 'capsule'): * bit_generator = _MT19937() */ __Pyx_GetModuleGlobalName(__pyx_t_4, __pyx_n_s_MT19937); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 99, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_5 = NULL; if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_4))) { __pyx_t_5 = PyMethod_GET_SELF(__pyx_t_4); if (likely(__pyx_t_5)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_4); __Pyx_INCREF(__pyx_t_5); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_4, function); } } __pyx_t_3 = (__pyx_t_5) ? __Pyx_PyObject_CallOneArg(__pyx_t_4, __pyx_t_5) : __Pyx_PyObject_CallNoArg(__pyx_t_4); __Pyx_XDECREF(__pyx_t_5); __pyx_t_5 = 0; if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 99, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_v_bit_generator = __pyx_t_3; __pyx_t_3 = 0; /* "numpy/random/mtrand.pyx":98 * * def __init__(self, seed=None): * if seed is None: # <<<<<<<<<<<<<< * bit_generator = _MT19937() * elif not hasattr(seed, 'capsule'): */ goto __pyx_L3; } /* "numpy/random/mtrand.pyx":100 * if seed is None: * bit_generator = _MT19937() * elif not hasattr(seed, 'capsule'): # <<<<<<<<<<<<<< * bit_generator = _MT19937() * bit_generator._legacy_seeding(seed) */ __pyx_t_2 = __Pyx_HasAttr(__pyx_v_seed, __pyx_n_u_capsule); if (unlikely(__pyx_t_2 == ((int)-1))) __PYX_ERR(0, 100, __pyx_L1_error) __pyx_t_1 = ((!(__pyx_t_2 != 0)) != 0); if (__pyx_t_1) { /* "numpy/random/mtrand.pyx":101 * bit_generator = _MT19937() * elif not hasattr(seed, 'capsule'): * bit_generator = _MT19937() # <<<<<<<<<<<<<< * bit_generator._legacy_seeding(seed) * else: */ __Pyx_GetModuleGlobalName(__pyx_t_4, __pyx_n_s_MT19937); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 101, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_5 = NULL; if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_4))) { __pyx_t_5 = PyMethod_GET_SELF(__pyx_t_4); if (likely(__pyx_t_5)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_4); __Pyx_INCREF(__pyx_t_5); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_4, function); } } __pyx_t_3 = (__pyx_t_5) ? __Pyx_PyObject_CallOneArg(__pyx_t_4, __pyx_t_5) : __Pyx_PyObject_CallNoArg(__pyx_t_4); __Pyx_XDECREF(__pyx_t_5); __pyx_t_5 = 0; if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 101, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_v_bit_generator = __pyx_t_3; __pyx_t_3 = 0; /* "numpy/random/mtrand.pyx":102 * elif not hasattr(seed, 'capsule'): * bit_generator = _MT19937() * bit_generator._legacy_seeding(seed) # <<<<<<<<<<<<<< * else: * bit_generator = seed */ __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_v_bit_generator, __pyx_n_s_legacy_seeding); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 102, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_5 = NULL; if (CYTHON_UNPACK_METHODS && likely(PyMethod_Check(__pyx_t_4))) { __pyx_t_5 = PyMethod_GET_SELF(__pyx_t_4); if (likely(__pyx_t_5)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_4); __Pyx_INCREF(__pyx_t_5); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_4, function); } } __pyx_t_3 = (__pyx_t_5) ? __Pyx_PyObject_Call2Args(__pyx_t_4, __pyx_t_5, __pyx_v_seed) : __Pyx_PyObject_CallOneArg(__pyx_t_4, __pyx_v_seed); __Pyx_XDECREF(__pyx_t_5); __pyx_t_5 = 0; if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 102, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; /* "numpy/random/mtrand.pyx":100 * if seed is None: * bit_generator = _MT19937() * elif not hasattr(seed, 'capsule'): # <<<<<<<<<<<<<< * bit_generator = _MT19937() * bit_generator._legacy_seeding(seed) */ goto __pyx_L3; } /* "numpy/random/mtrand.pyx":104 * bit_generator._legacy_seeding(seed) * else: * bit_generator = seed # <<<<<<<<<<<<<< * * self._bit_generator = bit_generator */ /*else*/ { __Pyx_INCREF(__pyx_v_seed); __pyx_v_bit_generator = __pyx_v_seed; } __pyx_L3:; /* "numpy/random/mtrand.pyx":106 * bit_generator = seed * * self._bit_generator = bit_generator # <<<<<<<<<<<<<< * capsule = bit_generator.capsule * cdef const char *name = "BitGenerator" */ __Pyx_INCREF(__pyx_v_bit_generator); __Pyx_GIVEREF(__pyx_v_bit_generator); __Pyx_GOTREF(__pyx_v_self->_bit_generator); __Pyx_DECREF(__pyx_v_self->_bit_generator); __pyx_v_self->_bit_generator = __pyx_v_bit_generator; /* "numpy/random/mtrand.pyx":107 * * self._bit_generator = bit_generator * capsule = bit_generator.capsule # <<<<<<<<<<<<<< * cdef const char *name = "BitGenerator" * if not PyCapsule_IsValid(capsule, name): */ __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_v_bit_generator, __pyx_n_s_capsule); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 107, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_v_capsule = __pyx_t_3; __pyx_t_3 = 0; /* "numpy/random/mtrand.pyx":108 * self._bit_generator = bit_generator * capsule = bit_generator.capsule * cdef const char *name = "BitGenerator" # <<<<<<<<<<<<<< * if not PyCapsule_IsValid(capsule, name): * raise ValueError("Invalid bit generator. The bit generator must " */ __pyx_v_name = ((char const *)"BitGenerator"); /* "numpy/random/mtrand.pyx":109 * capsule = bit_generator.capsule * cdef const char *name = "BitGenerator" * if not PyCapsule_IsValid(capsule, name): # <<<<<<<<<<<<<< * raise ValueError("Invalid bit generator. The bit generator must " * "be instantized.") */ __pyx_t_1 = ((!(PyCapsule_IsValid(__pyx_v_capsule, __pyx_v_name) != 0)) != 0); if (unlikely(__pyx_t_1)) { /* "numpy/random/mtrand.pyx":110 * cdef const char *name = "BitGenerator" * if not PyCapsule_IsValid(capsule, name): * raise ValueError("Invalid bit generator. The bit generator must " # <<<<<<<<<<<<<< * "be instantized.") * self._bitgen = ( PyCapsule_GetPointer(capsule, name))[0] */ __pyx_t_3 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__2, NULL); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 110, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_Raise(__pyx_t_3, 0, 0, 0); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __PYX_ERR(0, 110, __pyx_L1_error) /* "numpy/random/mtrand.pyx":109 * capsule = bit_generator.capsule * cdef const char *name = "BitGenerator" * if not PyCapsule_IsValid(capsule, name): # <<<<<<<<<<<<<< * raise ValueError("Invalid bit generator. The bit generator must " * "be instantized.") */ } /* "numpy/random/mtrand.pyx":112 * raise ValueError("Invalid bit generator. The bit generator must " * "be instantized.") * self._bitgen = ( PyCapsule_GetPointer(capsule, name))[0] # <<<<<<<<<<<<<< * self._aug_state.bit_generator = &self._bitgen * self._reset_gauss() */ __pyx_t_6 = PyCapsule_GetPointer(__pyx_v_capsule, __pyx_v_name); if (unlikely(__pyx_t_6 == ((void *)NULL) && PyErr_Occurred())) __PYX_ERR(0, 112, __pyx_L1_error) __pyx_v_self->_bitgen = (((bitgen_t *)__pyx_t_6)[0]); /* "numpy/random/mtrand.pyx":113 * "be instantized.") * self._bitgen = ( PyCapsule_GetPointer(capsule, name))[0] * self._aug_state.bit_generator = &self._bitgen # <<<<<<<<<<<<<< * self._reset_gauss() * self.lock = bit_generator.lock */ __pyx_v_self->_aug_state.bit_generator = (&__pyx_v_self->_bitgen); /* "numpy/random/mtrand.pyx":114 * self._bitgen = ( PyCapsule_GetPointer(capsule, name))[0] * self._aug_state.bit_generator = &self._bitgen * self._reset_gauss() # <<<<<<<<<<<<<< * self.lock = bit_generator.lock * */ __pyx_t_3 = ((struct __pyx_vtabstruct_5numpy_6random_6mtrand_RandomState *)__pyx_v_self->__pyx_vtab)->_reset_gauss(__pyx_v_self); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 114, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; /* "numpy/random/mtrand.pyx":115 * self._aug_state.bit_generator = &self._bitgen * self._reset_gauss() * self.lock = bit_generator.lock # <<<<<<<<<<<<<< * * def __repr__(self): */ __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_v_bit_generator, __pyx_n_s_lock); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 115, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_GIVEREF(__pyx_t_3); __Pyx_GOTREF(__pyx_v_self->lock); __Pyx_DECREF(__pyx_v_self->lock); __pyx_v_self->lock = __pyx_t_3; __pyx_t_3 = 0; /* "numpy/random/mtrand.pyx":97 * _poisson_lam_max = POISSON_LAM_MAX * * def __init__(self, seed=None): # <<<<<<<<<<<<<< * if seed is None: * bit_generator = _MT19937() */ /* function exit code */ __pyx_r = 0; goto __pyx_L0; __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __Pyx_XDECREF(__pyx_t_5); __Pyx_AddTraceback("numpy.random.mtrand.RandomState.__init__", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = -1; __pyx_L0:; __Pyx_XDECREF(__pyx_v_bit_generator); __Pyx_XDECREF(__pyx_v_capsule); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "numpy/random/mtrand.pyx":117 * self.lock = bit_generator.lock * * def __repr__(self): # <<<<<<<<<<<<<< * return self.__str__() + ' at 0x{:X}'.format(id(self)) * */ /* Python wrapper */ static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_3__repr__(PyObject *__pyx_v_self); /*proto*/ static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_3__repr__(PyObject *__pyx_v_self) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__repr__ (wrapper)", 0); __pyx_r = __pyx_pf_5numpy_6random_6mtrand_11RandomState_2__repr__(((struct __pyx_obj_5numpy_6random_6mtrand_RandomState *)__pyx_v_self)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_2__repr__(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; PyObject *__pyx_t_5 = NULL; __Pyx_RefNannySetupContext("__repr__", 0); /* "numpy/random/mtrand.pyx":118 * * def __repr__(self): * return self.__str__() + ' at 0x{:X}'.format(id(self)) # <<<<<<<<<<<<<< * * def __str__(self): */ __Pyx_XDECREF(__pyx_r); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_self), __pyx_n_s_str); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 118, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = NULL; if (CYTHON_UNPACK_METHODS && likely(PyMethod_Check(__pyx_t_2))) { __pyx_t_3 = PyMethod_GET_SELF(__pyx_t_2); if (likely(__pyx_t_3)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_2); __Pyx_INCREF(__pyx_t_3); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_2, function); } } __pyx_t_1 = (__pyx_t_3) ? __Pyx_PyObject_CallOneArg(__pyx_t_2, __pyx_t_3) : __Pyx_PyObject_CallNoArg(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __pyx_t_3 = 0; if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 118, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_kp_u_at_0x_X, __pyx_n_s_format); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 118, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_4 = __Pyx_PyObject_CallOneArg(__pyx_builtin_id, ((PyObject *)__pyx_v_self)); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 118, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_5 = NULL; if (CYTHON_UNPACK_METHODS && likely(PyMethod_Check(__pyx_t_3))) { __pyx_t_5 = PyMethod_GET_SELF(__pyx_t_3); if (likely(__pyx_t_5)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_3); __Pyx_INCREF(__pyx_t_5); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_3, function); } } __pyx_t_2 = (__pyx_t_5) ? __Pyx_PyObject_Call2Args(__pyx_t_3, __pyx_t_5, __pyx_t_4) : __Pyx_PyObject_CallOneArg(__pyx_t_3, __pyx_t_4); __Pyx_XDECREF(__pyx_t_5); __pyx_t_5 = 0; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 118, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = PyNumber_Add(__pyx_t_1, __pyx_t_2); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 118, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_r = __pyx_t_3; __pyx_t_3 = 0; goto __pyx_L0; /* "numpy/random/mtrand.pyx":117 * self.lock = bit_generator.lock * * def __repr__(self): # <<<<<<<<<<<<<< * return self.__str__() + ' at 0x{:X}'.format(id(self)) * */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __Pyx_XDECREF(__pyx_t_5); __Pyx_AddTraceback("numpy.random.mtrand.RandomState.__repr__", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "numpy/random/mtrand.pyx":120 * return self.__str__() + ' at 0x{:X}'.format(id(self)) * * def __str__(self): # <<<<<<<<<<<<<< * _str = self.__class__.__name__ * _str += '(' + self._bit_generator.__class__.__name__ + ')' */ /* Python wrapper */ static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_5__str__(PyObject *__pyx_v_self); /*proto*/ static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_5__str__(PyObject *__pyx_v_self) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__str__ (wrapper)", 0); __pyx_r = __pyx_pf_5numpy_6random_6mtrand_11RandomState_4__str__(((struct __pyx_obj_5numpy_6random_6mtrand_RandomState *)__pyx_v_self)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_4__str__(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self) { PyObject *__pyx_v__str = NULL; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; __Pyx_RefNannySetupContext("__str__", 0); /* "numpy/random/mtrand.pyx":121 * * def __str__(self): * _str = self.__class__.__name__ # <<<<<<<<<<<<<< * _str += '(' + self._bit_generator.__class__.__name__ + ')' * return _str */ __pyx_t_1 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_self), __pyx_n_s_class); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 121, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_name); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 121, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_v__str = __pyx_t_2; __pyx_t_2 = 0; /* "numpy/random/mtrand.pyx":122 * def __str__(self): * _str = self.__class__.__name__ * _str += '(' + self._bit_generator.__class__.__name__ + ')' # <<<<<<<<<<<<<< * return _str * */ __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_v_self->_bit_generator, __pyx_n_s_class); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 122, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_name); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 122, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = PyNumber_Add(__pyx_kp_u__3, __pyx_t_1); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 122, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = PyNumber_Add(__pyx_t_2, __pyx_kp_u__4); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 122, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = PyNumber_InPlaceAdd(__pyx_v__str, __pyx_t_1); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 122, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF_SET(__pyx_v__str, __pyx_t_2); __pyx_t_2 = 0; /* "numpy/random/mtrand.pyx":123 * _str = self.__class__.__name__ * _str += '(' + self._bit_generator.__class__.__name__ + ')' * return _str # <<<<<<<<<<<<<< * * # Pickling support: */ __Pyx_XDECREF(__pyx_r); __Pyx_INCREF(__pyx_v__str); __pyx_r = __pyx_v__str; goto __pyx_L0; /* "numpy/random/mtrand.pyx":120 * return self.__str__() + ' at 0x{:X}'.format(id(self)) * * def __str__(self): # <<<<<<<<<<<<<< * _str = self.__class__.__name__ * _str += '(' + self._bit_generator.__class__.__name__ + ')' */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_AddTraceback("numpy.random.mtrand.RandomState.__str__", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XDECREF(__pyx_v__str); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "numpy/random/mtrand.pyx":126 * * # Pickling support: * def __getstate__(self): # <<<<<<<<<<<<<< * return self.get_state(legacy=False) * */ /* Python wrapper */ static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_7__getstate__(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused); /*proto*/ static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_7__getstate__(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__getstate__ (wrapper)", 0); __pyx_r = __pyx_pf_5numpy_6random_6mtrand_11RandomState_6__getstate__(((struct __pyx_obj_5numpy_6random_6mtrand_RandomState *)__pyx_v_self)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_6__getstate__(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; __Pyx_RefNannySetupContext("__getstate__", 0); /* "numpy/random/mtrand.pyx":127 * # Pickling support: * def __getstate__(self): * return self.get_state(legacy=False) # <<<<<<<<<<<<<< * * def __setstate__(self, state): */ __Pyx_XDECREF(__pyx_r); __pyx_t_1 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_self), __pyx_n_s_get_state); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 127, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = __Pyx_PyDict_NewPresized(1); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 127, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); if (PyDict_SetItem(__pyx_t_2, __pyx_n_s_legacy, Py_False) < 0) __PYX_ERR(0, 127, __pyx_L1_error) __pyx_t_3 = __Pyx_PyObject_Call(__pyx_t_1, __pyx_empty_tuple, __pyx_t_2); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 127, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_r = __pyx_t_3; __pyx_t_3 = 0; goto __pyx_L0; /* "numpy/random/mtrand.pyx":126 * * # Pickling support: * def __getstate__(self): # <<<<<<<<<<<<<< * return self.get_state(legacy=False) * */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __Pyx_AddTraceback("numpy.random.mtrand.RandomState.__getstate__", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "numpy/random/mtrand.pyx":129 * return self.get_state(legacy=False) * * def __setstate__(self, state): # <<<<<<<<<<<<<< * self.set_state(state) * */ /* Python wrapper */ static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_9__setstate__(PyObject *__pyx_v_self, PyObject *__pyx_v_state); /*proto*/ static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_9__setstate__(PyObject *__pyx_v_self, PyObject *__pyx_v_state) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__setstate__ (wrapper)", 0); __pyx_r = __pyx_pf_5numpy_6random_6mtrand_11RandomState_8__setstate__(((struct __pyx_obj_5numpy_6random_6mtrand_RandomState *)__pyx_v_self), ((PyObject *)__pyx_v_state)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_8__setstate__(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_state) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; __Pyx_RefNannySetupContext("__setstate__", 0); /* "numpy/random/mtrand.pyx":130 * * def __setstate__(self, state): * self.set_state(state) # <<<<<<<<<<<<<< * * def __reduce__(self): */ __pyx_t_2 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_self), __pyx_n_s_set_state); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 130, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = NULL; if (CYTHON_UNPACK_METHODS && likely(PyMethod_Check(__pyx_t_2))) { __pyx_t_3 = PyMethod_GET_SELF(__pyx_t_2); if (likely(__pyx_t_3)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_2); __Pyx_INCREF(__pyx_t_3); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_2, function); } } __pyx_t_1 = (__pyx_t_3) ? __Pyx_PyObject_Call2Args(__pyx_t_2, __pyx_t_3, __pyx_v_state) : __Pyx_PyObject_CallOneArg(__pyx_t_2, __pyx_v_state); __Pyx_XDECREF(__pyx_t_3); __pyx_t_3 = 0; if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 130, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "numpy/random/mtrand.pyx":129 * return self.get_state(legacy=False) * * def __setstate__(self, state): # <<<<<<<<<<<<<< * self.set_state(state) * */ /* function exit code */ __pyx_r = Py_None; __Pyx_INCREF(Py_None); goto __pyx_L0; __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __Pyx_AddTraceback("numpy.random.mtrand.RandomState.__setstate__", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "numpy/random/mtrand.pyx":132 * self.set_state(state) * * def __reduce__(self): # <<<<<<<<<<<<<< * state = self.get_state(legacy=False) * from ._pickle import __randomstate_ctor */ /* Python wrapper */ static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_11__reduce__(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused); /*proto*/ static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_11__reduce__(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__reduce__ (wrapper)", 0); __pyx_r = __pyx_pf_5numpy_6random_6mtrand_11RandomState_10__reduce__(((struct __pyx_obj_5numpy_6random_6mtrand_RandomState *)__pyx_v_self)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_10__reduce__(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self) { PyObject *__pyx_v_state = NULL; PyObject *__pyx_v___randomstate_ctor = NULL; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; __Pyx_RefNannySetupContext("__reduce__", 0); /* "numpy/random/mtrand.pyx":133 * * def __reduce__(self): * state = self.get_state(legacy=False) # <<<<<<<<<<<<<< * from ._pickle import __randomstate_ctor * return __randomstate_ctor, (state['bit_generator'],), state */ __pyx_t_1 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_self), __pyx_n_s_get_state); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 133, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = __Pyx_PyDict_NewPresized(1); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 133, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); if (PyDict_SetItem(__pyx_t_2, __pyx_n_s_legacy, Py_False) < 0) __PYX_ERR(0, 133, __pyx_L1_error) __pyx_t_3 = __Pyx_PyObject_Call(__pyx_t_1, __pyx_empty_tuple, __pyx_t_2); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 133, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_v_state = __pyx_t_3; __pyx_t_3 = 0; /* "numpy/random/mtrand.pyx":134 * def __reduce__(self): * state = self.get_state(legacy=False) * from ._pickle import __randomstate_ctor # <<<<<<<<<<<<<< * return __randomstate_ctor, (state['bit_generator'],), state * */ __pyx_t_3 = PyList_New(1); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 134, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_INCREF(__pyx_n_s_randomstate_ctor); __Pyx_GIVEREF(__pyx_n_s_randomstate_ctor); PyList_SET_ITEM(__pyx_t_3, 0, __pyx_n_s_randomstate_ctor); __pyx_t_2 = __Pyx_Import(__pyx_n_s_pickle, __pyx_t_3, 1); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 134, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = __Pyx_ImportFrom(__pyx_t_2, __pyx_n_s_randomstate_ctor); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 134, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_INCREF(__pyx_t_3); __pyx_v___randomstate_ctor = __pyx_t_3; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; /* "numpy/random/mtrand.pyx":135 * state = self.get_state(legacy=False) * from ._pickle import __randomstate_ctor * return __randomstate_ctor, (state['bit_generator'],), state # <<<<<<<<<<<<<< * * cdef _reset_gauss(self): */ __Pyx_XDECREF(__pyx_r); __pyx_t_2 = __Pyx_PyObject_Dict_GetItem(__pyx_v_state, __pyx_n_u_bit_generator); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 135, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = PyTuple_New(1); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 135, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_GIVEREF(__pyx_t_2); PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = PyTuple_New(3); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 135, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_INCREF(__pyx_v___randomstate_ctor); __Pyx_GIVEREF(__pyx_v___randomstate_ctor); PyTuple_SET_ITEM(__pyx_t_2, 0, __pyx_v___randomstate_ctor); __Pyx_GIVEREF(__pyx_t_3); PyTuple_SET_ITEM(__pyx_t_2, 1, __pyx_t_3); __Pyx_INCREF(__pyx_v_state); __Pyx_GIVEREF(__pyx_v_state); PyTuple_SET_ITEM(__pyx_t_2, 2, __pyx_v_state); __pyx_t_3 = 0; __pyx_r = __pyx_t_2; __pyx_t_2 = 0; goto __pyx_L0; /* "numpy/random/mtrand.pyx":132 * self.set_state(state) * * def __reduce__(self): # <<<<<<<<<<<<<< * state = self.get_state(legacy=False) * from ._pickle import __randomstate_ctor */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __Pyx_AddTraceback("numpy.random.mtrand.RandomState.__reduce__", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XDECREF(__pyx_v_state); __Pyx_XDECREF(__pyx_v___randomstate_ctor); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "numpy/random/mtrand.pyx":137 * return __randomstate_ctor, (state['bit_generator'],), state * * cdef _reset_gauss(self): # <<<<<<<<<<<<<< * self._aug_state.has_gauss = 0 * self._aug_state.gauss = 0.0 */ static PyObject *__pyx_f_5numpy_6random_6mtrand_11RandomState__reset_gauss(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("_reset_gauss", 0); /* "numpy/random/mtrand.pyx":138 * * cdef _reset_gauss(self): * self._aug_state.has_gauss = 0 # <<<<<<<<<<<<<< * self._aug_state.gauss = 0.0 * */ __pyx_v_self->_aug_state.has_gauss = 0; /* "numpy/random/mtrand.pyx":139 * cdef _reset_gauss(self): * self._aug_state.has_gauss = 0 * self._aug_state.gauss = 0.0 # <<<<<<<<<<<<<< * * def seed(self, seed=None): */ __pyx_v_self->_aug_state.gauss = 0.0; /* "numpy/random/mtrand.pyx":137 * return __randomstate_ctor, (state['bit_generator'],), state * * cdef _reset_gauss(self): # <<<<<<<<<<<<<< * self._aug_state.has_gauss = 0 * self._aug_state.gauss = 0.0 */ /* function exit code */ __pyx_r = Py_None; __Pyx_INCREF(Py_None); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "numpy/random/mtrand.pyx":141 * self._aug_state.gauss = 0.0 * * def seed(self, seed=None): # <<<<<<<<<<<<<< * """ * seed(self, seed=None) */ /* Python wrapper */ static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_13seed(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static char __pyx_doc_5numpy_6random_6mtrand_11RandomState_12seed[] = "\n seed(self, seed=None)\n\n Reseed a legacy MT19937 BitGenerator\n\n Notes\n -----\n This is a convenience, legacy function.\n\n The best practice is to **not** reseed a BitGenerator, rather to\n recreate a new one. This method is here for legacy reasons.\n This example demonstrates best practice.\n\n >>> from numpy.random import MT19937\n >>> from numpy.random import RandomState, SeedSequence\n >>> rs = RandomState(MT19937(SeedSequence(123456789)))\n # Later, you want to restart the stream\n >>> rs = RandomState(MT19937(SeedSequence(987654321)))\n "; static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_13seed(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_seed = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("seed (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_seed,0}; PyObject* values[1] = {0}; values[0] = ((PyObject *)Py_None); if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); CYTHON_FALLTHROUGH; case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_seed); if (value) { values[0] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "seed") < 0)) __PYX_ERR(0, 141, __pyx_L3_error) } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); CYTHON_FALLTHROUGH; case 0: break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_seed = values[0]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("seed", 0, 0, 1, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(0, 141, __pyx_L3_error) __pyx_L3_error:; __Pyx_AddTraceback("numpy.random.mtrand.RandomState.seed", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_5numpy_6random_6mtrand_11RandomState_12seed(((struct __pyx_obj_5numpy_6random_6mtrand_RandomState *)__pyx_v_self), __pyx_v_seed); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_12seed(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_seed) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; int __pyx_t_3; int __pyx_t_4; PyObject *__pyx_t_5 = NULL; __Pyx_RefNannySetupContext("seed", 0); /* "numpy/random/mtrand.pyx":161 * >>> rs = RandomState(MT19937(SeedSequence(987654321))) * """ * if not isinstance(self._bit_generator, _MT19937): # <<<<<<<<<<<<<< * raise TypeError('can only re-seed a MT19937 BitGenerator') * self._bit_generator._legacy_seeding(seed) */ __pyx_t_1 = __pyx_v_self->_bit_generator; __Pyx_INCREF(__pyx_t_1); __Pyx_GetModuleGlobalName(__pyx_t_2, __pyx_n_s_MT19937); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 161, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = PyObject_IsInstance(__pyx_t_1, __pyx_t_2); if (unlikely(__pyx_t_3 == ((int)-1))) __PYX_ERR(0, 161, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_4 = ((!(__pyx_t_3 != 0)) != 0); if (unlikely(__pyx_t_4)) { /* "numpy/random/mtrand.pyx":162 * """ * if not isinstance(self._bit_generator, _MT19937): * raise TypeError('can only re-seed a MT19937 BitGenerator') # <<<<<<<<<<<<<< * self._bit_generator._legacy_seeding(seed) * self._reset_gauss() */ __pyx_t_2 = __Pyx_PyObject_Call(__pyx_builtin_TypeError, __pyx_tuple__5, NULL); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 162, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_Raise(__pyx_t_2, 0, 0, 0); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __PYX_ERR(0, 162, __pyx_L1_error) /* "numpy/random/mtrand.pyx":161 * >>> rs = RandomState(MT19937(SeedSequence(987654321))) * """ * if not isinstance(self._bit_generator, _MT19937): # <<<<<<<<<<<<<< * raise TypeError('can only re-seed a MT19937 BitGenerator') * self._bit_generator._legacy_seeding(seed) */ } /* "numpy/random/mtrand.pyx":163 * if not isinstance(self._bit_generator, _MT19937): * raise TypeError('can only re-seed a MT19937 BitGenerator') * self._bit_generator._legacy_seeding(seed) # <<<<<<<<<<<<<< * self._reset_gauss() * */ __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_self->_bit_generator, __pyx_n_s_legacy_seeding); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 163, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_5 = NULL; if (CYTHON_UNPACK_METHODS && likely(PyMethod_Check(__pyx_t_1))) { __pyx_t_5 = PyMethod_GET_SELF(__pyx_t_1); if (likely(__pyx_t_5)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_1); __Pyx_INCREF(__pyx_t_5); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_1, function); } } __pyx_t_2 = (__pyx_t_5) ? __Pyx_PyObject_Call2Args(__pyx_t_1, __pyx_t_5, __pyx_v_seed) : __Pyx_PyObject_CallOneArg(__pyx_t_1, __pyx_v_seed); __Pyx_XDECREF(__pyx_t_5); __pyx_t_5 = 0; if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 163, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; /* "numpy/random/mtrand.pyx":164 * raise TypeError('can only re-seed a MT19937 BitGenerator') * self._bit_generator._legacy_seeding(seed) * self._reset_gauss() # <<<<<<<<<<<<<< * * def get_state(self, legacy=True): */ __pyx_t_2 = ((struct __pyx_vtabstruct_5numpy_6random_6mtrand_RandomState *)__pyx_v_self->__pyx_vtab)->_reset_gauss(__pyx_v_self); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 164, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; /* "numpy/random/mtrand.pyx":141 * self._aug_state.gauss = 0.0 * * def seed(self, seed=None): # <<<<<<<<<<<<<< * """ * seed(self, seed=None) */ /* function exit code */ __pyx_r = Py_None; __Pyx_INCREF(Py_None); goto __pyx_L0; __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_5); __Pyx_AddTraceback("numpy.random.mtrand.RandomState.seed", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "numpy/random/mtrand.pyx":166 * self._reset_gauss() * * def get_state(self, legacy=True): # <<<<<<<<<<<<<< * """ * get_state() */ /* Python wrapper */ static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_15get_state(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static char __pyx_doc_5numpy_6random_6mtrand_11RandomState_14get_state[] = "\n get_state()\n\n Return a tuple representing the internal state of the generator.\n\n For more details, see `set_state`.\n\n Returns\n -------\n out : {tuple(str, ndarray of 624 uints, int, int, float), dict}\n The returned tuple has the following items:\n\n 1. the string 'MT19937'.\n 2. a 1-D array of 624 unsigned integer keys.\n 3. an integer ``pos``.\n 4. an integer ``has_gauss``.\n 5. a float ``cached_gaussian``.\n\n If `legacy` is False, or the BitGenerator is not NT19937, then\n state is returned as a dictionary.\n\n legacy : bool\n Flag indicating the return a legacy tuple state when the BitGenerator\n is MT19937.\n\n See Also\n --------\n set_state\n\n Notes\n -----\n `set_state` and `get_state` are not needed to work with any of the\n random distributions in NumPy. If the internal state is manually altered,\n the user should know exactly what he/she is doing.\n\n "; static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_15get_state(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_legacy = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("get_state (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_legacy,0}; PyObject* values[1] = {0}; values[0] = ((PyObject *)Py_True); if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); CYTHON_FALLTHROUGH; case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_legacy); if (value) { values[0] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "get_state") < 0)) __PYX_ERR(0, 166, __pyx_L3_error) } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); CYTHON_FALLTHROUGH; case 0: break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_legacy = values[0]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("get_state", 0, 0, 1, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(0, 166, __pyx_L3_error) __pyx_L3_error:; __Pyx_AddTraceback("numpy.random.mtrand.RandomState.get_state", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_5numpy_6random_6mtrand_11RandomState_14get_state(((struct __pyx_obj_5numpy_6random_6mtrand_RandomState *)__pyx_v_self), __pyx_v_legacy); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_14get_state(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_legacy) { PyObject *__pyx_v_st = NULL; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; int __pyx_t_2; int __pyx_t_3; PyObject *__pyx_t_4 = NULL; PyObject *__pyx_t_5 = NULL; PyObject *__pyx_t_6 = NULL; PyObject *__pyx_t_7 = NULL; PyObject *__pyx_t_8 = NULL; __Pyx_RefNannySetupContext("get_state", 0); __Pyx_INCREF(__pyx_v_legacy); /* "numpy/random/mtrand.pyx":203 * * """ * st = self._bit_generator.state # <<<<<<<<<<<<<< * if st['bit_generator'] != 'MT19937' and legacy: * warnings.warn('get_state and legacy can only be used with the ' */ __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_self->_bit_generator, __pyx_n_s_state); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 203, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_v_st = __pyx_t_1; __pyx_t_1 = 0; /* "numpy/random/mtrand.pyx":204 * """ * st = self._bit_generator.state * if st['bit_generator'] != 'MT19937' and legacy: # <<<<<<<<<<<<<< * warnings.warn('get_state and legacy can only be used with the ' * 'MT19937 BitGenerator. To silence this warning, ' */ __pyx_t_1 = __Pyx_PyObject_Dict_GetItem(__pyx_v_st, __pyx_n_u_bit_generator); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 204, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_3 = (__Pyx_PyUnicode_Equals(__pyx_t_1, __pyx_n_u_MT19937_2, Py_NE)); if (unlikely(__pyx_t_3 < 0)) __PYX_ERR(0, 204, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; if (__pyx_t_3) { } else { __pyx_t_2 = __pyx_t_3; goto __pyx_L4_bool_binop_done; } __pyx_t_3 = __Pyx_PyObject_IsTrue(__pyx_v_legacy); if (unlikely(__pyx_t_3 < 0)) __PYX_ERR(0, 204, __pyx_L1_error) __pyx_t_2 = __pyx_t_3; __pyx_L4_bool_binop_done:; if (__pyx_t_2) { /* "numpy/random/mtrand.pyx":205 * st = self._bit_generator.state * if st['bit_generator'] != 'MT19937' and legacy: * warnings.warn('get_state and legacy can only be used with the ' # <<<<<<<<<<<<<< * 'MT19937 BitGenerator. To silence this warning, ' * 'set `legacy` to False.', RuntimeWarning) */ __Pyx_GetModuleGlobalName(__pyx_t_1, __pyx_n_s_warnings); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 205, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_warn); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 205, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "numpy/random/mtrand.pyx":207 * warnings.warn('get_state and legacy can only be used with the ' * 'MT19937 BitGenerator. To silence this warning, ' * 'set `legacy` to False.', RuntimeWarning) # <<<<<<<<<<<<<< * legacy = False * st['has_gauss'] = self._aug_state.has_gauss */ __pyx_t_1 = __Pyx_PyObject_Call(__pyx_t_4, __pyx_tuple__6, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 205, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "numpy/random/mtrand.pyx":208 * 'MT19937 BitGenerator. To silence this warning, ' * 'set `legacy` to False.', RuntimeWarning) * legacy = False # <<<<<<<<<<<<<< * st['has_gauss'] = self._aug_state.has_gauss * st['gauss'] = self._aug_state.gauss */ __Pyx_INCREF(Py_False); __Pyx_DECREF_SET(__pyx_v_legacy, Py_False); /* "numpy/random/mtrand.pyx":204 * """ * st = self._bit_generator.state * if st['bit_generator'] != 'MT19937' and legacy: # <<<<<<<<<<<<<< * warnings.warn('get_state and legacy can only be used with the ' * 'MT19937 BitGenerator. To silence this warning, ' */ } /* "numpy/random/mtrand.pyx":209 * 'set `legacy` to False.', RuntimeWarning) * legacy = False * st['has_gauss'] = self._aug_state.has_gauss # <<<<<<<<<<<<<< * st['gauss'] = self._aug_state.gauss * if legacy: */ __pyx_t_1 = __Pyx_PyInt_From_int(__pyx_v_self->_aug_state.has_gauss); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 209, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); if (unlikely(PyObject_SetItem(__pyx_v_st, __pyx_n_u_has_gauss, __pyx_t_1) < 0)) __PYX_ERR(0, 209, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "numpy/random/mtrand.pyx":210 * legacy = False * st['has_gauss'] = self._aug_state.has_gauss * st['gauss'] = self._aug_state.gauss # <<<<<<<<<<<<<< * if legacy: * return (st['bit_generator'], st['state']['key'], st['state']['pos'], */ __pyx_t_1 = PyFloat_FromDouble(__pyx_v_self->_aug_state.gauss); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 210, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); if (unlikely(PyObject_SetItem(__pyx_v_st, __pyx_n_u_gauss, __pyx_t_1) < 0)) __PYX_ERR(0, 210, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "numpy/random/mtrand.pyx":211 * st['has_gauss'] = self._aug_state.has_gauss * st['gauss'] = self._aug_state.gauss * if legacy: # <<<<<<<<<<<<<< * return (st['bit_generator'], st['state']['key'], st['state']['pos'], * st['has_gauss'], st['gauss']) */ __pyx_t_2 = __Pyx_PyObject_IsTrue(__pyx_v_legacy); if (unlikely(__pyx_t_2 < 0)) __PYX_ERR(0, 211, __pyx_L1_error) if (__pyx_t_2) { /* "numpy/random/mtrand.pyx":212 * st['gauss'] = self._aug_state.gauss * if legacy: * return (st['bit_generator'], st['state']['key'], st['state']['pos'], # <<<<<<<<<<<<<< * st['has_gauss'], st['gauss']) * return st */ __Pyx_XDECREF(__pyx_r); __pyx_t_1 = __Pyx_PyObject_Dict_GetItem(__pyx_v_st, __pyx_n_u_bit_generator); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 212, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_4 = __Pyx_PyObject_Dict_GetItem(__pyx_v_st, __pyx_n_u_state); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 212, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_5 = __Pyx_PyObject_Dict_GetItem(__pyx_t_4, __pyx_n_u_key); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 212, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = __Pyx_PyObject_Dict_GetItem(__pyx_v_st, __pyx_n_u_state); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 212, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_6 = __Pyx_PyObject_Dict_GetItem(__pyx_t_4, __pyx_n_u_pos); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 212, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; /* "numpy/random/mtrand.pyx":213 * if legacy: * return (st['bit_generator'], st['state']['key'], st['state']['pos'], * st['has_gauss'], st['gauss']) # <<<<<<<<<<<<<< * return st * */ __pyx_t_4 = __Pyx_PyObject_Dict_GetItem(__pyx_v_st, __pyx_n_u_has_gauss); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 213, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_7 = __Pyx_PyObject_Dict_GetItem(__pyx_v_st, __pyx_n_u_gauss); if (unlikely(!__pyx_t_7)) __PYX_ERR(0, 213, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_7); /* "numpy/random/mtrand.pyx":212 * st['gauss'] = self._aug_state.gauss * if legacy: * return (st['bit_generator'], st['state']['key'], st['state']['pos'], # <<<<<<<<<<<<<< * st['has_gauss'], st['gauss']) * return st */ __pyx_t_8 = PyTuple_New(5); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 212, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_8); __Pyx_GIVEREF(__pyx_t_1); PyTuple_SET_ITEM(__pyx_t_8, 0, __pyx_t_1); __Pyx_GIVEREF(__pyx_t_5); PyTuple_SET_ITEM(__pyx_t_8, 1, __pyx_t_5); __Pyx_GIVEREF(__pyx_t_6); PyTuple_SET_ITEM(__pyx_t_8, 2, __pyx_t_6); __Pyx_GIVEREF(__pyx_t_4); PyTuple_SET_ITEM(__pyx_t_8, 3, __pyx_t_4); __Pyx_GIVEREF(__pyx_t_7); PyTuple_SET_ITEM(__pyx_t_8, 4, __pyx_t_7); __pyx_t_1 = 0; __pyx_t_5 = 0; __pyx_t_6 = 0; __pyx_t_4 = 0; __pyx_t_7 = 0; __pyx_r = __pyx_t_8; __pyx_t_8 = 0; goto __pyx_L0; /* "numpy/random/mtrand.pyx":211 * st['has_gauss'] = self._aug_state.has_gauss * st['gauss'] = self._aug_state.gauss * if legacy: # <<<<<<<<<<<<<< * return (st['bit_generator'], st['state']['key'], st['state']['pos'], * st['has_gauss'], st['gauss']) */ } /* "numpy/random/mtrand.pyx":214 * return (st['bit_generator'], st['state']['key'], st['state']['pos'], * st['has_gauss'], st['gauss']) * return st # <<<<<<<<<<<<<< * * def set_state(self, state): */ __Pyx_XDECREF(__pyx_r); __Pyx_INCREF(__pyx_v_st); __pyx_r = __pyx_v_st; goto __pyx_L0; /* "numpy/random/mtrand.pyx":166 * self._reset_gauss() * * def get_state(self, legacy=True): # <<<<<<<<<<<<<< * """ * get_state() */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_4); __Pyx_XDECREF(__pyx_t_5); __Pyx_XDECREF(__pyx_t_6); __Pyx_XDECREF(__pyx_t_7); __Pyx_XDECREF(__pyx_t_8); __Pyx_AddTraceback("numpy.random.mtrand.RandomState.get_state", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XDECREF(__pyx_v_st); __Pyx_XDECREF(__pyx_v_legacy); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "numpy/random/mtrand.pyx":216 * return st * * def set_state(self, state): # <<<<<<<<<<<<<< * """ * set_state(state) */ /* Python wrapper */ static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_17set_state(PyObject *__pyx_v_self, PyObject *__pyx_v_state); /*proto*/ static char __pyx_doc_5numpy_6random_6mtrand_11RandomState_16set_state[] = "\n set_state(state)\n\n Set the internal state of the generator from a tuple.\n\n For use if one has reason to manually (re-)set the internal state of\n the bit generator used by the RandomState instance. By default,\n RandomState uses the \"Mersenne Twister\"[1]_ pseudo-random number\n generating algorithm.\n\n Parameters\n ----------\n state : {tuple(str, ndarray of 624 uints, int, int, float), dict}\n The `state` tuple has the following items:\n\n 1. the string 'MT19937', specifying the Mersenne Twister algorithm.\n 2. a 1-D array of 624 unsigned integers ``keys``.\n 3. an integer ``pos``.\n 4. an integer ``has_gauss``.\n 5. a float ``cached_gaussian``.\n\n If state is a dictionary, it is directly set using the BitGenerators\n `state` property.\n\n Returns\n -------\n out : None\n Returns 'None' on success.\n\n See Also\n --------\n get_state\n\n Notes\n -----\n `set_state` and `get_state` are not needed to work with any of the\n random distributions in NumPy. If the internal state is manually altered,\n the user should know exactly what he/she is doing.\n\n For backwards compatibility, the form (str, array of 624 uints, int) is\n also accepted although it is missing some information about the cached\n Gaussian value: ``state = ('MT19937', keys, pos)``.\n\n References\n ----------\n .. [1] M. Matsumoto and T. Nishimura, \"Mersenne Twister: A\n 623-dimensionally equidistributed uniform pseudorandom number\n generator,\" *ACM Trans. on Modeling and Computer Simulation*,\n Vol. 8, No. 1, pp. 3-30, Jan. 1998.\n\n "; static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_17set_state(PyObject *__pyx_v_self, PyObject *__pyx_v_state) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("set_state (wrapper)", 0); __pyx_r = __pyx_pf_5numpy_6random_6mtrand_11RandomState_16set_state(((struct __pyx_obj_5numpy_6random_6mtrand_RandomState *)__pyx_v_self), ((PyObject *)__pyx_v_state)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_16set_state(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_state) { PyObject *__pyx_v_st = NULL; CYTHON_UNUSED PyObject *__pyx_v_value = NULL; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations int __pyx_t_1; int __pyx_t_2; int __pyx_t_3; PyObject *__pyx_t_4 = NULL; PyObject *__pyx_t_5 = NULL; PyObject *__pyx_t_6 = NULL; Py_ssize_t __pyx_t_7; double __pyx_t_8; int __pyx_t_9; __Pyx_RefNannySetupContext("set_state", 0); /* "numpy/random/mtrand.pyx":268 * * """ * if isinstance(state, dict): # <<<<<<<<<<<<<< * if 'bit_generator' not in state or 'state' not in state: * raise ValueError('state dictionary is not valid.') */ __pyx_t_1 = PyDict_Check(__pyx_v_state); __pyx_t_2 = (__pyx_t_1 != 0); if (__pyx_t_2) { /* "numpy/random/mtrand.pyx":269 * """ * if isinstance(state, dict): * if 'bit_generator' not in state or 'state' not in state: # <<<<<<<<<<<<<< * raise ValueError('state dictionary is not valid.') * st = state */ __pyx_t_1 = (__Pyx_PySequence_ContainsTF(__pyx_n_u_bit_generator, __pyx_v_state, Py_NE)); if (unlikely(__pyx_t_1 < 0)) __PYX_ERR(0, 269, __pyx_L1_error) __pyx_t_3 = (__pyx_t_1 != 0); if (!__pyx_t_3) { } else { __pyx_t_2 = __pyx_t_3; goto __pyx_L5_bool_binop_done; } __pyx_t_3 = (__Pyx_PySequence_ContainsTF(__pyx_n_u_state, __pyx_v_state, Py_NE)); if (unlikely(__pyx_t_3 < 0)) __PYX_ERR(0, 269, __pyx_L1_error) __pyx_t_1 = (__pyx_t_3 != 0); __pyx_t_2 = __pyx_t_1; __pyx_L5_bool_binop_done:; if (unlikely(__pyx_t_2)) { /* "numpy/random/mtrand.pyx":270 * if isinstance(state, dict): * if 'bit_generator' not in state or 'state' not in state: * raise ValueError('state dictionary is not valid.') # <<<<<<<<<<<<<< * st = state * else: */ __pyx_t_4 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__7, NULL); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 270, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_Raise(__pyx_t_4, 0, 0, 0); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __PYX_ERR(0, 270, __pyx_L1_error) /* "numpy/random/mtrand.pyx":269 * """ * if isinstance(state, dict): * if 'bit_generator' not in state or 'state' not in state: # <<<<<<<<<<<<<< * raise ValueError('state dictionary is not valid.') * st = state */ } /* "numpy/random/mtrand.pyx":271 * if 'bit_generator' not in state or 'state' not in state: * raise ValueError('state dictionary is not valid.') * st = state # <<<<<<<<<<<<<< * else: * if not isinstance(state, (tuple, list)): */ __Pyx_INCREF(__pyx_v_state); __pyx_v_st = __pyx_v_state; /* "numpy/random/mtrand.pyx":268 * * """ * if isinstance(state, dict): # <<<<<<<<<<<<<< * if 'bit_generator' not in state or 'state' not in state: * raise ValueError('state dictionary is not valid.') */ goto __pyx_L3; } /* "numpy/random/mtrand.pyx":273 * st = state * else: * if not isinstance(state, (tuple, list)): # <<<<<<<<<<<<<< * raise TypeError('state must be a dict or a tuple.') * if state[0] != 'MT19937': */ /*else*/ { __pyx_t_1 = PyTuple_Check(__pyx_v_state); __pyx_t_3 = (__pyx_t_1 != 0); if (!__pyx_t_3) { } else { __pyx_t_2 = __pyx_t_3; goto __pyx_L8_bool_binop_done; } __pyx_t_3 = PyList_Check(__pyx_v_state); __pyx_t_1 = (__pyx_t_3 != 0); __pyx_t_2 = __pyx_t_1; __pyx_L8_bool_binop_done:; __pyx_t_1 = ((!(__pyx_t_2 != 0)) != 0); if (unlikely(__pyx_t_1)) { /* "numpy/random/mtrand.pyx":274 * else: * if not isinstance(state, (tuple, list)): * raise TypeError('state must be a dict or a tuple.') # <<<<<<<<<<<<<< * if state[0] != 'MT19937': * raise ValueError('set_state can only be used with legacy MT19937' */ __pyx_t_4 = __Pyx_PyObject_Call(__pyx_builtin_TypeError, __pyx_tuple__8, NULL); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 274, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_Raise(__pyx_t_4, 0, 0, 0); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __PYX_ERR(0, 274, __pyx_L1_error) /* "numpy/random/mtrand.pyx":273 * st = state * else: * if not isinstance(state, (tuple, list)): # <<<<<<<<<<<<<< * raise TypeError('state must be a dict or a tuple.') * if state[0] != 'MT19937': */ } /* "numpy/random/mtrand.pyx":275 * if not isinstance(state, (tuple, list)): * raise TypeError('state must be a dict or a tuple.') * if state[0] != 'MT19937': # <<<<<<<<<<<<<< * raise ValueError('set_state can only be used with legacy MT19937' * 'state instances.') */ __pyx_t_4 = __Pyx_GetItemInt(__pyx_v_state, 0, long, 1, __Pyx_PyInt_From_long, 0, 0, 0); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 275, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_1 = (__Pyx_PyUnicode_Equals(__pyx_t_4, __pyx_n_u_MT19937_2, Py_NE)); if (unlikely(__pyx_t_1 < 0)) __PYX_ERR(0, 275, __pyx_L1_error) __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; if (unlikely(__pyx_t_1)) { /* "numpy/random/mtrand.pyx":276 * raise TypeError('state must be a dict or a tuple.') * if state[0] != 'MT19937': * raise ValueError('set_state can only be used with legacy MT19937' # <<<<<<<<<<<<<< * 'state instances.') * st = {'bit_generator': state[0], */ __pyx_t_4 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__9, NULL); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 276, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_Raise(__pyx_t_4, 0, 0, 0); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __PYX_ERR(0, 276, __pyx_L1_error) /* "numpy/random/mtrand.pyx":275 * if not isinstance(state, (tuple, list)): * raise TypeError('state must be a dict or a tuple.') * if state[0] != 'MT19937': # <<<<<<<<<<<<<< * raise ValueError('set_state can only be used with legacy MT19937' * 'state instances.') */ } /* "numpy/random/mtrand.pyx":278 * raise ValueError('set_state can only be used with legacy MT19937' * 'state instances.') * st = {'bit_generator': state[0], # <<<<<<<<<<<<<< * 'state': {'key': state[1], 'pos': state[2]}} * if len(state) > 3: */ __pyx_t_4 = __Pyx_PyDict_NewPresized(2); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 278, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_5 = __Pyx_GetItemInt(__pyx_v_state, 0, long, 1, __Pyx_PyInt_From_long, 0, 0, 0); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 278, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); if (PyDict_SetItem(__pyx_t_4, __pyx_n_u_bit_generator, __pyx_t_5) < 0) __PYX_ERR(0, 278, __pyx_L1_error) __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; /* "numpy/random/mtrand.pyx":279 * 'state instances.') * st = {'bit_generator': state[0], * 'state': {'key': state[1], 'pos': state[2]}} # <<<<<<<<<<<<<< * if len(state) > 3: * st['has_gauss'] = state[3] */ __pyx_t_5 = __Pyx_PyDict_NewPresized(2); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 279, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __pyx_t_6 = __Pyx_GetItemInt(__pyx_v_state, 1, long, 1, __Pyx_PyInt_From_long, 0, 0, 0); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 279, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); if (PyDict_SetItem(__pyx_t_5, __pyx_n_u_key, __pyx_t_6) < 0) __PYX_ERR(0, 279, __pyx_L1_error) __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __pyx_t_6 = __Pyx_GetItemInt(__pyx_v_state, 2, long, 1, __Pyx_PyInt_From_long, 0, 0, 0); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 279, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); if (PyDict_SetItem(__pyx_t_5, __pyx_n_u_pos, __pyx_t_6) < 0) __PYX_ERR(0, 279, __pyx_L1_error) __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; if (PyDict_SetItem(__pyx_t_4, __pyx_n_u_state, __pyx_t_5) < 0) __PYX_ERR(0, 278, __pyx_L1_error) __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_v_st = __pyx_t_4; __pyx_t_4 = 0; /* "numpy/random/mtrand.pyx":280 * st = {'bit_generator': state[0], * 'state': {'key': state[1], 'pos': state[2]}} * if len(state) > 3: # <<<<<<<<<<<<<< * st['has_gauss'] = state[3] * st['gauss'] = state[4] */ __pyx_t_7 = PyObject_Length(__pyx_v_state); if (unlikely(__pyx_t_7 == ((Py_ssize_t)-1))) __PYX_ERR(0, 280, __pyx_L1_error) __pyx_t_1 = ((__pyx_t_7 > 3) != 0); if (__pyx_t_1) { /* "numpy/random/mtrand.pyx":281 * 'state': {'key': state[1], 'pos': state[2]}} * if len(state) > 3: * st['has_gauss'] = state[3] # <<<<<<<<<<<<<< * st['gauss'] = state[4] * value = st */ __pyx_t_4 = __Pyx_GetItemInt(__pyx_v_state, 3, long, 1, __Pyx_PyInt_From_long, 0, 0, 0); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 281, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); if (unlikely(PyObject_SetItem(__pyx_v_st, __pyx_n_u_has_gauss, __pyx_t_4) < 0)) __PYX_ERR(0, 281, __pyx_L1_error) __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; /* "numpy/random/mtrand.pyx":282 * if len(state) > 3: * st['has_gauss'] = state[3] * st['gauss'] = state[4] # <<<<<<<<<<<<<< * value = st * */ __pyx_t_4 = __Pyx_GetItemInt(__pyx_v_state, 4, long, 1, __Pyx_PyInt_From_long, 0, 0, 0); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 282, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); if (unlikely(PyObject_SetItem(__pyx_v_st, __pyx_n_u_gauss, __pyx_t_4) < 0)) __PYX_ERR(0, 282, __pyx_L1_error) __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; /* "numpy/random/mtrand.pyx":283 * st['has_gauss'] = state[3] * st['gauss'] = state[4] * value = st # <<<<<<<<<<<<<< * * self._aug_state.gauss = st.get('gauss', 0.0) */ __Pyx_INCREF(__pyx_v_st); __pyx_v_value = __pyx_v_st; /* "numpy/random/mtrand.pyx":280 * st = {'bit_generator': state[0], * 'state': {'key': state[1], 'pos': state[2]}} * if len(state) > 3: # <<<<<<<<<<<<<< * st['has_gauss'] = state[3] * st['gauss'] = state[4] */ } } __pyx_L3:; /* "numpy/random/mtrand.pyx":285 * value = st * * self._aug_state.gauss = st.get('gauss', 0.0) # <<<<<<<<<<<<<< * self._aug_state.has_gauss = st.get('has_gauss', 0) * self._bit_generator.state = st */ __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_v_st, __pyx_n_s_get); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 285, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_4, __pyx_tuple__10, NULL); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 285, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_8 = __pyx_PyFloat_AsDouble(__pyx_t_5); if (unlikely((__pyx_t_8 == (double)-1) && PyErr_Occurred())) __PYX_ERR(0, 285, __pyx_L1_error) __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_v_self->_aug_state.gauss = __pyx_t_8; /* "numpy/random/mtrand.pyx":286 * * self._aug_state.gauss = st.get('gauss', 0.0) * self._aug_state.has_gauss = st.get('has_gauss', 0) # <<<<<<<<<<<<<< * self._bit_generator.state = st * */ __pyx_t_5 = __Pyx_PyObject_GetAttrStr(__pyx_v_st, __pyx_n_s_get); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 286, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __pyx_t_4 = __Pyx_PyObject_Call(__pyx_t_5, __pyx_tuple__11, NULL); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 286, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_9 = __Pyx_PyInt_As_int(__pyx_t_4); if (unlikely((__pyx_t_9 == (int)-1) && PyErr_Occurred())) __PYX_ERR(0, 286, __pyx_L1_error) __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_v_self->_aug_state.has_gauss = __pyx_t_9; /* "numpy/random/mtrand.pyx":287 * self._aug_state.gauss = st.get('gauss', 0.0) * self._aug_state.has_gauss = st.get('has_gauss', 0) * self._bit_generator.state = st # <<<<<<<<<<<<<< * * def random_sample(self, size=None): */ if (__Pyx_PyObject_SetAttrStr(__pyx_v_self->_bit_generator, __pyx_n_s_state, __pyx_v_st) < 0) __PYX_ERR(0, 287, __pyx_L1_error) /* "numpy/random/mtrand.pyx":216 * return st * * def set_state(self, state): # <<<<<<<<<<<<<< * """ * set_state(state) */ /* function exit code */ __pyx_r = Py_None; __Pyx_INCREF(Py_None); goto __pyx_L0; __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_4); __Pyx_XDECREF(__pyx_t_5); __Pyx_XDECREF(__pyx_t_6); __Pyx_AddTraceback("numpy.random.mtrand.RandomState.set_state", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XDECREF(__pyx_v_st); __Pyx_XDECREF(__pyx_v_value); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "numpy/random/mtrand.pyx":289 * self._bit_generator.state = st * * def random_sample(self, size=None): # <<<<<<<<<<<<<< * """ * random_sample(size=None) */ /* Python wrapper */ static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_19random_sample(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static char __pyx_doc_5numpy_6random_6mtrand_11RandomState_18random_sample[] = "\n random_sample(size=None)\n\n Return random floats in the half-open interval [0.0, 1.0).\n\n Results are from the \"continuous uniform\" distribution over the\n stated interval. To sample :math:`Unif[a, b), b > a` multiply\n the output of `random_sample` by `(b-a)` and add `a`::\n\n (b - a) * random_sample() + a\n\n Parameters\n ----------\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. Default is None, in which case a\n single value is returned.\n\n Returns\n -------\n out : float or ndarray of floats\n Array of random floats of shape `size` (unless ``size=None``, in which\n case a single float is returned).\n\n Examples\n --------\n >>> np.random.random_sample()\n 0.47108547995356098 # random\n >>> type(np.random.random_sample())\n \n >>> np.random.random_sample((5,))\n array([ 0.30220482, 0.86820401, 0.1654503 , 0.11659149, 0.54323428]) # random\n\n Three-by-two array of random numbers from [-5, 0):\n\n >>> 5 * np.random.random_sample((3, 2)) - 5\n array([[-3.99149989, -0.52338984], # random\n [-2.99091858, -0.79479508],\n [-1.23204345, -1.75224494]])\n\n "; static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_19random_sample(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_size = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("random_sample (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_size,0}; PyObject* values[1] = {0}; values[0] = ((PyObject *)Py_None); if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); CYTHON_FALLTHROUGH; case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_size); if (value) { values[0] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "random_sample") < 0)) __PYX_ERR(0, 289, __pyx_L3_error) } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); CYTHON_FALLTHROUGH; case 0: break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_size = values[0]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("random_sample", 0, 0, 1, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(0, 289, __pyx_L3_error) __pyx_L3_error:; __Pyx_AddTraceback("numpy.random.mtrand.RandomState.random_sample", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_5numpy_6random_6mtrand_11RandomState_18random_sample(((struct __pyx_obj_5numpy_6random_6mtrand_RandomState *)__pyx_v_self), __pyx_v_size); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_18random_sample(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_size) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; __Pyx_RefNannySetupContext("random_sample", 0); /* "numpy/random/mtrand.pyx":332 * """ * cdef double temp * return double_fill(&random_double_fill, &self._bitgen, size, self.lock, None) # <<<<<<<<<<<<<< * * def random(self, size=None): */ __Pyx_XDECREF(__pyx_r); __pyx_t_1 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_1); __pyx_t_2 = __pyx_f_5numpy_6random_6common_double_fill((&random_double_fill), (&__pyx_v_self->_bitgen), __pyx_v_size, __pyx_t_1, Py_None); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 332, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_r = __pyx_t_2; __pyx_t_2 = 0; goto __pyx_L0; /* "numpy/random/mtrand.pyx":289 * self._bit_generator.state = st * * def random_sample(self, size=None): # <<<<<<<<<<<<<< * """ * random_sample(size=None) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_AddTraceback("numpy.random.mtrand.RandomState.random_sample", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "numpy/random/mtrand.pyx":334 * return double_fill(&random_double_fill, &self._bitgen, size, self.lock, None) * * def random(self, size=None): # <<<<<<<<<<<<<< * """ * random(size=None) */ /* Python wrapper */ static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_21random(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static char __pyx_doc_5numpy_6random_6mtrand_11RandomState_20random[] = "\n random(size=None)\n\n Return random floats in the half-open interval [0.0, 1.0). Alias for\n `random_sample` to ease forward-porting to the new random API.\n "; static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_21random(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_size = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("random (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_size,0}; PyObject* values[1] = {0}; values[0] = ((PyObject *)Py_None); if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); CYTHON_FALLTHROUGH; case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_size); if (value) { values[0] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "random") < 0)) __PYX_ERR(0, 334, __pyx_L3_error) } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); CYTHON_FALLTHROUGH; case 0: break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_size = values[0]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("random", 0, 0, 1, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(0, 334, __pyx_L3_error) __pyx_L3_error:; __Pyx_AddTraceback("numpy.random.mtrand.RandomState.random", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_5numpy_6random_6mtrand_11RandomState_20random(((struct __pyx_obj_5numpy_6random_6mtrand_RandomState *)__pyx_v_self), __pyx_v_size); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_20random(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_size) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; __Pyx_RefNannySetupContext("random", 0); /* "numpy/random/mtrand.pyx":341 * `random_sample` to ease forward-porting to the new random API. * """ * return self.random_sample(size=size) # <<<<<<<<<<<<<< * * def beta(self, a, b, size=None): */ __Pyx_XDECREF(__pyx_r); __pyx_t_1 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_self), __pyx_n_s_random_sample); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 341, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = __Pyx_PyDict_NewPresized(1); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 341, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); if (PyDict_SetItem(__pyx_t_2, __pyx_n_s_size, __pyx_v_size) < 0) __PYX_ERR(0, 341, __pyx_L1_error) __pyx_t_3 = __Pyx_PyObject_Call(__pyx_t_1, __pyx_empty_tuple, __pyx_t_2); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 341, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_r = __pyx_t_3; __pyx_t_3 = 0; goto __pyx_L0; /* "numpy/random/mtrand.pyx":334 * return double_fill(&random_double_fill, &self._bitgen, size, self.lock, None) * * def random(self, size=None): # <<<<<<<<<<<<<< * """ * random(size=None) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __Pyx_AddTraceback("numpy.random.mtrand.RandomState.random", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "numpy/random/mtrand.pyx":343 * return self.random_sample(size=size) * * def beta(self, a, b, size=None): # <<<<<<<<<<<<<< * """ * beta(a, b, size=None) */ /* Python wrapper */ static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_23beta(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static char __pyx_doc_5numpy_6random_6mtrand_11RandomState_22beta[] = "\n beta(a, b, size=None)\n\n Draw samples from a Beta distribution.\n\n The Beta distribution is a special case of the Dirichlet distribution,\n and is related to the Gamma distribution. It has the probability\n distribution function\n\n .. math:: f(x; a,b) = \\frac{1}{B(\\alpha, \\beta)} x^{\\alpha - 1}\n (1 - x)^{\\beta - 1},\n\n where the normalization, B, is the beta function,\n\n .. math:: B(\\alpha, \\beta) = \\int_0^1 t^{\\alpha - 1}\n (1 - t)^{\\beta - 1} dt.\n\n It is often seen in Bayesian inference and order statistics.\n\n Parameters\n ----------\n a : float or array_like of floats\n Alpha, positive (>0).\n b : float or array_like of floats\n Beta, positive (>0).\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. If size is ``None`` (default),\n a single value is returned if ``a`` and ``b`` are both scalars.\n Otherwise, ``np.broadcast(a, b).size`` samples are drawn.\n\n Returns\n -------\n out : ndarray or scalar\n Drawn samples from the parameterized beta distribution.\n\n "; static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_23beta(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_a = 0; PyObject *__pyx_v_b = 0; PyObject *__pyx_v_size = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("beta (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_a,&__pyx_n_s_b,&__pyx_n_s_size,0}; PyObject* values[3] = {0,0,0}; values[2] = ((PyObject *)Py_None); if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); CYTHON_FALLTHROUGH; case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); CYTHON_FALLTHROUGH; case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); CYTHON_FALLTHROUGH; case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (likely((values[0] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_a)) != 0)) kw_args--; else goto __pyx_L5_argtuple_error; CYTHON_FALLTHROUGH; case 1: if (likely((values[1] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_b)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("beta", 0, 2, 3, 1); __PYX_ERR(0, 343, __pyx_L3_error) } CYTHON_FALLTHROUGH; case 2: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_size); if (value) { values[2] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "beta") < 0)) __PYX_ERR(0, 343, __pyx_L3_error) } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); CYTHON_FALLTHROUGH; case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); values[0] = PyTuple_GET_ITEM(__pyx_args, 0); break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_a = values[0]; __pyx_v_b = values[1]; __pyx_v_size = values[2]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("beta", 0, 2, 3, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(0, 343, __pyx_L3_error) __pyx_L3_error:; __Pyx_AddTraceback("numpy.random.mtrand.RandomState.beta", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_5numpy_6random_6mtrand_11RandomState_22beta(((struct __pyx_obj_5numpy_6random_6mtrand_RandomState *)__pyx_v_self), __pyx_v_a, __pyx_v_b, __pyx_v_size); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_22beta(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_a, PyObject *__pyx_v_b, PyObject *__pyx_v_size) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; __Pyx_RefNannySetupContext("beta", 0); /* "numpy/random/mtrand.pyx":381 * * """ * return cont(&legacy_beta, &self._aug_state, size, self.lock, 2, # <<<<<<<<<<<<<< * a, 'a', CONS_POSITIVE, * b, 'b', CONS_POSITIVE, */ __Pyx_XDECREF(__pyx_r); __pyx_t_1 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_1); /* "numpy/random/mtrand.pyx":384 * a, 'a', CONS_POSITIVE, * b, 'b', CONS_POSITIVE, * 0.0, '', CONS_NONE, None) # <<<<<<<<<<<<<< * * def exponential(self, scale=1.0, size=None): */ __pyx_t_2 = __pyx_f_5numpy_6random_6common_cont((&legacy_beta), (&__pyx_v_self->_aug_state), __pyx_v_size, __pyx_t_1, 2, __pyx_v_a, __pyx_n_u_a, __pyx_e_5numpy_6random_6common_CONS_POSITIVE, __pyx_v_b, __pyx_n_u_b, __pyx_e_5numpy_6random_6common_CONS_POSITIVE, __pyx_float_0_0, __pyx_kp_u__12, __pyx_e_5numpy_6random_6common_CONS_NONE, Py_None); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 381, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_r = __pyx_t_2; __pyx_t_2 = 0; goto __pyx_L0; /* "numpy/random/mtrand.pyx":343 * return self.random_sample(size=size) * * def beta(self, a, b, size=None): # <<<<<<<<<<<<<< * """ * beta(a, b, size=None) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_AddTraceback("numpy.random.mtrand.RandomState.beta", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "numpy/random/mtrand.pyx":386 * 0.0, '', CONS_NONE, None) * * def exponential(self, scale=1.0, size=None): # <<<<<<<<<<<<<< * """ * exponential(scale=1.0, size=None) */ /* Python wrapper */ static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_25exponential(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static char __pyx_doc_5numpy_6random_6mtrand_11RandomState_24exponential[] = "\n exponential(scale=1.0, size=None)\n\n Draw samples from an exponential distribution.\n\n Its probability density function is\n\n .. math:: f(x; \\frac{1}{\\beta}) = \\frac{1}{\\beta} \\exp(-\\frac{x}{\\beta}),\n\n for ``x > 0`` and 0 elsewhere. :math:`\\beta` is the scale parameter,\n which is the inverse of the rate parameter :math:`\\lambda = 1/\\beta`.\n The rate parameter is an alternative, widely used parameterization\n of the exponential distribution [3]_.\n\n The exponential distribution is a continuous analogue of the\n geometric distribution. It describes many common situations, such as\n the size of raindrops measured over many rainstorms [1]_, or the time\n between page requests to Wikipedia [2]_.\n\n Parameters\n ----------\n scale : float or array_like of floats\n The scale parameter, :math:`\\beta = 1/\\lambda`. Must be\n non-negative.\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. If size is ``None`` (default),\n a single value is returned if ``scale`` is a scalar. Otherwise,\n ``np.array(scale).size`` samples are drawn.\n\n Returns\n -------\n out : ndarray or scalar\n Drawn samples from the parameterized exponential distribution.\n\n References\n ----------\n .. [1] Peyton Z. Peebles Jr., \"Probability, Random Variables and\n Random Signal Principles\", 4th ed, 2001, p. 57.\n .. [2] Wikipedia, \"Poisson process\",\n https://en.wikipedia.org/wiki/Poisson_process\n .. [3] Wikipedia, \"Exponential distribution\",\n https://en.wikipedia.org/wiki/Exponential_distribution\n\n "; static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_25exponential(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_scale = 0; PyObject *__pyx_v_size = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("exponential (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_scale,&__pyx_n_s_size,0}; PyObject* values[2] = {0,0}; values[0] = ((PyObject *)__pyx_float_1_0); values[1] = ((PyObject *)Py_None); if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); CYTHON_FALLTHROUGH; case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); CYTHON_FALLTHROUGH; case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_scale); if (value) { values[0] = value; kw_args--; } } CYTHON_FALLTHROUGH; case 1: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_size); if (value) { values[1] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "exponential") < 0)) __PYX_ERR(0, 386, __pyx_L3_error) } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); CYTHON_FALLTHROUGH; case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); CYTHON_FALLTHROUGH; case 0: break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_scale = values[0]; __pyx_v_size = values[1]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("exponential", 0, 0, 2, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(0, 386, __pyx_L3_error) __pyx_L3_error:; __Pyx_AddTraceback("numpy.random.mtrand.RandomState.exponential", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_5numpy_6random_6mtrand_11RandomState_24exponential(((struct __pyx_obj_5numpy_6random_6mtrand_RandomState *)__pyx_v_self), __pyx_v_scale, __pyx_v_size); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_24exponential(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_scale, PyObject *__pyx_v_size) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; __Pyx_RefNannySetupContext("exponential", 0); /* "numpy/random/mtrand.pyx":432 * * """ * return cont(&legacy_exponential, &self._aug_state, size, self.lock, 1, # <<<<<<<<<<<<<< * scale, 'scale', CONS_NON_NEGATIVE, * 0.0, '', CONS_NONE, */ __Pyx_XDECREF(__pyx_r); __pyx_t_1 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_1); /* "numpy/random/mtrand.pyx":436 * 0.0, '', CONS_NONE, * 0.0, '', CONS_NONE, * None) # <<<<<<<<<<<<<< * * def standard_exponential(self, size=None): */ __pyx_t_2 = __pyx_f_5numpy_6random_6common_cont((&legacy_exponential), (&__pyx_v_self->_aug_state), __pyx_v_size, __pyx_t_1, 1, __pyx_v_scale, __pyx_n_u_scale, __pyx_e_5numpy_6random_6common_CONS_NON_NEGATIVE, __pyx_float_0_0, __pyx_kp_u__12, __pyx_e_5numpy_6random_6common_CONS_NONE, __pyx_float_0_0, __pyx_kp_u__12, __pyx_e_5numpy_6random_6common_CONS_NONE, Py_None); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 432, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_r = __pyx_t_2; __pyx_t_2 = 0; goto __pyx_L0; /* "numpy/random/mtrand.pyx":386 * 0.0, '', CONS_NONE, None) * * def exponential(self, scale=1.0, size=None): # <<<<<<<<<<<<<< * """ * exponential(scale=1.0, size=None) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_AddTraceback("numpy.random.mtrand.RandomState.exponential", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "numpy/random/mtrand.pyx":438 * None) * * def standard_exponential(self, size=None): # <<<<<<<<<<<<<< * """ * standard_exponential(size=None) */ /* Python wrapper */ static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_27standard_exponential(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static char __pyx_doc_5numpy_6random_6mtrand_11RandomState_26standard_exponential[] = "\n standard_exponential(size=None)\n\n Draw samples from the standard exponential distribution.\n\n `standard_exponential` is identical to the exponential distribution\n with a scale parameter of 1.\n\n Parameters\n ----------\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. Default is None, in which case a\n single value is returned.\n\n Returns\n -------\n out : float or ndarray\n Drawn samples.\n\n Examples\n --------\n Output a 3x8000 array:\n\n >>> n = np.random.standard_exponential((3, 8000))\n\n "; static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_27standard_exponential(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_size = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("standard_exponential (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_size,0}; PyObject* values[1] = {0}; values[0] = ((PyObject *)Py_None); if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); CYTHON_FALLTHROUGH; case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_size); if (value) { values[0] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "standard_exponential") < 0)) __PYX_ERR(0, 438, __pyx_L3_error) } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); CYTHON_FALLTHROUGH; case 0: break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_size = values[0]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("standard_exponential", 0, 0, 1, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(0, 438, __pyx_L3_error) __pyx_L3_error:; __Pyx_AddTraceback("numpy.random.mtrand.RandomState.standard_exponential", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_5numpy_6random_6mtrand_11RandomState_26standard_exponential(((struct __pyx_obj_5numpy_6random_6mtrand_RandomState *)__pyx_v_self), __pyx_v_size); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_26standard_exponential(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_size) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; __Pyx_RefNannySetupContext("standard_exponential", 0); /* "numpy/random/mtrand.pyx":466 * * """ * return cont(&legacy_standard_exponential, &self._aug_state, size, self.lock, 0, # <<<<<<<<<<<<<< * None, None, CONS_NONE, * None, None, CONS_NONE, */ __Pyx_XDECREF(__pyx_r); __pyx_t_1 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_1); /* "numpy/random/mtrand.pyx":470 * None, None, CONS_NONE, * None, None, CONS_NONE, * None) # <<<<<<<<<<<<<< * * def tomaxint(self, size=None): */ __pyx_t_2 = __pyx_f_5numpy_6random_6common_cont((&legacy_standard_exponential), (&__pyx_v_self->_aug_state), __pyx_v_size, __pyx_t_1, 0, Py_None, Py_None, __pyx_e_5numpy_6random_6common_CONS_NONE, Py_None, Py_None, __pyx_e_5numpy_6random_6common_CONS_NONE, Py_None, Py_None, __pyx_e_5numpy_6random_6common_CONS_NONE, Py_None); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 466, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_r = __pyx_t_2; __pyx_t_2 = 0; goto __pyx_L0; /* "numpy/random/mtrand.pyx":438 * None) * * def standard_exponential(self, size=None): # <<<<<<<<<<<<<< * """ * standard_exponential(size=None) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_AddTraceback("numpy.random.mtrand.RandomState.standard_exponential", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "numpy/random/mtrand.pyx":472 * None) * * def tomaxint(self, size=None): # <<<<<<<<<<<<<< * """ * tomaxint(size=None) */ /* Python wrapper */ static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_29tomaxint(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static char __pyx_doc_5numpy_6random_6mtrand_11RandomState_28tomaxint[] = "\n tomaxint(size=None)\n\n Return a sample of uniformly distributed random integers in the interval\n [0, ``np.iinfo(np.int).max``]. The np.int type translates to the C long\n integer type and its precision is platform dependent.\n\n Parameters\n ----------\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. Default is None, in which case a\n single value is returned.\n\n Returns\n -------\n out : ndarray\n Drawn samples, with shape `size`.\n\n See Also\n --------\n randint : Uniform sampling over a given half-open interval of integers.\n random_integers : Uniform sampling over a given closed interval of\n integers.\n\n Examples\n --------\n >>> rs = np.random.RandomState() # need a RandomState object\n >>> rs.tomaxint((2,2,2))\n array([[[1170048599, 1600360186], # random\n [ 739731006, 1947757578]],\n [[1871712945, 752307660],\n [1601631370, 1479324245]]])\n >>> rs.tomaxint((2,2,2)) < np.iinfo(np.int).max\n array([[[ True, True],\n [ True, True]],\n [[ True, True],\n [ True, True]]])\n\n "; static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_29tomaxint(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_size = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("tomaxint (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_size,0}; PyObject* values[1] = {0}; values[0] = ((PyObject *)Py_None); if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); CYTHON_FALLTHROUGH; case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_size); if (value) { values[0] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "tomaxint") < 0)) __PYX_ERR(0, 472, __pyx_L3_error) } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); CYTHON_FALLTHROUGH; case 0: break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_size = values[0]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("tomaxint", 0, 0, 1, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(0, 472, __pyx_L3_error) __pyx_L3_error:; __Pyx_AddTraceback("numpy.random.mtrand.RandomState.tomaxint", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_5numpy_6random_6mtrand_11RandomState_28tomaxint(((struct __pyx_obj_5numpy_6random_6mtrand_RandomState *)__pyx_v_self), __pyx_v_size); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_28tomaxint(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_size) { npy_intp __pyx_v_n; PyArrayObject *__pyx_v_randoms = 0; int64_t *__pyx_v_randoms_data; npy_intp __pyx_v_i; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations int __pyx_t_1; int __pyx_t_2; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; PyObject *__pyx_t_5 = NULL; PyObject *__pyx_t_6 = NULL; PyObject *__pyx_t_7 = NULL; PyObject *__pyx_t_8 = NULL; PyObject *__pyx_t_9 = NULL; PyObject *__pyx_t_10 = NULL; PyObject *__pyx_t_11 = NULL; PyObject *__pyx_t_12 = NULL; npy_intp __pyx_t_13; npy_intp __pyx_t_14; npy_intp __pyx_t_15; __Pyx_RefNannySetupContext("tomaxint", 0); /* "numpy/random/mtrand.pyx":517 * cdef int64_t *randoms_data * * if size is None: # <<<<<<<<<<<<<< * with self.lock: * return random_positive_int(&self._bitgen) */ __pyx_t_1 = (__pyx_v_size == Py_None); __pyx_t_2 = (__pyx_t_1 != 0); if (__pyx_t_2) { /* "numpy/random/mtrand.pyx":518 * * if size is None: * with self.lock: # <<<<<<<<<<<<<< * return random_positive_int(&self._bitgen) * */ /*with:*/ { __pyx_t_3 = __Pyx_PyObject_LookupSpecial(__pyx_v_self->lock, __pyx_n_s_exit); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 518, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_5 = __Pyx_PyObject_LookupSpecial(__pyx_v_self->lock, __pyx_n_s_enter); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 518, __pyx_L4_error) __Pyx_GOTREF(__pyx_t_5); __pyx_t_6 = NULL; if (CYTHON_UNPACK_METHODS && likely(PyMethod_Check(__pyx_t_5))) { __pyx_t_6 = PyMethod_GET_SELF(__pyx_t_5); if (likely(__pyx_t_6)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_5); __Pyx_INCREF(__pyx_t_6); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_5, function); } } __pyx_t_4 = (__pyx_t_6) ? __Pyx_PyObject_CallOneArg(__pyx_t_5, __pyx_t_6) : __Pyx_PyObject_CallNoArg(__pyx_t_5); __Pyx_XDECREF(__pyx_t_6); __pyx_t_6 = 0; if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 518, __pyx_L4_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; /*try:*/ { { __Pyx_PyThreadState_declare __Pyx_PyThreadState_assign __Pyx_ExceptionSave(&__pyx_t_7, &__pyx_t_8, &__pyx_t_9); __Pyx_XGOTREF(__pyx_t_7); __Pyx_XGOTREF(__pyx_t_8); __Pyx_XGOTREF(__pyx_t_9); /*try:*/ { /* "numpy/random/mtrand.pyx":519 * if size is None: * with self.lock: * return random_positive_int(&self._bitgen) # <<<<<<<<<<<<<< * * randoms = np.empty(size, dtype=np.int64) */ __Pyx_XDECREF(__pyx_r); __pyx_t_4 = __Pyx_PyInt_From_int64_t(random_positive_int((&__pyx_v_self->_bitgen))); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 519, __pyx_L8_error) __Pyx_GOTREF(__pyx_t_4); __pyx_r = __pyx_t_4; __pyx_t_4 = 0; goto __pyx_L12_try_return; /* "numpy/random/mtrand.pyx":518 * * if size is None: * with self.lock: # <<<<<<<<<<<<<< * return random_positive_int(&self._bitgen) * */ } __pyx_L8_error:; __Pyx_XDECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_XDECREF(__pyx_t_5); __pyx_t_5 = 0; __Pyx_XDECREF(__pyx_t_6); __pyx_t_6 = 0; /*except:*/ { __Pyx_AddTraceback("numpy.random.mtrand.RandomState.tomaxint", __pyx_clineno, __pyx_lineno, __pyx_filename); if (__Pyx_GetException(&__pyx_t_4, &__pyx_t_5, &__pyx_t_6) < 0) __PYX_ERR(0, 518, __pyx_L10_except_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_GOTREF(__pyx_t_5); __Pyx_GOTREF(__pyx_t_6); __pyx_t_10 = PyTuple_Pack(3, __pyx_t_4, __pyx_t_5, __pyx_t_6); if (unlikely(!__pyx_t_10)) __PYX_ERR(0, 518, __pyx_L10_except_error) __Pyx_GOTREF(__pyx_t_10); __pyx_t_11 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_t_10, NULL); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0; if (unlikely(!__pyx_t_11)) __PYX_ERR(0, 518, __pyx_L10_except_error) __Pyx_GOTREF(__pyx_t_11); __pyx_t_2 = __Pyx_PyObject_IsTrue(__pyx_t_11); __Pyx_DECREF(__pyx_t_11); __pyx_t_11 = 0; if (__pyx_t_2 < 0) __PYX_ERR(0, 518, __pyx_L10_except_error) __pyx_t_1 = ((!(__pyx_t_2 != 0)) != 0); if (__pyx_t_1) { __Pyx_GIVEREF(__pyx_t_4); __Pyx_GIVEREF(__pyx_t_5); __Pyx_XGIVEREF(__pyx_t_6); __Pyx_ErrRestoreWithState(__pyx_t_4, __pyx_t_5, __pyx_t_6); __pyx_t_4 = 0; __pyx_t_5 = 0; __pyx_t_6 = 0; __PYX_ERR(0, 518, __pyx_L10_except_error) } __Pyx_XDECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_XDECREF(__pyx_t_5); __pyx_t_5 = 0; __Pyx_XDECREF(__pyx_t_6); __pyx_t_6 = 0; goto __pyx_L9_exception_handled; } __pyx_L10_except_error:; __Pyx_XGIVEREF(__pyx_t_7); __Pyx_XGIVEREF(__pyx_t_8); __Pyx_XGIVEREF(__pyx_t_9); __Pyx_ExceptionReset(__pyx_t_7, __pyx_t_8, __pyx_t_9); goto __pyx_L1_error; __pyx_L12_try_return:; __Pyx_XGIVEREF(__pyx_t_7); __Pyx_XGIVEREF(__pyx_t_8); __Pyx_XGIVEREF(__pyx_t_9); __Pyx_ExceptionReset(__pyx_t_7, __pyx_t_8, __pyx_t_9); goto __pyx_L5_return; __pyx_L9_exception_handled:; __Pyx_XGIVEREF(__pyx_t_7); __Pyx_XGIVEREF(__pyx_t_8); __Pyx_XGIVEREF(__pyx_t_9); __Pyx_ExceptionReset(__pyx_t_7, __pyx_t_8, __pyx_t_9); } } /*finally:*/ { /*normal exit:*/{ if (__pyx_t_3) { __pyx_t_9 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_tuple__13, NULL); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; if (unlikely(!__pyx_t_9)) __PYX_ERR(0, 518, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_9); __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; } goto __pyx_L7; } __pyx_L5_return: { __pyx_t_9 = __pyx_r; __pyx_r = 0; if (__pyx_t_3) { __pyx_t_8 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_tuple__13, NULL); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 518, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_8); __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; } __pyx_r = __pyx_t_9; __pyx_t_9 = 0; goto __pyx_L0; } __pyx_L7:; } goto __pyx_L17; __pyx_L4_error:; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; goto __pyx_L1_error; __pyx_L17:; } /* "numpy/random/mtrand.pyx":517 * cdef int64_t *randoms_data * * if size is None: # <<<<<<<<<<<<<< * with self.lock: * return random_positive_int(&self._bitgen) */ } /* "numpy/random/mtrand.pyx":521 * return random_positive_int(&self._bitgen) * * randoms = np.empty(size, dtype=np.int64) # <<<<<<<<<<<<<< * randoms_data = np.PyArray_DATA(randoms) * n = np.PyArray_SIZE(randoms) */ __Pyx_GetModuleGlobalName(__pyx_t_6, __pyx_n_s_np); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 521, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __pyx_t_5 = __Pyx_PyObject_GetAttrStr(__pyx_t_6, __pyx_n_s_empty); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 521, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __pyx_t_6 = PyTuple_New(1); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 521, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_INCREF(__pyx_v_size); __Pyx_GIVEREF(__pyx_v_size); PyTuple_SET_ITEM(__pyx_t_6, 0, __pyx_v_size); __pyx_t_4 = __Pyx_PyDict_NewPresized(1); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 521, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_GetModuleGlobalName(__pyx_t_10, __pyx_n_s_np); if (unlikely(!__pyx_t_10)) __PYX_ERR(0, 521, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_10); __pyx_t_12 = __Pyx_PyObject_GetAttrStr(__pyx_t_10, __pyx_n_s_int64); if (unlikely(!__pyx_t_12)) __PYX_ERR(0, 521, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_12); __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0; if (PyDict_SetItem(__pyx_t_4, __pyx_n_s_dtype, __pyx_t_12) < 0) __PYX_ERR(0, 521, __pyx_L1_error) __Pyx_DECREF(__pyx_t_12); __pyx_t_12 = 0; __pyx_t_12 = __Pyx_PyObject_Call(__pyx_t_5, __pyx_t_6, __pyx_t_4); if (unlikely(!__pyx_t_12)) __PYX_ERR(0, 521, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_12); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = __pyx_t_12; __Pyx_INCREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_12); __pyx_t_12 = 0; __pyx_v_randoms = ((PyArrayObject *)__pyx_t_4); __pyx_t_4 = 0; /* "numpy/random/mtrand.pyx":522 * * randoms = np.empty(size, dtype=np.int64) * randoms_data = np.PyArray_DATA(randoms) # <<<<<<<<<<<<<< * n = np.PyArray_SIZE(randoms) * */ __pyx_v_randoms_data = ((int64_t *)PyArray_DATA(__pyx_v_randoms)); /* "numpy/random/mtrand.pyx":523 * randoms = np.empty(size, dtype=np.int64) * randoms_data = np.PyArray_DATA(randoms) * n = np.PyArray_SIZE(randoms) # <<<<<<<<<<<<<< * * for i in range(n): */ __pyx_v_n = PyArray_SIZE(__pyx_v_randoms); /* "numpy/random/mtrand.pyx":525 * n = np.PyArray_SIZE(randoms) * * for i in range(n): # <<<<<<<<<<<<<< * with self.lock, nogil: * randoms_data[i] = random_positive_int(&self._bitgen) */ __pyx_t_13 = __pyx_v_n; __pyx_t_14 = __pyx_t_13; for (__pyx_t_15 = 0; __pyx_t_15 < __pyx_t_14; __pyx_t_15+=1) { __pyx_v_i = __pyx_t_15; /* "numpy/random/mtrand.pyx":526 * * for i in range(n): * with self.lock, nogil: # <<<<<<<<<<<<<< * randoms_data[i] = random_positive_int(&self._bitgen) * return randoms */ /*with:*/ { __pyx_t_3 = __Pyx_PyObject_LookupSpecial(__pyx_v_self->lock, __pyx_n_s_exit); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 526, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_12 = __Pyx_PyObject_LookupSpecial(__pyx_v_self->lock, __pyx_n_s_enter); if (unlikely(!__pyx_t_12)) __PYX_ERR(0, 526, __pyx_L20_error) __Pyx_GOTREF(__pyx_t_12); __pyx_t_6 = NULL; if (CYTHON_UNPACK_METHODS && likely(PyMethod_Check(__pyx_t_12))) { __pyx_t_6 = PyMethod_GET_SELF(__pyx_t_12); if (likely(__pyx_t_6)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_12); __Pyx_INCREF(__pyx_t_6); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_12, function); } } __pyx_t_4 = (__pyx_t_6) ? __Pyx_PyObject_CallOneArg(__pyx_t_12, __pyx_t_6) : __Pyx_PyObject_CallNoArg(__pyx_t_12); __Pyx_XDECREF(__pyx_t_6); __pyx_t_6 = 0; if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 526, __pyx_L20_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_12); __pyx_t_12 = 0; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; /*try:*/ { { (void)__pyx_t_9; (void)__pyx_t_8; (void)__pyx_t_7; /* mark used */ /*try:*/ { { #ifdef WITH_THREAD PyThreadState *_save; Py_UNBLOCK_THREADS __Pyx_FastGIL_Remember(); #endif /*try:*/ { /* "numpy/random/mtrand.pyx":527 * for i in range(n): * with self.lock, nogil: * randoms_data[i] = random_positive_int(&self._bitgen) # <<<<<<<<<<<<<< * return randoms * */ (__pyx_v_randoms_data[__pyx_v_i]) = random_positive_int((&__pyx_v_self->_bitgen)); } /* "numpy/random/mtrand.pyx":526 * * for i in range(n): * with self.lock, nogil: # <<<<<<<<<<<<<< * randoms_data[i] = random_positive_int(&self._bitgen) * return randoms */ /*finally:*/ { /*normal exit:*/{ #ifdef WITH_THREAD __Pyx_FastGIL_Forget(); Py_BLOCK_THREADS #endif goto __pyx_L38; } __pyx_L38:; } } } } } /*finally:*/ { /*normal exit:*/{ if (__pyx_t_3) { __pyx_t_7 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_tuple__13, NULL); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; if (unlikely(!__pyx_t_7)) __PYX_ERR(0, 526, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_7); __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; } goto __pyx_L25; } __pyx_L25:; } goto __pyx_L39; __pyx_L20_error:; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; goto __pyx_L1_error; __pyx_L39:; } } /* "numpy/random/mtrand.pyx":528 * with self.lock, nogil: * randoms_data[i] = random_positive_int(&self._bitgen) * return randoms # <<<<<<<<<<<<<< * * def randint(self, low, high=None, size=None, dtype=int): */ __Pyx_XDECREF(__pyx_r); __Pyx_INCREF(((PyObject *)__pyx_v_randoms)); __pyx_r = ((PyObject *)__pyx_v_randoms); goto __pyx_L0; /* "numpy/random/mtrand.pyx":472 * None) * * def tomaxint(self, size=None): # <<<<<<<<<<<<<< * """ * tomaxint(size=None) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_4); __Pyx_XDECREF(__pyx_t_5); __Pyx_XDECREF(__pyx_t_6); __Pyx_XDECREF(__pyx_t_10); __Pyx_XDECREF(__pyx_t_12); __Pyx_AddTraceback("numpy.random.mtrand.RandomState.tomaxint", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XDECREF((PyObject *)__pyx_v_randoms); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "numpy/random/mtrand.pyx":530 * return randoms * * def randint(self, low, high=None, size=None, dtype=int): # <<<<<<<<<<<<<< * """ * randint(low, high=None, size=None, dtype='l') */ /* Python wrapper */ static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_31randint(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static char __pyx_doc_5numpy_6random_6mtrand_11RandomState_30randint[] = "\n randint(low, high=None, size=None, dtype='l')\n\n Return random integers from `low` (inclusive) to `high` (exclusive).\n\n Return random integers from the \"discrete uniform\" distribution of\n the specified dtype in the \"half-open\" interval [`low`, `high`). If\n `high` is None (the default), then results are from [0, `low`).\n\n Parameters\n ----------\n low : int or array-like of ints\n Lowest (signed) integers to be drawn from the distribution (unless\n ``high=None``, in which case this parameter is one above the\n *highest* such integer).\n high : int or array-like of ints, optional\n If provided, one above the largest (signed) integer to be drawn\n from the distribution (see above for behavior if ``high=None``).\n If array-like, must contain integer values\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. Default is None, in which case a\n single value is returned.\n dtype : dtype, optional\n Desired dtype of the result. All dtypes are determined by their\n name, i.e., 'int64', 'int', etc, so byteorder is not available\n and a specific precision may have different C types depending\n on the platform. The default value is 'np.int'.\n\n .. versionadded:: 1.11.0\n\n Returns\n -------\n out : int or ndarray of ints\n `size`-shaped array of random integers from the appropriate\n distribution, or a single such random int if `size` not provided.\n\n See Also\n --------\n random.random_integers : similar to `randint`, only for the closed\n interval [`low`, `high`], and 1 is the lowest value if `high` is\n omitted.\n\n Examples\n --------\n >>""> np.random.randint(2, size=10)\n array([1, 0, 0, 0, 1, 1, 0, 0, 1, 0]) # random\n >>> np.random.randint(1, size=10)\n array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])\n\n Generate a 2 x 4 array of ints between 0 and 4, inclusive:\n\n >>> np.random.randint(5, size=(2, 4))\n array([[4, 0, 2, 1], # random\n [3, 2, 2, 0]])\n\n Generate a 1 x 3 array with 3 different upper bounds\n\n >>> np.random.randint(1, [3, 5, 10])\n array([2, 2, 9]) # random\n\n Generate a 1 by 3 array with 3 different lower bounds\n\n >>> np.random.randint([1, 5, 7], 10)\n array([9, 8, 7]) # random\n\n Generate a 2 by 4 array using broadcasting with dtype of uint8\n\n >>> np.random.randint([1, 3, 5, 7], [[10], [20]], dtype=np.uint8)\n array([[ 8, 6, 9, 7], # random\n [ 1, 16, 9, 12]], dtype=uint8)\n "; static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_31randint(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_low = 0; PyObject *__pyx_v_high = 0; PyObject *__pyx_v_size = 0; PyObject *__pyx_v_dtype = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("randint (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_low,&__pyx_n_s_high,&__pyx_n_s_size,&__pyx_n_s_dtype,0}; PyObject* values[4] = {0,0,0,0}; values[1] = ((PyObject *)Py_None); values[2] = ((PyObject *)Py_None); values[3] = __pyx_k__14; if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 4: values[3] = PyTuple_GET_ITEM(__pyx_args, 3); CYTHON_FALLTHROUGH; case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); CYTHON_FALLTHROUGH; case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); CYTHON_FALLTHROUGH; case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); CYTHON_FALLTHROUGH; case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (likely((values[0] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_low)) != 0)) kw_args--; else goto __pyx_L5_argtuple_error; CYTHON_FALLTHROUGH; case 1: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_high); if (value) { values[1] = value; kw_args--; } } CYTHON_FALLTHROUGH; case 2: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_size); if (value) { values[2] = value; kw_args--; } } CYTHON_FALLTHROUGH; case 3: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_dtype); if (value) { values[3] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "randint") < 0)) __PYX_ERR(0, 530, __pyx_L3_error) } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 4: values[3] = PyTuple_GET_ITEM(__pyx_args, 3); CYTHON_FALLTHROUGH; case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); CYTHON_FALLTHROUGH; case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); CYTHON_FALLTHROUGH; case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_low = values[0]; __pyx_v_high = values[1]; __pyx_v_size = values[2]; __pyx_v_dtype = values[3]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("randint", 0, 1, 4, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(0, 530, __pyx_L3_error) __pyx_L3_error:; __Pyx_AddTraceback("numpy.random.mtrand.RandomState.randint", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_5numpy_6random_6mtrand_11RandomState_30randint(((struct __pyx_obj_5numpy_6random_6mtrand_RandomState *)__pyx_v_self), __pyx_v_low, __pyx_v_high, __pyx_v_size, __pyx_v_dtype); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_30randint(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_low, PyObject *__pyx_v_high, PyObject *__pyx_v_size, PyObject *__pyx_v_dtype) { PyObject *__pyx_v_dt = NULL; PyObject *__pyx_v_key = NULL; int __pyx_v__masked; int __pyx_v__endpoint; PyObject *__pyx_v_ret = NULL; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations int __pyx_t_1; int __pyx_t_2; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; int __pyx_t_5; PyObject *__pyx_t_6 = NULL; __Pyx_RefNannySetupContext("randint", 0); __Pyx_INCREF(__pyx_v_low); __Pyx_INCREF(__pyx_v_high); /* "numpy/random/mtrand.pyx":604 * """ * * if high is None: # <<<<<<<<<<<<<< * high = low * low = 0 */ __pyx_t_1 = (__pyx_v_high == Py_None); __pyx_t_2 = (__pyx_t_1 != 0); if (__pyx_t_2) { /* "numpy/random/mtrand.pyx":605 * * if high is None: * high = low # <<<<<<<<<<<<<< * low = 0 * */ __Pyx_INCREF(__pyx_v_low); __Pyx_DECREF_SET(__pyx_v_high, __pyx_v_low); /* "numpy/random/mtrand.pyx":606 * if high is None: * high = low * low = 0 # <<<<<<<<<<<<<< * * dt = np.dtype(dtype) */ __Pyx_INCREF(__pyx_int_0); __Pyx_DECREF_SET(__pyx_v_low, __pyx_int_0); /* "numpy/random/mtrand.pyx":604 * """ * * if high is None: # <<<<<<<<<<<<<< * high = low * low = 0 */ } /* "numpy/random/mtrand.pyx":608 * low = 0 * * dt = np.dtype(dtype) # <<<<<<<<<<<<<< * key = dt.name * if key not in _integers_types: */ __pyx_t_3 = __Pyx_PyObject_CallOneArg(((PyObject *)__pyx_ptype_5numpy_dtype), __pyx_v_dtype); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 608, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_v_dt = __pyx_t_3; __pyx_t_3 = 0; /* "numpy/random/mtrand.pyx":609 * * dt = np.dtype(dtype) * key = dt.name # <<<<<<<<<<<<<< * if key not in _integers_types: * raise TypeError('Unsupported dtype "%s" for randint' % key) */ __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_v_dt, __pyx_n_s_name_2); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 609, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_v_key = __pyx_t_3; __pyx_t_3 = 0; /* "numpy/random/mtrand.pyx":610 * dt = np.dtype(dtype) * key = dt.name * if key not in _integers_types: # <<<<<<<<<<<<<< * raise TypeError('Unsupported dtype "%s" for randint' % key) * if not dt.isnative: */ __Pyx_GetModuleGlobalName(__pyx_t_3, __pyx_n_s_integers_types); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 610, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_2 = (__Pyx_PySequence_ContainsTF(__pyx_v_key, __pyx_t_3, Py_NE)); if (unlikely(__pyx_t_2 < 0)) __PYX_ERR(0, 610, __pyx_L1_error) __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_1 = (__pyx_t_2 != 0); if (unlikely(__pyx_t_1)) { /* "numpy/random/mtrand.pyx":611 * key = dt.name * if key not in _integers_types: * raise TypeError('Unsupported dtype "%s" for randint' % key) # <<<<<<<<<<<<<< * if not dt.isnative: * # numpy 1.17.0, 2019-05-28 */ __pyx_t_3 = __Pyx_PyUnicode_FormatSafe(__pyx_kp_u_Unsupported_dtype_s_for_randint, __pyx_v_key); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 611, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_4 = __Pyx_PyObject_CallOneArg(__pyx_builtin_TypeError, __pyx_t_3); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 611, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_Raise(__pyx_t_4, 0, 0, 0); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __PYX_ERR(0, 611, __pyx_L1_error) /* "numpy/random/mtrand.pyx":610 * dt = np.dtype(dtype) * key = dt.name * if key not in _integers_types: # <<<<<<<<<<<<<< * raise TypeError('Unsupported dtype "%s" for randint' % key) * if not dt.isnative: */ } /* "numpy/random/mtrand.pyx":612 * if key not in _integers_types: * raise TypeError('Unsupported dtype "%s" for randint' % key) * if not dt.isnative: # <<<<<<<<<<<<<< * # numpy 1.17.0, 2019-05-28 * warnings.warn('Providing a dtype with a non-native byteorder is ' */ __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_v_dt, __pyx_n_s_isnative); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 612, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_1 = __Pyx_PyObject_IsTrue(__pyx_t_4); if (unlikely(__pyx_t_1 < 0)) __PYX_ERR(0, 612, __pyx_L1_error) __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_2 = ((!__pyx_t_1) != 0); if (__pyx_t_2) { /* "numpy/random/mtrand.pyx":614 * if not dt.isnative: * # numpy 1.17.0, 2019-05-28 * warnings.warn('Providing a dtype with a non-native byteorder is ' # <<<<<<<<<<<<<< * 'not supported. If you require platform-independent ' * 'byteorder, call byteswap when required.\nIn future ' */ __Pyx_GetModuleGlobalName(__pyx_t_4, __pyx_n_s_warnings); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 614, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_warn); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 614, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; /* "numpy/random/mtrand.pyx":618 * 'byteorder, call byteswap when required.\nIn future ' * 'version, providing byteorder will raise a ' * 'ValueError', DeprecationWarning) # <<<<<<<<<<<<<< * * # Implementation detail: the use a masked method to generate */ __pyx_t_4 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_tuple__15, NULL); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 614, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; /* "numpy/random/mtrand.pyx":612 * if key not in _integers_types: * raise TypeError('Unsupported dtype "%s" for randint' % key) * if not dt.isnative: # <<<<<<<<<<<<<< * # numpy 1.17.0, 2019-05-28 * warnings.warn('Providing a dtype with a non-native byteorder is ' */ } /* "numpy/random/mtrand.pyx":624 * # faster. randomgen allows a choice, we will always use the slower but * # backward compatible one. * cdef bint _masked = True # <<<<<<<<<<<<<< * cdef bint _endpoint = False * */ __pyx_v__masked = 1; /* "numpy/random/mtrand.pyx":625 * # backward compatible one. * cdef bint _masked = True * cdef bint _endpoint = False # <<<<<<<<<<<<<< * * if key == 'int32': */ __pyx_v__endpoint = 0; /* "numpy/random/mtrand.pyx":627 * cdef bint _endpoint = False * * if key == 'int32': # <<<<<<<<<<<<<< * ret = _rand_int32(low, high, size, _masked, _endpoint, &self._bitgen, self.lock) * elif key == 'int64': */ __pyx_t_2 = (__Pyx_PyUnicode_Equals(__pyx_v_key, __pyx_n_u_int32, Py_EQ)); if (unlikely(__pyx_t_2 < 0)) __PYX_ERR(0, 627, __pyx_L1_error) if (__pyx_t_2) { /* "numpy/random/mtrand.pyx":628 * * if key == 'int32': * ret = _rand_int32(low, high, size, _masked, _endpoint, &self._bitgen, self.lock) # <<<<<<<<<<<<<< * elif key == 'int64': * ret = _rand_int64(low, high, size, _masked, _endpoint, &self._bitgen, self.lock) */ __pyx_t_4 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_4); __pyx_t_3 = __pyx_f_5numpy_6random_16bounded_integers__rand_int32(__pyx_v_low, __pyx_v_high, __pyx_v_size, __pyx_v__masked, __pyx_v__endpoint, (&__pyx_v_self->_bitgen), __pyx_t_4); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 628, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_v_ret = __pyx_t_3; __pyx_t_3 = 0; /* "numpy/random/mtrand.pyx":627 * cdef bint _endpoint = False * * if key == 'int32': # <<<<<<<<<<<<<< * ret = _rand_int32(low, high, size, _masked, _endpoint, &self._bitgen, self.lock) * elif key == 'int64': */ goto __pyx_L6; } /* "numpy/random/mtrand.pyx":629 * if key == 'int32': * ret = _rand_int32(low, high, size, _masked, _endpoint, &self._bitgen, self.lock) * elif key == 'int64': # <<<<<<<<<<<<<< * ret = _rand_int64(low, high, size, _masked, _endpoint, &self._bitgen, self.lock) * elif key == 'int16': */ __pyx_t_2 = (__Pyx_PyUnicode_Equals(__pyx_v_key, __pyx_n_u_int64, Py_EQ)); if (unlikely(__pyx_t_2 < 0)) __PYX_ERR(0, 629, __pyx_L1_error) if (__pyx_t_2) { /* "numpy/random/mtrand.pyx":630 * ret = _rand_int32(low, high, size, _masked, _endpoint, &self._bitgen, self.lock) * elif key == 'int64': * ret = _rand_int64(low, high, size, _masked, _endpoint, &self._bitgen, self.lock) # <<<<<<<<<<<<<< * elif key == 'int16': * ret = _rand_int16(low, high, size, _masked, _endpoint, &self._bitgen, self.lock) */ __pyx_t_3 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_3); __pyx_t_4 = __pyx_f_5numpy_6random_16bounded_integers__rand_int64(__pyx_v_low, __pyx_v_high, __pyx_v_size, __pyx_v__masked, __pyx_v__endpoint, (&__pyx_v_self->_bitgen), __pyx_t_3); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 630, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_v_ret = __pyx_t_4; __pyx_t_4 = 0; /* "numpy/random/mtrand.pyx":629 * if key == 'int32': * ret = _rand_int32(low, high, size, _masked, _endpoint, &self._bitgen, self.lock) * elif key == 'int64': # <<<<<<<<<<<<<< * ret = _rand_int64(low, high, size, _masked, _endpoint, &self._bitgen, self.lock) * elif key == 'int16': */ goto __pyx_L6; } /* "numpy/random/mtrand.pyx":631 * elif key == 'int64': * ret = _rand_int64(low, high, size, _masked, _endpoint, &self._bitgen, self.lock) * elif key == 'int16': # <<<<<<<<<<<<<< * ret = _rand_int16(low, high, size, _masked, _endpoint, &self._bitgen, self.lock) * elif key == 'int8': */ __pyx_t_2 = (__Pyx_PyUnicode_Equals(__pyx_v_key, __pyx_n_u_int16, Py_EQ)); if (unlikely(__pyx_t_2 < 0)) __PYX_ERR(0, 631, __pyx_L1_error) if (__pyx_t_2) { /* "numpy/random/mtrand.pyx":632 * ret = _rand_int64(low, high, size, _masked, _endpoint, &self._bitgen, self.lock) * elif key == 'int16': * ret = _rand_int16(low, high, size, _masked, _endpoint, &self._bitgen, self.lock) # <<<<<<<<<<<<<< * elif key == 'int8': * ret = _rand_int8(low, high, size, _masked, _endpoint, &self._bitgen, self.lock) */ __pyx_t_4 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_4); __pyx_t_3 = __pyx_f_5numpy_6random_16bounded_integers__rand_int16(__pyx_v_low, __pyx_v_high, __pyx_v_size, __pyx_v__masked, __pyx_v__endpoint, (&__pyx_v_self->_bitgen), __pyx_t_4); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 632, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_v_ret = __pyx_t_3; __pyx_t_3 = 0; /* "numpy/random/mtrand.pyx":631 * elif key == 'int64': * ret = _rand_int64(low, high, size, _masked, _endpoint, &self._bitgen, self.lock) * elif key == 'int16': # <<<<<<<<<<<<<< * ret = _rand_int16(low, high, size, _masked, _endpoint, &self._bitgen, self.lock) * elif key == 'int8': */ goto __pyx_L6; } /* "numpy/random/mtrand.pyx":633 * elif key == 'int16': * ret = _rand_int16(low, high, size, _masked, _endpoint, &self._bitgen, self.lock) * elif key == 'int8': # <<<<<<<<<<<<<< * ret = _rand_int8(low, high, size, _masked, _endpoint, &self._bitgen, self.lock) * elif key == 'uint64': */ __pyx_t_2 = (__Pyx_PyUnicode_Equals(__pyx_v_key, __pyx_n_u_int8, Py_EQ)); if (unlikely(__pyx_t_2 < 0)) __PYX_ERR(0, 633, __pyx_L1_error) if (__pyx_t_2) { /* "numpy/random/mtrand.pyx":634 * ret = _rand_int16(low, high, size, _masked, _endpoint, &self._bitgen, self.lock) * elif key == 'int8': * ret = _rand_int8(low, high, size, _masked, _endpoint, &self._bitgen, self.lock) # <<<<<<<<<<<<<< * elif key == 'uint64': * ret = _rand_uint64(low, high, size, _masked, _endpoint, &self._bitgen, self.lock) */ __pyx_t_3 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_3); __pyx_t_4 = __pyx_f_5numpy_6random_16bounded_integers__rand_int8(__pyx_v_low, __pyx_v_high, __pyx_v_size, __pyx_v__masked, __pyx_v__endpoint, (&__pyx_v_self->_bitgen), __pyx_t_3); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 634, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_v_ret = __pyx_t_4; __pyx_t_4 = 0; /* "numpy/random/mtrand.pyx":633 * elif key == 'int16': * ret = _rand_int16(low, high, size, _masked, _endpoint, &self._bitgen, self.lock) * elif key == 'int8': # <<<<<<<<<<<<<< * ret = _rand_int8(low, high, size, _masked, _endpoint, &self._bitgen, self.lock) * elif key == 'uint64': */ goto __pyx_L6; } /* "numpy/random/mtrand.pyx":635 * elif key == 'int8': * ret = _rand_int8(low, high, size, _masked, _endpoint, &self._bitgen, self.lock) * elif key == 'uint64': # <<<<<<<<<<<<<< * ret = _rand_uint64(low, high, size, _masked, _endpoint, &self._bitgen, self.lock) * elif key == 'uint32': */ __pyx_t_2 = (__Pyx_PyUnicode_Equals(__pyx_v_key, __pyx_n_u_uint64, Py_EQ)); if (unlikely(__pyx_t_2 < 0)) __PYX_ERR(0, 635, __pyx_L1_error) if (__pyx_t_2) { /* "numpy/random/mtrand.pyx":636 * ret = _rand_int8(low, high, size, _masked, _endpoint, &self._bitgen, self.lock) * elif key == 'uint64': * ret = _rand_uint64(low, high, size, _masked, _endpoint, &self._bitgen, self.lock) # <<<<<<<<<<<<<< * elif key == 'uint32': * ret = _rand_uint32(low, high, size, _masked, _endpoint, &self._bitgen, self.lock) */ __pyx_t_4 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_4); __pyx_t_3 = __pyx_f_5numpy_6random_16bounded_integers__rand_uint64(__pyx_v_low, __pyx_v_high, __pyx_v_size, __pyx_v__masked, __pyx_v__endpoint, (&__pyx_v_self->_bitgen), __pyx_t_4); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 636, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_v_ret = __pyx_t_3; __pyx_t_3 = 0; /* "numpy/random/mtrand.pyx":635 * elif key == 'int8': * ret = _rand_int8(low, high, size, _masked, _endpoint, &self._bitgen, self.lock) * elif key == 'uint64': # <<<<<<<<<<<<<< * ret = _rand_uint64(low, high, size, _masked, _endpoint, &self._bitgen, self.lock) * elif key == 'uint32': */ goto __pyx_L6; } /* "numpy/random/mtrand.pyx":637 * elif key == 'uint64': * ret = _rand_uint64(low, high, size, _masked, _endpoint, &self._bitgen, self.lock) * elif key == 'uint32': # <<<<<<<<<<<<<< * ret = _rand_uint32(low, high, size, _masked, _endpoint, &self._bitgen, self.lock) * elif key == 'uint16': */ __pyx_t_2 = (__Pyx_PyUnicode_Equals(__pyx_v_key, __pyx_n_u_uint32, Py_EQ)); if (unlikely(__pyx_t_2 < 0)) __PYX_ERR(0, 637, __pyx_L1_error) if (__pyx_t_2) { /* "numpy/random/mtrand.pyx":638 * ret = _rand_uint64(low, high, size, _masked, _endpoint, &self._bitgen, self.lock) * elif key == 'uint32': * ret = _rand_uint32(low, high, size, _masked, _endpoint, &self._bitgen, self.lock) # <<<<<<<<<<<<<< * elif key == 'uint16': * ret = _rand_uint16(low, high, size, _masked, _endpoint, &self._bitgen, self.lock) */ __pyx_t_3 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_3); __pyx_t_4 = __pyx_f_5numpy_6random_16bounded_integers__rand_uint32(__pyx_v_low, __pyx_v_high, __pyx_v_size, __pyx_v__masked, __pyx_v__endpoint, (&__pyx_v_self->_bitgen), __pyx_t_3); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 638, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_v_ret = __pyx_t_4; __pyx_t_4 = 0; /* "numpy/random/mtrand.pyx":637 * elif key == 'uint64': * ret = _rand_uint64(low, high, size, _masked, _endpoint, &self._bitgen, self.lock) * elif key == 'uint32': # <<<<<<<<<<<<<< * ret = _rand_uint32(low, high, size, _masked, _endpoint, &self._bitgen, self.lock) * elif key == 'uint16': */ goto __pyx_L6; } /* "numpy/random/mtrand.pyx":639 * elif key == 'uint32': * ret = _rand_uint32(low, high, size, _masked, _endpoint, &self._bitgen, self.lock) * elif key == 'uint16': # <<<<<<<<<<<<<< * ret = _rand_uint16(low, high, size, _masked, _endpoint, &self._bitgen, self.lock) * elif key == 'uint8': */ __pyx_t_2 = (__Pyx_PyUnicode_Equals(__pyx_v_key, __pyx_n_u_uint16, Py_EQ)); if (unlikely(__pyx_t_2 < 0)) __PYX_ERR(0, 639, __pyx_L1_error) if (__pyx_t_2) { /* "numpy/random/mtrand.pyx":640 * ret = _rand_uint32(low, high, size, _masked, _endpoint, &self._bitgen, self.lock) * elif key == 'uint16': * ret = _rand_uint16(low, high, size, _masked, _endpoint, &self._bitgen, self.lock) # <<<<<<<<<<<<<< * elif key == 'uint8': * ret = _rand_uint8(low, high, size, _masked, _endpoint, &self._bitgen, self.lock) */ __pyx_t_4 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_4); __pyx_t_3 = __pyx_f_5numpy_6random_16bounded_integers__rand_uint16(__pyx_v_low, __pyx_v_high, __pyx_v_size, __pyx_v__masked, __pyx_v__endpoint, (&__pyx_v_self->_bitgen), __pyx_t_4); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 640, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_v_ret = __pyx_t_3; __pyx_t_3 = 0; /* "numpy/random/mtrand.pyx":639 * elif key == 'uint32': * ret = _rand_uint32(low, high, size, _masked, _endpoint, &self._bitgen, self.lock) * elif key == 'uint16': # <<<<<<<<<<<<<< * ret = _rand_uint16(low, high, size, _masked, _endpoint, &self._bitgen, self.lock) * elif key == 'uint8': */ goto __pyx_L6; } /* "numpy/random/mtrand.pyx":641 * elif key == 'uint16': * ret = _rand_uint16(low, high, size, _masked, _endpoint, &self._bitgen, self.lock) * elif key == 'uint8': # <<<<<<<<<<<<<< * ret = _rand_uint8(low, high, size, _masked, _endpoint, &self._bitgen, self.lock) * elif key == 'bool': */ __pyx_t_2 = (__Pyx_PyUnicode_Equals(__pyx_v_key, __pyx_n_u_uint8, Py_EQ)); if (unlikely(__pyx_t_2 < 0)) __PYX_ERR(0, 641, __pyx_L1_error) if (__pyx_t_2) { /* "numpy/random/mtrand.pyx":642 * ret = _rand_uint16(low, high, size, _masked, _endpoint, &self._bitgen, self.lock) * elif key == 'uint8': * ret = _rand_uint8(low, high, size, _masked, _endpoint, &self._bitgen, self.lock) # <<<<<<<<<<<<<< * elif key == 'bool': * ret = _rand_bool(low, high, size, _masked, _endpoint, &self._bitgen, self.lock) */ __pyx_t_3 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_3); __pyx_t_4 = __pyx_f_5numpy_6random_16bounded_integers__rand_uint8(__pyx_v_low, __pyx_v_high, __pyx_v_size, __pyx_v__masked, __pyx_v__endpoint, (&__pyx_v_self->_bitgen), __pyx_t_3); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 642, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_v_ret = __pyx_t_4; __pyx_t_4 = 0; /* "numpy/random/mtrand.pyx":641 * elif key == 'uint16': * ret = _rand_uint16(low, high, size, _masked, _endpoint, &self._bitgen, self.lock) * elif key == 'uint8': # <<<<<<<<<<<<<< * ret = _rand_uint8(low, high, size, _masked, _endpoint, &self._bitgen, self.lock) * elif key == 'bool': */ goto __pyx_L6; } /* "numpy/random/mtrand.pyx":643 * elif key == 'uint8': * ret = _rand_uint8(low, high, size, _masked, _endpoint, &self._bitgen, self.lock) * elif key == 'bool': # <<<<<<<<<<<<<< * ret = _rand_bool(low, high, size, _masked, _endpoint, &self._bitgen, self.lock) * */ __pyx_t_2 = (__Pyx_PyUnicode_Equals(__pyx_v_key, __pyx_n_u_bool, Py_EQ)); if (unlikely(__pyx_t_2 < 0)) __PYX_ERR(0, 643, __pyx_L1_error) if (__pyx_t_2) { /* "numpy/random/mtrand.pyx":644 * ret = _rand_uint8(low, high, size, _masked, _endpoint, &self._bitgen, self.lock) * elif key == 'bool': * ret = _rand_bool(low, high, size, _masked, _endpoint, &self._bitgen, self.lock) # <<<<<<<<<<<<<< * * if size is None and dtype in (np.bool, np.int, np.long): */ __pyx_t_4 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_4); __pyx_t_3 = __pyx_f_5numpy_6random_16bounded_integers__rand_bool(__pyx_v_low, __pyx_v_high, __pyx_v_size, __pyx_v__masked, __pyx_v__endpoint, (&__pyx_v_self->_bitgen), __pyx_t_4); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 644, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_v_ret = __pyx_t_3; __pyx_t_3 = 0; /* "numpy/random/mtrand.pyx":643 * elif key == 'uint8': * ret = _rand_uint8(low, high, size, _masked, _endpoint, &self._bitgen, self.lock) * elif key == 'bool': # <<<<<<<<<<<<<< * ret = _rand_bool(low, high, size, _masked, _endpoint, &self._bitgen, self.lock) * */ } __pyx_L6:; /* "numpy/random/mtrand.pyx":646 * ret = _rand_bool(low, high, size, _masked, _endpoint, &self._bitgen, self.lock) * * if size is None and dtype in (np.bool, np.int, np.long): # <<<<<<<<<<<<<< * if np.array(ret).shape == (): * return dtype(ret) */ __pyx_t_1 = (__pyx_v_size == Py_None); __pyx_t_5 = (__pyx_t_1 != 0); if (__pyx_t_5) { } else { __pyx_t_2 = __pyx_t_5; goto __pyx_L8_bool_binop_done; } __Pyx_INCREF(__pyx_v_dtype); __pyx_t_3 = __pyx_v_dtype; __Pyx_GetModuleGlobalName(__pyx_t_4, __pyx_n_s_np); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 646, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_6 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_bool); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 646, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = PyObject_RichCompare(__pyx_t_3, __pyx_t_6, Py_EQ); __Pyx_XGOTREF(__pyx_t_4); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 646, __pyx_L1_error) __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __pyx_t_1 = __Pyx_PyObject_IsTrue(__pyx_t_4); if (unlikely(__pyx_t_1 < 0)) __PYX_ERR(0, 646, __pyx_L1_error) __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; if (!__pyx_t_1) { } else { __pyx_t_5 = __pyx_t_1; goto __pyx_L10_bool_binop_done; } __Pyx_GetModuleGlobalName(__pyx_t_4, __pyx_n_s_np); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 646, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_6 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_int); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 646, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = PyObject_RichCompare(__pyx_t_3, __pyx_t_6, Py_EQ); __Pyx_XGOTREF(__pyx_t_4); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 646, __pyx_L1_error) __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __pyx_t_1 = __Pyx_PyObject_IsTrue(__pyx_t_4); if (unlikely(__pyx_t_1 < 0)) __PYX_ERR(0, 646, __pyx_L1_error) __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; if (!__pyx_t_1) { } else { __pyx_t_5 = __pyx_t_1; goto __pyx_L10_bool_binop_done; } __Pyx_GetModuleGlobalName(__pyx_t_4, __pyx_n_s_np); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 646, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_6 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_long); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 646, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = PyObject_RichCompare(__pyx_t_3, __pyx_t_6, Py_EQ); __Pyx_XGOTREF(__pyx_t_4); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 646, __pyx_L1_error) __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __pyx_t_1 = __Pyx_PyObject_IsTrue(__pyx_t_4); if (unlikely(__pyx_t_1 < 0)) __PYX_ERR(0, 646, __pyx_L1_error) __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_5 = __pyx_t_1; __pyx_L10_bool_binop_done:; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_1 = (__pyx_t_5 != 0); __pyx_t_2 = __pyx_t_1; __pyx_L8_bool_binop_done:; if (__pyx_t_2) { /* "numpy/random/mtrand.pyx":647 * * if size is None and dtype in (np.bool, np.int, np.long): * if np.array(ret).shape == (): # <<<<<<<<<<<<<< * return dtype(ret) * return ret */ __Pyx_GetModuleGlobalName(__pyx_t_4, __pyx_n_s_np); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 647, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_6 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_array); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 647, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; if (unlikely(!__pyx_v_ret)) { __Pyx_RaiseUnboundLocalError("ret"); __PYX_ERR(0, 647, __pyx_L1_error) } __pyx_t_4 = NULL; if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_6))) { __pyx_t_4 = PyMethod_GET_SELF(__pyx_t_6); if (likely(__pyx_t_4)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_6); __Pyx_INCREF(__pyx_t_4); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_6, function); } } __pyx_t_3 = (__pyx_t_4) ? __Pyx_PyObject_Call2Args(__pyx_t_6, __pyx_t_4, __pyx_v_ret) : __Pyx_PyObject_CallOneArg(__pyx_t_6, __pyx_v_ret); __Pyx_XDECREF(__pyx_t_4); __pyx_t_4 = 0; if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 647, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __pyx_t_6 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_shape); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 647, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = PyObject_RichCompare(__pyx_t_6, __pyx_empty_tuple, Py_EQ); __Pyx_XGOTREF(__pyx_t_3); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 647, __pyx_L1_error) __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __pyx_t_2 = __Pyx_PyObject_IsTrue(__pyx_t_3); if (unlikely(__pyx_t_2 < 0)) __PYX_ERR(0, 647, __pyx_L1_error) __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; if (__pyx_t_2) { /* "numpy/random/mtrand.pyx":648 * if size is None and dtype in (np.bool, np.int, np.long): * if np.array(ret).shape == (): * return dtype(ret) # <<<<<<<<<<<<<< * return ret * */ __Pyx_XDECREF(__pyx_r); if (unlikely(!__pyx_v_ret)) { __Pyx_RaiseUnboundLocalError("ret"); __PYX_ERR(0, 648, __pyx_L1_error) } __Pyx_INCREF(__pyx_v_dtype); __pyx_t_6 = __pyx_v_dtype; __pyx_t_4 = NULL; if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_6))) { __pyx_t_4 = PyMethod_GET_SELF(__pyx_t_6); if (likely(__pyx_t_4)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_6); __Pyx_INCREF(__pyx_t_4); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_6, function); } } __pyx_t_3 = (__pyx_t_4) ? __Pyx_PyObject_Call2Args(__pyx_t_6, __pyx_t_4, __pyx_v_ret) : __Pyx_PyObject_CallOneArg(__pyx_t_6, __pyx_v_ret); __Pyx_XDECREF(__pyx_t_4); __pyx_t_4 = 0; if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 648, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __pyx_r = __pyx_t_3; __pyx_t_3 = 0; goto __pyx_L0; /* "numpy/random/mtrand.pyx":647 * * if size is None and dtype in (np.bool, np.int, np.long): * if np.array(ret).shape == (): # <<<<<<<<<<<<<< * return dtype(ret) * return ret */ } /* "numpy/random/mtrand.pyx":646 * ret = _rand_bool(low, high, size, _masked, _endpoint, &self._bitgen, self.lock) * * if size is None and dtype in (np.bool, np.int, np.long): # <<<<<<<<<<<<<< * if np.array(ret).shape == (): * return dtype(ret) */ } /* "numpy/random/mtrand.pyx":649 * if np.array(ret).shape == (): * return dtype(ret) * return ret # <<<<<<<<<<<<<< * * def bytes(self, np.npy_intp length): */ __Pyx_XDECREF(__pyx_r); if (unlikely(!__pyx_v_ret)) { __Pyx_RaiseUnboundLocalError("ret"); __PYX_ERR(0, 649, __pyx_L1_error) } __Pyx_INCREF(__pyx_v_ret); __pyx_r = __pyx_v_ret; goto __pyx_L0; /* "numpy/random/mtrand.pyx":530 * return randoms * * def randint(self, low, high=None, size=None, dtype=int): # <<<<<<<<<<<<<< * """ * randint(low, high=None, size=None, dtype='l') */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __Pyx_XDECREF(__pyx_t_6); __Pyx_AddTraceback("numpy.random.mtrand.RandomState.randint", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XDECREF(__pyx_v_dt); __Pyx_XDECREF(__pyx_v_key); __Pyx_XDECREF(__pyx_v_ret); __Pyx_XDECREF(__pyx_v_low); __Pyx_XDECREF(__pyx_v_high); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "numpy/random/mtrand.pyx":651 * return ret * * def bytes(self, np.npy_intp length): # <<<<<<<<<<<<<< * """ * bytes(length) */ /* Python wrapper */ static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_33bytes(PyObject *__pyx_v_self, PyObject *__pyx_arg_length); /*proto*/ static char __pyx_doc_5numpy_6random_6mtrand_11RandomState_32bytes[] = "\n bytes(length)\n\n Return random bytes.\n\n Parameters\n ----------\n length : int\n Number of random bytes.\n\n Returns\n -------\n out : str\n String of length `length`.\n\n Examples\n --------\n >>> np.random.bytes(10)\n ' eh\\x85\\x022SZ\\xbf\\xa4' #random\n\n "; static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_33bytes(PyObject *__pyx_v_self, PyObject *__pyx_arg_length) { npy_intp __pyx_v_length; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("bytes (wrapper)", 0); assert(__pyx_arg_length); { __pyx_v_length = __Pyx_PyInt_As_Py_intptr_t(__pyx_arg_length); if (unlikely((__pyx_v_length == ((npy_intp)-1)) && PyErr_Occurred())) __PYX_ERR(0, 651, __pyx_L3_error) } goto __pyx_L4_argument_unpacking_done; __pyx_L3_error:; __Pyx_AddTraceback("numpy.random.mtrand.RandomState.bytes", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_5numpy_6random_6mtrand_11RandomState_32bytes(((struct __pyx_obj_5numpy_6random_6mtrand_RandomState *)__pyx_v_self), ((npy_intp)__pyx_v_length)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_32bytes(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, npy_intp __pyx_v_length) { Py_ssize_t __pyx_v_n_uint32; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; PyObject *__pyx_t_5 = NULL; PyObject *__pyx_t_6 = NULL; __Pyx_RefNannySetupContext("bytes", 0); /* "numpy/random/mtrand.pyx":673 * * """ * cdef Py_ssize_t n_uint32 = ((length - 1) // 4 + 1) # <<<<<<<<<<<<<< * # Interpret the uint32s as little-endian to convert them to bytes * # consistently. */ __pyx_v_n_uint32 = (((__pyx_v_length - 1) / 4) + 1); /* "numpy/random/mtrand.pyx":676 * # Interpret the uint32s as little-endian to convert them to bytes * # consistently. * return self.randint(0, 4294967296, size=n_uint32, # <<<<<<<<<<<<<< * dtype=np.uint32).astype('>> np.random.choice(5, 3, replace=False)\n array([3,1,0]) # random\n >>> #This is equivalent to np.random.permutation(np.arange(5))[:3]\n\n Generate a non-uniform random sample from np.arange(5) of size\n 3 without replacement:\n\n >>> np.random.choice(5, 3, replace=False, p=[0.1, 0, 0.3, 0.6, 0])\n array([2, 3, 0]) # random\n\n Any of the above can be repeated with an arbitrary array-like\n instead of just integers. For instance:\n\n >>> aa_milne_arr = ['pooh', 'rabbit', 'piglet', 'Christopher']\n >>> np.random.choice(aa_milne_arr, 5, p=[0.5, 0.1, 0.1, 0.3])\n array(['pooh', 'pooh', 'pooh', 'Christopher', 'piglet'], # random\n dtype=' 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_size); if (value) { values[1] = value; kw_args--; } } CYTHON_FALLTHROUGH; case 2: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_replace); if (value) { values[2] = value; kw_args--; } } CYTHON_FALLTHROUGH; case 3: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_p); if (value) { values[3] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "choice") < 0)) __PYX_ERR(0, 680, __pyx_L3_error) } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 4: values[3] = PyTuple_GET_ITEM(__pyx_args, 3); CYTHON_FALLTHROUGH; case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); CYTHON_FALLTHROUGH; case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); CYTHON_FALLTHROUGH; case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_a = values[0]; __pyx_v_size = values[1]; __pyx_v_replace = values[2]; __pyx_v_p = values[3]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("choice", 0, 1, 4, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(0, 680, __pyx_L3_error) __pyx_L3_error:; __Pyx_AddTraceback("numpy.random.mtrand.RandomState.choice", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_5numpy_6random_6mtrand_11RandomState_34choice(((struct __pyx_obj_5numpy_6random_6mtrand_RandomState *)__pyx_v_self), __pyx_v_a, __pyx_v_size, __pyx_v_replace, __pyx_v_p); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_34choice(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_a, PyObject *__pyx_v_size, PyObject *__pyx_v_replace, PyObject *__pyx_v_p) { PyObject *__pyx_v_pop_size = NULL; Py_ssize_t __pyx_v_d; PyObject *__pyx_v_atol = NULL; double *__pyx_v_pix; double __pyx_v_p_sum; PyObject *__pyx_v_shape = NULL; PyObject *__pyx_v_cdf = NULL; PyObject *__pyx_v_uniform_samples = NULL; PyObject *__pyx_v_idx = NULL; PyObject *__pyx_v_n_uniq = NULL; PyObject *__pyx_v_found = NULL; PyObject *__pyx_v_flat_found = NULL; PyObject *__pyx_v_x = NULL; PyObject *__pyx_v_new = NULL; CYTHON_UNUSED PyObject *__pyx_v__ = NULL; PyObject *__pyx_v_unique_indices = NULL; PyObject *__pyx_v_res = NULL; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; int __pyx_t_5; PyObject *__pyx_t_6 = NULL; PyObject *__pyx_t_7 = NULL; PyObject *__pyx_t_8 = NULL; PyObject *__pyx_t_9 = NULL; int __pyx_t_10; int __pyx_t_11; int __pyx_t_12; Py_ssize_t __pyx_t_13; PyObject *__pyx_t_14 = NULL; PyObject *(*__pyx_t_15)(PyObject *); __Pyx_RefNannySetupContext("choice", 0); __Pyx_INCREF(__pyx_v_a); __Pyx_INCREF(__pyx_v_size); __Pyx_INCREF(__pyx_v_p); /* "numpy/random/mtrand.pyx":759 * * # Format and Verify input * a = np.array(a, copy=False) # <<<<<<<<<<<<<< * if a.ndim == 0: * try: */ __Pyx_GetModuleGlobalName(__pyx_t_1, __pyx_n_s_np); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 759, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_array); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 759, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = PyTuple_New(1); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 759, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_INCREF(__pyx_v_a); __Pyx_GIVEREF(__pyx_v_a); PyTuple_SET_ITEM(__pyx_t_1, 0, __pyx_v_a); __pyx_t_3 = __Pyx_PyDict_NewPresized(1); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 759, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); if (PyDict_SetItem(__pyx_t_3, __pyx_n_s_copy, Py_False) < 0) __PYX_ERR(0, 759, __pyx_L1_error) __pyx_t_4 = __Pyx_PyObject_Call(__pyx_t_2, __pyx_t_1, __pyx_t_3); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 759, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF_SET(__pyx_v_a, __pyx_t_4); __pyx_t_4 = 0; /* "numpy/random/mtrand.pyx":760 * # Format and Verify input * a = np.array(a, copy=False) * if a.ndim == 0: # <<<<<<<<<<<<<< * try: * # __index__ must return an integer by python rules. */ __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_v_a, __pyx_n_s_ndim); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 760, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_3 = __Pyx_PyInt_EqObjC(__pyx_t_4, __pyx_int_0, 0, 0); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 760, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_5 = __Pyx_PyObject_IsTrue(__pyx_t_3); if (unlikely(__pyx_t_5 < 0)) __PYX_ERR(0, 760, __pyx_L1_error) __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; if (__pyx_t_5) { /* "numpy/random/mtrand.pyx":761 * a = np.array(a, copy=False) * if a.ndim == 0: * try: # <<<<<<<<<<<<<< * # __index__ must return an integer by python rules. * pop_size = operator.index(a.item()) */ { __Pyx_PyThreadState_declare __Pyx_PyThreadState_assign __Pyx_ExceptionSave(&__pyx_t_6, &__pyx_t_7, &__pyx_t_8); __Pyx_XGOTREF(__pyx_t_6); __Pyx_XGOTREF(__pyx_t_7); __Pyx_XGOTREF(__pyx_t_8); /*try:*/ { /* "numpy/random/mtrand.pyx":763 * try: * # __index__ must return an integer by python rules. * pop_size = operator.index(a.item()) # <<<<<<<<<<<<<< * except TypeError: * raise ValueError("a must be 1-dimensional or an integer") */ __Pyx_GetModuleGlobalName(__pyx_t_4, __pyx_n_s_operator); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 763, __pyx_L4_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_index); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 763, __pyx_L4_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_v_a, __pyx_n_s_item); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 763, __pyx_L4_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_9 = NULL; if (CYTHON_UNPACK_METHODS && likely(PyMethod_Check(__pyx_t_2))) { __pyx_t_9 = PyMethod_GET_SELF(__pyx_t_2); if (likely(__pyx_t_9)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_2); __Pyx_INCREF(__pyx_t_9); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_2, function); } } __pyx_t_4 = (__pyx_t_9) ? __Pyx_PyObject_CallOneArg(__pyx_t_2, __pyx_t_9) : __Pyx_PyObject_CallNoArg(__pyx_t_2); __Pyx_XDECREF(__pyx_t_9); __pyx_t_9 = 0; if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 763, __pyx_L4_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = NULL; if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_1))) { __pyx_t_2 = PyMethod_GET_SELF(__pyx_t_1); if (likely(__pyx_t_2)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_1); __Pyx_INCREF(__pyx_t_2); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_1, function); } } __pyx_t_3 = (__pyx_t_2) ? __Pyx_PyObject_Call2Args(__pyx_t_1, __pyx_t_2, __pyx_t_4) : __Pyx_PyObject_CallOneArg(__pyx_t_1, __pyx_t_4); __Pyx_XDECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 763, __pyx_L4_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_v_pop_size = __pyx_t_3; __pyx_t_3 = 0; /* "numpy/random/mtrand.pyx":761 * a = np.array(a, copy=False) * if a.ndim == 0: * try: # <<<<<<<<<<<<<< * # __index__ must return an integer by python rules. * pop_size = operator.index(a.item()) */ } __Pyx_XDECREF(__pyx_t_6); __pyx_t_6 = 0; __Pyx_XDECREF(__pyx_t_7); __pyx_t_7 = 0; __Pyx_XDECREF(__pyx_t_8); __pyx_t_8 = 0; goto __pyx_L9_try_end; __pyx_L4_error:; __Pyx_XDECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_XDECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_XDECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_XDECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_XDECREF(__pyx_t_9); __pyx_t_9 = 0; /* "numpy/random/mtrand.pyx":764 * # __index__ must return an integer by python rules. * pop_size = operator.index(a.item()) * except TypeError: # <<<<<<<<<<<<<< * raise ValueError("a must be 1-dimensional or an integer") * if pop_size <= 0 and np.prod(size) != 0: */ __pyx_t_10 = __Pyx_PyErr_ExceptionMatches(__pyx_builtin_TypeError); if (__pyx_t_10) { __Pyx_AddTraceback("numpy.random.mtrand.RandomState.choice", __pyx_clineno, __pyx_lineno, __pyx_filename); if (__Pyx_GetException(&__pyx_t_3, &__pyx_t_1, &__pyx_t_4) < 0) __PYX_ERR(0, 764, __pyx_L6_except_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_GOTREF(__pyx_t_1); __Pyx_GOTREF(__pyx_t_4); /* "numpy/random/mtrand.pyx":765 * pop_size = operator.index(a.item()) * except TypeError: * raise ValueError("a must be 1-dimensional or an integer") # <<<<<<<<<<<<<< * if pop_size <= 0 and np.prod(size) != 0: * raise ValueError("a must be greater than 0 unless no samples are taken") */ __pyx_t_2 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__17, NULL); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 765, __pyx_L6_except_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_Raise(__pyx_t_2, 0, 0, 0); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __PYX_ERR(0, 765, __pyx_L6_except_error) } goto __pyx_L6_except_error; __pyx_L6_except_error:; /* "numpy/random/mtrand.pyx":761 * a = np.array(a, copy=False) * if a.ndim == 0: * try: # <<<<<<<<<<<<<< * # __index__ must return an integer by python rules. * pop_size = operator.index(a.item()) */ __Pyx_XGIVEREF(__pyx_t_6); __Pyx_XGIVEREF(__pyx_t_7); __Pyx_XGIVEREF(__pyx_t_8); __Pyx_ExceptionReset(__pyx_t_6, __pyx_t_7, __pyx_t_8); goto __pyx_L1_error; __pyx_L9_try_end:; } /* "numpy/random/mtrand.pyx":766 * except TypeError: * raise ValueError("a must be 1-dimensional or an integer") * if pop_size <= 0 and np.prod(size) != 0: # <<<<<<<<<<<<<< * raise ValueError("a must be greater than 0 unless no samples are taken") * elif a.ndim != 1: */ __pyx_t_4 = PyObject_RichCompare(__pyx_v_pop_size, __pyx_int_0, Py_LE); __Pyx_XGOTREF(__pyx_t_4); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 766, __pyx_L1_error) __pyx_t_11 = __Pyx_PyObject_IsTrue(__pyx_t_4); if (unlikely(__pyx_t_11 < 0)) __PYX_ERR(0, 766, __pyx_L1_error) __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; if (__pyx_t_11) { } else { __pyx_t_5 = __pyx_t_11; goto __pyx_L13_bool_binop_done; } __Pyx_GetModuleGlobalName(__pyx_t_1, __pyx_n_s_np); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 766, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_prod); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 766, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = NULL; if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_3))) { __pyx_t_1 = PyMethod_GET_SELF(__pyx_t_3); if (likely(__pyx_t_1)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_3); __Pyx_INCREF(__pyx_t_1); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_3, function); } } __pyx_t_4 = (__pyx_t_1) ? __Pyx_PyObject_Call2Args(__pyx_t_3, __pyx_t_1, __pyx_v_size) : __Pyx_PyObject_CallOneArg(__pyx_t_3, __pyx_v_size); __Pyx_XDECREF(__pyx_t_1); __pyx_t_1 = 0; if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 766, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = __Pyx_PyInt_NeObjC(__pyx_t_4, __pyx_int_0, 0, 0); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 766, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_11 = __Pyx_PyObject_IsTrue(__pyx_t_3); if (unlikely(__pyx_t_11 < 0)) __PYX_ERR(0, 766, __pyx_L1_error) __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_5 = __pyx_t_11; __pyx_L13_bool_binop_done:; if (unlikely(__pyx_t_5)) { /* "numpy/random/mtrand.pyx":767 * raise ValueError("a must be 1-dimensional or an integer") * if pop_size <= 0 and np.prod(size) != 0: * raise ValueError("a must be greater than 0 unless no samples are taken") # <<<<<<<<<<<<<< * elif a.ndim != 1: * raise ValueError("a must be 1-dimensional") */ __pyx_t_3 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__18, NULL); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 767, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_Raise(__pyx_t_3, 0, 0, 0); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __PYX_ERR(0, 767, __pyx_L1_error) /* "numpy/random/mtrand.pyx":766 * except TypeError: * raise ValueError("a must be 1-dimensional or an integer") * if pop_size <= 0 and np.prod(size) != 0: # <<<<<<<<<<<<<< * raise ValueError("a must be greater than 0 unless no samples are taken") * elif a.ndim != 1: */ } /* "numpy/random/mtrand.pyx":760 * # Format and Verify input * a = np.array(a, copy=False) * if a.ndim == 0: # <<<<<<<<<<<<<< * try: * # __index__ must return an integer by python rules. */ goto __pyx_L3; } /* "numpy/random/mtrand.pyx":768 * if pop_size <= 0 and np.prod(size) != 0: * raise ValueError("a must be greater than 0 unless no samples are taken") * elif a.ndim != 1: # <<<<<<<<<<<<<< * raise ValueError("a must be 1-dimensional") * else: */ __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_v_a, __pyx_n_s_ndim); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 768, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_4 = __Pyx_PyInt_NeObjC(__pyx_t_3, __pyx_int_1, 1, 0); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 768, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_5 = __Pyx_PyObject_IsTrue(__pyx_t_4); if (unlikely(__pyx_t_5 < 0)) __PYX_ERR(0, 768, __pyx_L1_error) __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; if (unlikely(__pyx_t_5)) { /* "numpy/random/mtrand.pyx":769 * raise ValueError("a must be greater than 0 unless no samples are taken") * elif a.ndim != 1: * raise ValueError("a must be 1-dimensional") # <<<<<<<<<<<<<< * else: * pop_size = a.shape[0] */ __pyx_t_4 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__19, NULL); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 769, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_Raise(__pyx_t_4, 0, 0, 0); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __PYX_ERR(0, 769, __pyx_L1_error) /* "numpy/random/mtrand.pyx":768 * if pop_size <= 0 and np.prod(size) != 0: * raise ValueError("a must be greater than 0 unless no samples are taken") * elif a.ndim != 1: # <<<<<<<<<<<<<< * raise ValueError("a must be 1-dimensional") * else: */ } /* "numpy/random/mtrand.pyx":771 * raise ValueError("a must be 1-dimensional") * else: * pop_size = a.shape[0] # <<<<<<<<<<<<<< * if pop_size is 0 and np.prod(size) != 0: * raise ValueError("'a' cannot be empty unless no samples are taken") */ /*else*/ { __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_v_a, __pyx_n_s_shape); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 771, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_3 = __Pyx_GetItemInt(__pyx_t_4, 0, long, 1, __Pyx_PyInt_From_long, 0, 0, 0); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 771, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_v_pop_size = __pyx_t_3; __pyx_t_3 = 0; /* "numpy/random/mtrand.pyx":772 * else: * pop_size = a.shape[0] * if pop_size is 0 and np.prod(size) != 0: # <<<<<<<<<<<<<< * raise ValueError("'a' cannot be empty unless no samples are taken") * */ __pyx_t_11 = (__pyx_v_pop_size == __pyx_int_0); __pyx_t_12 = (__pyx_t_11 != 0); if (__pyx_t_12) { } else { __pyx_t_5 = __pyx_t_12; goto __pyx_L16_bool_binop_done; } __Pyx_GetModuleGlobalName(__pyx_t_4, __pyx_n_s_np); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 772, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_prod); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 772, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = NULL; if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_1))) { __pyx_t_4 = PyMethod_GET_SELF(__pyx_t_1); if (likely(__pyx_t_4)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_1); __Pyx_INCREF(__pyx_t_4); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_1, function); } } __pyx_t_3 = (__pyx_t_4) ? __Pyx_PyObject_Call2Args(__pyx_t_1, __pyx_t_4, __pyx_v_size) : __Pyx_PyObject_CallOneArg(__pyx_t_1, __pyx_v_size); __Pyx_XDECREF(__pyx_t_4); __pyx_t_4 = 0; if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 772, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = __Pyx_PyInt_NeObjC(__pyx_t_3, __pyx_int_0, 0, 0); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 772, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_12 = __Pyx_PyObject_IsTrue(__pyx_t_1); if (unlikely(__pyx_t_12 < 0)) __PYX_ERR(0, 772, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_5 = __pyx_t_12; __pyx_L16_bool_binop_done:; if (unlikely(__pyx_t_5)) { /* "numpy/random/mtrand.pyx":773 * pop_size = a.shape[0] * if pop_size is 0 and np.prod(size) != 0: * raise ValueError("'a' cannot be empty unless no samples are taken") # <<<<<<<<<<<<<< * * if p is not None: */ __pyx_t_1 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__20, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 773, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_Raise(__pyx_t_1, 0, 0, 0); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __PYX_ERR(0, 773, __pyx_L1_error) /* "numpy/random/mtrand.pyx":772 * else: * pop_size = a.shape[0] * if pop_size is 0 and np.prod(size) != 0: # <<<<<<<<<<<<<< * raise ValueError("'a' cannot be empty unless no samples are taken") * */ } } __pyx_L3:; /* "numpy/random/mtrand.pyx":775 * raise ValueError("'a' cannot be empty unless no samples are taken") * * if p is not None: # <<<<<<<<<<<<<< * d = len(p) * */ __pyx_t_5 = (__pyx_v_p != Py_None); __pyx_t_12 = (__pyx_t_5 != 0); if (__pyx_t_12) { /* "numpy/random/mtrand.pyx":776 * * if p is not None: * d = len(p) # <<<<<<<<<<<<<< * * atol = np.sqrt(np.finfo(np.float64).eps) */ __pyx_t_13 = PyObject_Length(__pyx_v_p); if (unlikely(__pyx_t_13 == ((Py_ssize_t)-1))) __PYX_ERR(0, 776, __pyx_L1_error) __pyx_v_d = __pyx_t_13; /* "numpy/random/mtrand.pyx":778 * d = len(p) * * atol = np.sqrt(np.finfo(np.float64).eps) # <<<<<<<<<<<<<< * if isinstance(p, np.ndarray): * if np.issubdtype(p.dtype, np.floating): */ __Pyx_GetModuleGlobalName(__pyx_t_3, __pyx_n_s_np); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 778, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_sqrt); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 778, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_GetModuleGlobalName(__pyx_t_2, __pyx_n_s_np); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 778, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_9 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_finfo); if (unlikely(!__pyx_t_9)) __PYX_ERR(0, 778, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_9); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_GetModuleGlobalName(__pyx_t_2, __pyx_n_s_np); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 778, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_14 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_float64); if (unlikely(!__pyx_t_14)) __PYX_ERR(0, 778, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_14); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = NULL; if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_9))) { __pyx_t_2 = PyMethod_GET_SELF(__pyx_t_9); if (likely(__pyx_t_2)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_9); __Pyx_INCREF(__pyx_t_2); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_9, function); } } __pyx_t_3 = (__pyx_t_2) ? __Pyx_PyObject_Call2Args(__pyx_t_9, __pyx_t_2, __pyx_t_14) : __Pyx_PyObject_CallOneArg(__pyx_t_9, __pyx_t_14); __Pyx_XDECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_14); __pyx_t_14 = 0; if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 778, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; __pyx_t_9 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_eps); if (unlikely(!__pyx_t_9)) __PYX_ERR(0, 778, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_9); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = NULL; if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_4))) { __pyx_t_3 = PyMethod_GET_SELF(__pyx_t_4); if (likely(__pyx_t_3)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_4); __Pyx_INCREF(__pyx_t_3); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_4, function); } } __pyx_t_1 = (__pyx_t_3) ? __Pyx_PyObject_Call2Args(__pyx_t_4, __pyx_t_3, __pyx_t_9) : __Pyx_PyObject_CallOneArg(__pyx_t_4, __pyx_t_9); __Pyx_XDECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 778, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_v_atol = __pyx_t_1; __pyx_t_1 = 0; /* "numpy/random/mtrand.pyx":779 * * atol = np.sqrt(np.finfo(np.float64).eps) * if isinstance(p, np.ndarray): # <<<<<<<<<<<<<< * if np.issubdtype(p.dtype, np.floating): * atol = max(atol, np.sqrt(np.finfo(p.dtype).eps)) */ __pyx_t_12 = __Pyx_TypeCheck(__pyx_v_p, __pyx_ptype_5numpy_ndarray); __pyx_t_5 = (__pyx_t_12 != 0); if (__pyx_t_5) { /* "numpy/random/mtrand.pyx":780 * atol = np.sqrt(np.finfo(np.float64).eps) * if isinstance(p, np.ndarray): * if np.issubdtype(p.dtype, np.floating): # <<<<<<<<<<<<<< * atol = max(atol, np.sqrt(np.finfo(p.dtype).eps)) * */ __Pyx_GetModuleGlobalName(__pyx_t_4, __pyx_n_s_np); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 780, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_9 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_issubdtype); if (unlikely(!__pyx_t_9)) __PYX_ERR(0, 780, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_9); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_v_p, __pyx_n_s_dtype); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 780, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_GetModuleGlobalName(__pyx_t_3, __pyx_n_s_np); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 780, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_14 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_floating); if (unlikely(!__pyx_t_14)) __PYX_ERR(0, 780, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_14); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = NULL; __pyx_t_10 = 0; if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_9))) { __pyx_t_3 = PyMethod_GET_SELF(__pyx_t_9); if (likely(__pyx_t_3)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_9); __Pyx_INCREF(__pyx_t_3); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_9, function); __pyx_t_10 = 1; } } #if CYTHON_FAST_PYCALL if (PyFunction_Check(__pyx_t_9)) { PyObject *__pyx_temp[3] = {__pyx_t_3, __pyx_t_4, __pyx_t_14}; __pyx_t_1 = __Pyx_PyFunction_FastCall(__pyx_t_9, __pyx_temp+1-__pyx_t_10, 2+__pyx_t_10); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 780, __pyx_L1_error) __Pyx_XDECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF(__pyx_t_14); __pyx_t_14 = 0; } else #endif #if CYTHON_FAST_PYCCALL if (__Pyx_PyFastCFunction_Check(__pyx_t_9)) { PyObject *__pyx_temp[3] = {__pyx_t_3, __pyx_t_4, __pyx_t_14}; __pyx_t_1 = __Pyx_PyCFunction_FastCall(__pyx_t_9, __pyx_temp+1-__pyx_t_10, 2+__pyx_t_10); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 780, __pyx_L1_error) __Pyx_XDECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF(__pyx_t_14); __pyx_t_14 = 0; } else #endif { __pyx_t_2 = PyTuple_New(2+__pyx_t_10); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 780, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); if (__pyx_t_3) { __Pyx_GIVEREF(__pyx_t_3); PyTuple_SET_ITEM(__pyx_t_2, 0, __pyx_t_3); __pyx_t_3 = NULL; } __Pyx_GIVEREF(__pyx_t_4); PyTuple_SET_ITEM(__pyx_t_2, 0+__pyx_t_10, __pyx_t_4); __Pyx_GIVEREF(__pyx_t_14); PyTuple_SET_ITEM(__pyx_t_2, 1+__pyx_t_10, __pyx_t_14); __pyx_t_4 = 0; __pyx_t_14 = 0; __pyx_t_1 = __Pyx_PyObject_Call(__pyx_t_9, __pyx_t_2, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 780, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; } __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; __pyx_t_5 = __Pyx_PyObject_IsTrue(__pyx_t_1); if (unlikely(__pyx_t_5 < 0)) __PYX_ERR(0, 780, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; if (__pyx_t_5) { /* "numpy/random/mtrand.pyx":781 * if isinstance(p, np.ndarray): * if np.issubdtype(p.dtype, np.floating): * atol = max(atol, np.sqrt(np.finfo(p.dtype).eps)) # <<<<<<<<<<<<<< * * p = np.PyArray_FROM_OTF( */ __Pyx_GetModuleGlobalName(__pyx_t_9, __pyx_n_s_np); if (unlikely(!__pyx_t_9)) __PYX_ERR(0, 781, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_9); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_9, __pyx_n_s_sqrt); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 781, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; __Pyx_GetModuleGlobalName(__pyx_t_14, __pyx_n_s_np); if (unlikely(!__pyx_t_14)) __PYX_ERR(0, 781, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_14); __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_14, __pyx_n_s_finfo); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 781, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_14); __pyx_t_14 = 0; __pyx_t_14 = __Pyx_PyObject_GetAttrStr(__pyx_v_p, __pyx_n_s_dtype); if (unlikely(!__pyx_t_14)) __PYX_ERR(0, 781, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_14); __pyx_t_3 = NULL; if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_4))) { __pyx_t_3 = PyMethod_GET_SELF(__pyx_t_4); if (likely(__pyx_t_3)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_4); __Pyx_INCREF(__pyx_t_3); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_4, function); } } __pyx_t_9 = (__pyx_t_3) ? __Pyx_PyObject_Call2Args(__pyx_t_4, __pyx_t_3, __pyx_t_14) : __Pyx_PyObject_CallOneArg(__pyx_t_4, __pyx_t_14); __Pyx_XDECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_14); __pyx_t_14 = 0; if (unlikely(!__pyx_t_9)) __PYX_ERR(0, 781, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_9); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_9, __pyx_n_s_eps); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 781, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; __pyx_t_9 = NULL; if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_2))) { __pyx_t_9 = PyMethod_GET_SELF(__pyx_t_2); if (likely(__pyx_t_9)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_2); __Pyx_INCREF(__pyx_t_9); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_2, function); } } __pyx_t_1 = (__pyx_t_9) ? __Pyx_PyObject_Call2Args(__pyx_t_2, __pyx_t_9, __pyx_t_4) : __Pyx_PyObject_CallOneArg(__pyx_t_2, __pyx_t_4); __Pyx_XDECREF(__pyx_t_9); __pyx_t_9 = 0; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 781, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_INCREF(__pyx_v_atol); __pyx_t_2 = __pyx_v_atol; __pyx_t_9 = PyObject_RichCompare(__pyx_t_1, __pyx_t_2, Py_GT); __Pyx_XGOTREF(__pyx_t_9); if (unlikely(!__pyx_t_9)) __PYX_ERR(0, 781, __pyx_L1_error) __pyx_t_5 = __Pyx_PyObject_IsTrue(__pyx_t_9); if (unlikely(__pyx_t_5 < 0)) __PYX_ERR(0, 781, __pyx_L1_error) __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; if (__pyx_t_5) { __Pyx_INCREF(__pyx_t_1); __pyx_t_4 = __pyx_t_1; } else { __Pyx_INCREF(__pyx_t_2); __pyx_t_4 = __pyx_t_2; } __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = __pyx_t_4; __Pyx_INCREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF_SET(__pyx_v_atol, __pyx_t_1); __pyx_t_1 = 0; /* "numpy/random/mtrand.pyx":780 * atol = np.sqrt(np.finfo(np.float64).eps) * if isinstance(p, np.ndarray): * if np.issubdtype(p.dtype, np.floating): # <<<<<<<<<<<<<< * atol = max(atol, np.sqrt(np.finfo(p.dtype).eps)) * */ } /* "numpy/random/mtrand.pyx":779 * * atol = np.sqrt(np.finfo(np.float64).eps) * if isinstance(p, np.ndarray): # <<<<<<<<<<<<<< * if np.issubdtype(p.dtype, np.floating): * atol = max(atol, np.sqrt(np.finfo(p.dtype).eps)) */ } /* "numpy/random/mtrand.pyx":783 * atol = max(atol, np.sqrt(np.finfo(p.dtype).eps)) * * p = np.PyArray_FROM_OTF( # <<<<<<<<<<<<<< * p, np.NPY_DOUBLE, np.NPY_ALIGNED | np.NPY_ARRAY_C_CONTIGUOUS) * pix = np.PyArray_DATA(p) */ __pyx_t_1 = PyArray_FROM_OTF(__pyx_v_p, NPY_DOUBLE, (NPY_ALIGNED | NPY_ARRAY_C_CONTIGUOUS)); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 783, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_4 = __pyx_t_1; __Pyx_INCREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF_SET(__pyx_v_p, __pyx_t_4); __pyx_t_4 = 0; /* "numpy/random/mtrand.pyx":785 * p = np.PyArray_FROM_OTF( * p, np.NPY_DOUBLE, np.NPY_ALIGNED | np.NPY_ARRAY_C_CONTIGUOUS) * pix = np.PyArray_DATA(p) # <<<<<<<<<<<<<< * * if p.ndim != 1: */ if (!(likely(((__pyx_v_p) == Py_None) || likely(__Pyx_TypeTest(__pyx_v_p, __pyx_ptype_5numpy_ndarray))))) __PYX_ERR(0, 785, __pyx_L1_error) __pyx_v_pix = ((double *)PyArray_DATA(((PyArrayObject *)__pyx_v_p))); /* "numpy/random/mtrand.pyx":787 * pix = np.PyArray_DATA(p) * * if p.ndim != 1: # <<<<<<<<<<<<<< * raise ValueError("'p' must be 1-dimensional") * if p.size != pop_size: */ __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_v_p, __pyx_n_s_ndim); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 787, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_1 = __Pyx_PyInt_NeObjC(__pyx_t_4, __pyx_int_1, 1, 0); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 787, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_5 = __Pyx_PyObject_IsTrue(__pyx_t_1); if (unlikely(__pyx_t_5 < 0)) __PYX_ERR(0, 787, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; if (unlikely(__pyx_t_5)) { /* "numpy/random/mtrand.pyx":788 * * if p.ndim != 1: * raise ValueError("'p' must be 1-dimensional") # <<<<<<<<<<<<<< * if p.size != pop_size: * raise ValueError("'a' and 'p' must have same size") */ __pyx_t_1 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__21, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 788, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_Raise(__pyx_t_1, 0, 0, 0); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __PYX_ERR(0, 788, __pyx_L1_error) /* "numpy/random/mtrand.pyx":787 * pix = np.PyArray_DATA(p) * * if p.ndim != 1: # <<<<<<<<<<<<<< * raise ValueError("'p' must be 1-dimensional") * if p.size != pop_size: */ } /* "numpy/random/mtrand.pyx":789 * if p.ndim != 1: * raise ValueError("'p' must be 1-dimensional") * if p.size != pop_size: # <<<<<<<<<<<<<< * raise ValueError("'a' and 'p' must have same size") * p_sum = kahan_sum(pix, d) */ __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_p, __pyx_n_s_size); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 789, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_4 = PyObject_RichCompare(__pyx_t_1, __pyx_v_pop_size, Py_NE); __Pyx_XGOTREF(__pyx_t_4); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 789, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_5 = __Pyx_PyObject_IsTrue(__pyx_t_4); if (unlikely(__pyx_t_5 < 0)) __PYX_ERR(0, 789, __pyx_L1_error) __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; if (unlikely(__pyx_t_5)) { /* "numpy/random/mtrand.pyx":790 * raise ValueError("'p' must be 1-dimensional") * if p.size != pop_size: * raise ValueError("'a' and 'p' must have same size") # <<<<<<<<<<<<<< * p_sum = kahan_sum(pix, d) * if np.isnan(p_sum): */ __pyx_t_4 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__22, NULL); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 790, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_Raise(__pyx_t_4, 0, 0, 0); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __PYX_ERR(0, 790, __pyx_L1_error) /* "numpy/random/mtrand.pyx":789 * if p.ndim != 1: * raise ValueError("'p' must be 1-dimensional") * if p.size != pop_size: # <<<<<<<<<<<<<< * raise ValueError("'a' and 'p' must have same size") * p_sum = kahan_sum(pix, d) */ } /* "numpy/random/mtrand.pyx":791 * if p.size != pop_size: * raise ValueError("'a' and 'p' must have same size") * p_sum = kahan_sum(pix, d) # <<<<<<<<<<<<<< * if np.isnan(p_sum): * raise ValueError("probabilities contain NaN") */ __pyx_v_p_sum = __pyx_f_5numpy_6random_6common_kahan_sum(__pyx_v_pix, __pyx_v_d); /* "numpy/random/mtrand.pyx":792 * raise ValueError("'a' and 'p' must have same size") * p_sum = kahan_sum(pix, d) * if np.isnan(p_sum): # <<<<<<<<<<<<<< * raise ValueError("probabilities contain NaN") * if np.logical_or.reduce(p < 0): */ __Pyx_GetModuleGlobalName(__pyx_t_1, __pyx_n_s_np); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 792, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_isnan); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 792, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = PyFloat_FromDouble(__pyx_v_p_sum); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 792, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_9 = NULL; if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_2))) { __pyx_t_9 = PyMethod_GET_SELF(__pyx_t_2); if (likely(__pyx_t_9)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_2); __Pyx_INCREF(__pyx_t_9); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_2, function); } } __pyx_t_4 = (__pyx_t_9) ? __Pyx_PyObject_Call2Args(__pyx_t_2, __pyx_t_9, __pyx_t_1) : __Pyx_PyObject_CallOneArg(__pyx_t_2, __pyx_t_1); __Pyx_XDECREF(__pyx_t_9); __pyx_t_9 = 0; __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 792, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_5 = __Pyx_PyObject_IsTrue(__pyx_t_4); if (unlikely(__pyx_t_5 < 0)) __PYX_ERR(0, 792, __pyx_L1_error) __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; if (unlikely(__pyx_t_5)) { /* "numpy/random/mtrand.pyx":793 * p_sum = kahan_sum(pix, d) * if np.isnan(p_sum): * raise ValueError("probabilities contain NaN") # <<<<<<<<<<<<<< * if np.logical_or.reduce(p < 0): * raise ValueError("probabilities are not non-negative") */ __pyx_t_4 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__23, NULL); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 793, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_Raise(__pyx_t_4, 0, 0, 0); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __PYX_ERR(0, 793, __pyx_L1_error) /* "numpy/random/mtrand.pyx":792 * raise ValueError("'a' and 'p' must have same size") * p_sum = kahan_sum(pix, d) * if np.isnan(p_sum): # <<<<<<<<<<<<<< * raise ValueError("probabilities contain NaN") * if np.logical_or.reduce(p < 0): */ } /* "numpy/random/mtrand.pyx":794 * if np.isnan(p_sum): * raise ValueError("probabilities contain NaN") * if np.logical_or.reduce(p < 0): # <<<<<<<<<<<<<< * raise ValueError("probabilities are not non-negative") * if abs(p_sum - 1.) > atol: */ __Pyx_GetModuleGlobalName(__pyx_t_2, __pyx_n_s_np); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 794, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_logical_or); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 794, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_reduce); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 794, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = PyObject_RichCompare(__pyx_v_p, __pyx_int_0, Py_LT); __Pyx_XGOTREF(__pyx_t_1); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 794, __pyx_L1_error) __pyx_t_9 = NULL; if (CYTHON_UNPACK_METHODS && likely(PyMethod_Check(__pyx_t_2))) { __pyx_t_9 = PyMethod_GET_SELF(__pyx_t_2); if (likely(__pyx_t_9)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_2); __Pyx_INCREF(__pyx_t_9); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_2, function); } } __pyx_t_4 = (__pyx_t_9) ? __Pyx_PyObject_Call2Args(__pyx_t_2, __pyx_t_9, __pyx_t_1) : __Pyx_PyObject_CallOneArg(__pyx_t_2, __pyx_t_1); __Pyx_XDECREF(__pyx_t_9); __pyx_t_9 = 0; __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 794, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_5 = __Pyx_PyObject_IsTrue(__pyx_t_4); if (unlikely(__pyx_t_5 < 0)) __PYX_ERR(0, 794, __pyx_L1_error) __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; if (unlikely(__pyx_t_5)) { /* "numpy/random/mtrand.pyx":795 * raise ValueError("probabilities contain NaN") * if np.logical_or.reduce(p < 0): * raise ValueError("probabilities are not non-negative") # <<<<<<<<<<<<<< * if abs(p_sum - 1.) > atol: * raise ValueError("probabilities do not sum to 1") */ __pyx_t_4 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__24, NULL); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 795, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_Raise(__pyx_t_4, 0, 0, 0); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __PYX_ERR(0, 795, __pyx_L1_error) /* "numpy/random/mtrand.pyx":794 * if np.isnan(p_sum): * raise ValueError("probabilities contain NaN") * if np.logical_or.reduce(p < 0): # <<<<<<<<<<<<<< * raise ValueError("probabilities are not non-negative") * if abs(p_sum - 1.) > atol: */ } /* "numpy/random/mtrand.pyx":796 * if np.logical_or.reduce(p < 0): * raise ValueError("probabilities are not non-negative") * if abs(p_sum - 1.) > atol: # <<<<<<<<<<<<<< * raise ValueError("probabilities do not sum to 1") * */ __pyx_t_4 = PyFloat_FromDouble(fabs((__pyx_v_p_sum - 1.))); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 796, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_2 = PyObject_RichCompare(__pyx_t_4, __pyx_v_atol, Py_GT); __Pyx_XGOTREF(__pyx_t_2); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 796, __pyx_L1_error) __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_5 = __Pyx_PyObject_IsTrue(__pyx_t_2); if (unlikely(__pyx_t_5 < 0)) __PYX_ERR(0, 796, __pyx_L1_error) __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; if (unlikely(__pyx_t_5)) { /* "numpy/random/mtrand.pyx":797 * raise ValueError("probabilities are not non-negative") * if abs(p_sum - 1.) > atol: * raise ValueError("probabilities do not sum to 1") # <<<<<<<<<<<<<< * * shape = size */ __pyx_t_2 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__25, NULL); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 797, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_Raise(__pyx_t_2, 0, 0, 0); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __PYX_ERR(0, 797, __pyx_L1_error) /* "numpy/random/mtrand.pyx":796 * if np.logical_or.reduce(p < 0): * raise ValueError("probabilities are not non-negative") * if abs(p_sum - 1.) > atol: # <<<<<<<<<<<<<< * raise ValueError("probabilities do not sum to 1") * */ } /* "numpy/random/mtrand.pyx":775 * raise ValueError("'a' cannot be empty unless no samples are taken") * * if p is not None: # <<<<<<<<<<<<<< * d = len(p) * */ } /* "numpy/random/mtrand.pyx":799 * raise ValueError("probabilities do not sum to 1") * * shape = size # <<<<<<<<<<<<<< * if shape is not None: * size = np.prod(shape, dtype=np.intp) */ __Pyx_INCREF(__pyx_v_size); __pyx_v_shape = __pyx_v_size; /* "numpy/random/mtrand.pyx":800 * * shape = size * if shape is not None: # <<<<<<<<<<<<<< * size = np.prod(shape, dtype=np.intp) * else: */ __pyx_t_5 = (__pyx_v_shape != Py_None); __pyx_t_12 = (__pyx_t_5 != 0); if (__pyx_t_12) { /* "numpy/random/mtrand.pyx":801 * shape = size * if shape is not None: * size = np.prod(shape, dtype=np.intp) # <<<<<<<<<<<<<< * else: * size = 1 */ __Pyx_GetModuleGlobalName(__pyx_t_2, __pyx_n_s_np); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 801, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_prod); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 801, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = PyTuple_New(1); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 801, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_INCREF(__pyx_v_shape); __Pyx_GIVEREF(__pyx_v_shape); PyTuple_SET_ITEM(__pyx_t_2, 0, __pyx_v_shape); __pyx_t_1 = __Pyx_PyDict_NewPresized(1); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 801, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_GetModuleGlobalName(__pyx_t_9, __pyx_n_s_np); if (unlikely(!__pyx_t_9)) __PYX_ERR(0, 801, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_9); __pyx_t_14 = __Pyx_PyObject_GetAttrStr(__pyx_t_9, __pyx_n_s_intp); if (unlikely(!__pyx_t_14)) __PYX_ERR(0, 801, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_14); __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; if (PyDict_SetItem(__pyx_t_1, __pyx_n_s_dtype, __pyx_t_14) < 0) __PYX_ERR(0, 801, __pyx_L1_error) __Pyx_DECREF(__pyx_t_14); __pyx_t_14 = 0; __pyx_t_14 = __Pyx_PyObject_Call(__pyx_t_4, __pyx_t_2, __pyx_t_1); if (unlikely(!__pyx_t_14)) __PYX_ERR(0, 801, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_14); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF_SET(__pyx_v_size, __pyx_t_14); __pyx_t_14 = 0; /* "numpy/random/mtrand.pyx":800 * * shape = size * if shape is not None: # <<<<<<<<<<<<<< * size = np.prod(shape, dtype=np.intp) * else: */ goto __pyx_L26; } /* "numpy/random/mtrand.pyx":803 * size = np.prod(shape, dtype=np.intp) * else: * size = 1 # <<<<<<<<<<<<<< * * # Actual sampling */ /*else*/ { __Pyx_INCREF(__pyx_int_1); __Pyx_DECREF_SET(__pyx_v_size, __pyx_int_1); } __pyx_L26:; /* "numpy/random/mtrand.pyx":806 * * # Actual sampling * if replace: # <<<<<<<<<<<<<< * if p is not None: * cdf = p.cumsum() */ __pyx_t_12 = __Pyx_PyObject_IsTrue(__pyx_v_replace); if (unlikely(__pyx_t_12 < 0)) __PYX_ERR(0, 806, __pyx_L1_error) if (__pyx_t_12) { /* "numpy/random/mtrand.pyx":807 * # Actual sampling * if replace: * if p is not None: # <<<<<<<<<<<<<< * cdf = p.cumsum() * cdf /= cdf[-1] */ __pyx_t_12 = (__pyx_v_p != Py_None); __pyx_t_5 = (__pyx_t_12 != 0); if (__pyx_t_5) { /* "numpy/random/mtrand.pyx":808 * if replace: * if p is not None: * cdf = p.cumsum() # <<<<<<<<<<<<<< * cdf /= cdf[-1] * uniform_samples = self.random_sample(shape) */ __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_p, __pyx_n_s_cumsum); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 808, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = NULL; if (CYTHON_UNPACK_METHODS && likely(PyMethod_Check(__pyx_t_1))) { __pyx_t_2 = PyMethod_GET_SELF(__pyx_t_1); if (likely(__pyx_t_2)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_1); __Pyx_INCREF(__pyx_t_2); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_1, function); } } __pyx_t_14 = (__pyx_t_2) ? __Pyx_PyObject_CallOneArg(__pyx_t_1, __pyx_t_2) : __Pyx_PyObject_CallNoArg(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __pyx_t_2 = 0; if (unlikely(!__pyx_t_14)) __PYX_ERR(0, 808, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_14); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_v_cdf = __pyx_t_14; __pyx_t_14 = 0; /* "numpy/random/mtrand.pyx":809 * if p is not None: * cdf = p.cumsum() * cdf /= cdf[-1] # <<<<<<<<<<<<<< * uniform_samples = self.random_sample(shape) * idx = cdf.searchsorted(uniform_samples, side='right') */ __pyx_t_14 = __Pyx_GetItemInt(__pyx_v_cdf, -1L, long, 1, __Pyx_PyInt_From_long, 0, 1, 0); if (unlikely(!__pyx_t_14)) __PYX_ERR(0, 809, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_14); __pyx_t_1 = __Pyx_PyNumber_InPlaceDivide(__pyx_v_cdf, __pyx_t_14); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 809, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_14); __pyx_t_14 = 0; __Pyx_DECREF_SET(__pyx_v_cdf, __pyx_t_1); __pyx_t_1 = 0; /* "numpy/random/mtrand.pyx":810 * cdf = p.cumsum() * cdf /= cdf[-1] * uniform_samples = self.random_sample(shape) # <<<<<<<<<<<<<< * idx = cdf.searchsorted(uniform_samples, side='right') * # searchsorted returns a scalar */ __pyx_t_14 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_self), __pyx_n_s_random_sample); if (unlikely(!__pyx_t_14)) __PYX_ERR(0, 810, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_14); __pyx_t_2 = NULL; if (CYTHON_UNPACK_METHODS && likely(PyMethod_Check(__pyx_t_14))) { __pyx_t_2 = PyMethod_GET_SELF(__pyx_t_14); if (likely(__pyx_t_2)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_14); __Pyx_INCREF(__pyx_t_2); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_14, function); } } __pyx_t_1 = (__pyx_t_2) ? __Pyx_PyObject_Call2Args(__pyx_t_14, __pyx_t_2, __pyx_v_shape) : __Pyx_PyObject_CallOneArg(__pyx_t_14, __pyx_v_shape); __Pyx_XDECREF(__pyx_t_2); __pyx_t_2 = 0; if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 810, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_14); __pyx_t_14 = 0; __pyx_v_uniform_samples = __pyx_t_1; __pyx_t_1 = 0; /* "numpy/random/mtrand.pyx":811 * cdf /= cdf[-1] * uniform_samples = self.random_sample(shape) * idx = cdf.searchsorted(uniform_samples, side='right') # <<<<<<<<<<<<<< * # searchsorted returns a scalar * # force cast to int for LLP64 */ __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_cdf, __pyx_n_s_searchsorted); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 811, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_14 = PyTuple_New(1); if (unlikely(!__pyx_t_14)) __PYX_ERR(0, 811, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_14); __Pyx_INCREF(__pyx_v_uniform_samples); __Pyx_GIVEREF(__pyx_v_uniform_samples); PyTuple_SET_ITEM(__pyx_t_14, 0, __pyx_v_uniform_samples); __pyx_t_2 = __Pyx_PyDict_NewPresized(1); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 811, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); if (PyDict_SetItem(__pyx_t_2, __pyx_n_s_side, __pyx_n_u_right) < 0) __PYX_ERR(0, 811, __pyx_L1_error) __pyx_t_4 = __Pyx_PyObject_Call(__pyx_t_1, __pyx_t_14, __pyx_t_2); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 811, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF(__pyx_t_14); __pyx_t_14 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_v_idx = __pyx_t_4; __pyx_t_4 = 0; /* "numpy/random/mtrand.pyx":814 * # searchsorted returns a scalar * # force cast to int for LLP64 * idx = np.array(idx, copy=False).astype(int, casting='unsafe') # <<<<<<<<<<<<<< * else: * idx = self.randint(0, pop_size, size=shape) */ __Pyx_GetModuleGlobalName(__pyx_t_4, __pyx_n_s_np); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 814, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_array); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 814, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = PyTuple_New(1); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 814, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_INCREF(__pyx_v_idx); __Pyx_GIVEREF(__pyx_v_idx); PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_v_idx); __pyx_t_14 = __Pyx_PyDict_NewPresized(1); if (unlikely(!__pyx_t_14)) __PYX_ERR(0, 814, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_14); if (PyDict_SetItem(__pyx_t_14, __pyx_n_s_copy, Py_False) < 0) __PYX_ERR(0, 814, __pyx_L1_error) __pyx_t_1 = __Pyx_PyObject_Call(__pyx_t_2, __pyx_t_4, __pyx_t_14); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 814, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF(__pyx_t_14); __pyx_t_14 = 0; __pyx_t_14 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_astype); if (unlikely(!__pyx_t_14)) __PYX_ERR(0, 814, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_14); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = PyTuple_New(1); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 814, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_INCREF(((PyObject *)(&PyInt_Type))); __Pyx_GIVEREF(((PyObject *)(&PyInt_Type))); PyTuple_SET_ITEM(__pyx_t_1, 0, ((PyObject *)(&PyInt_Type))); __pyx_t_4 = __Pyx_PyDict_NewPresized(1); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 814, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); if (PyDict_SetItem(__pyx_t_4, __pyx_n_s_casting, __pyx_n_u_unsafe) < 0) __PYX_ERR(0, 814, __pyx_L1_error) __pyx_t_2 = __Pyx_PyObject_Call(__pyx_t_14, __pyx_t_1, __pyx_t_4); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 814, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_14); __pyx_t_14 = 0; __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF_SET(__pyx_v_idx, __pyx_t_2); __pyx_t_2 = 0; /* "numpy/random/mtrand.pyx":807 * # Actual sampling * if replace: * if p is not None: # <<<<<<<<<<<<<< * cdf = p.cumsum() * cdf /= cdf[-1] */ goto __pyx_L28; } /* "numpy/random/mtrand.pyx":816 * idx = np.array(idx, copy=False).astype(int, casting='unsafe') * else: * idx = self.randint(0, pop_size, size=shape) # <<<<<<<<<<<<<< * else: * if size > pop_size: */ /*else*/ { __pyx_t_2 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_self), __pyx_n_s_randint); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 816, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_4 = PyTuple_New(2); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 816, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_INCREF(__pyx_int_0); __Pyx_GIVEREF(__pyx_int_0); PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_int_0); __Pyx_INCREF(__pyx_v_pop_size); __Pyx_GIVEREF(__pyx_v_pop_size); PyTuple_SET_ITEM(__pyx_t_4, 1, __pyx_v_pop_size); __pyx_t_1 = __Pyx_PyDict_NewPresized(1); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 816, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); if (PyDict_SetItem(__pyx_t_1, __pyx_n_s_size, __pyx_v_shape) < 0) __PYX_ERR(0, 816, __pyx_L1_error) __pyx_t_14 = __Pyx_PyObject_Call(__pyx_t_2, __pyx_t_4, __pyx_t_1); if (unlikely(!__pyx_t_14)) __PYX_ERR(0, 816, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_14); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_v_idx = __pyx_t_14; __pyx_t_14 = 0; } __pyx_L28:; /* "numpy/random/mtrand.pyx":806 * * # Actual sampling * if replace: # <<<<<<<<<<<<<< * if p is not None: * cdf = p.cumsum() */ goto __pyx_L27; } /* "numpy/random/mtrand.pyx":818 * idx = self.randint(0, pop_size, size=shape) * else: * if size > pop_size: # <<<<<<<<<<<<<< * raise ValueError("Cannot take a larger sample than " * "population when 'replace=False'") */ /*else*/ { __pyx_t_14 = PyObject_RichCompare(__pyx_v_size, __pyx_v_pop_size, Py_GT); __Pyx_XGOTREF(__pyx_t_14); if (unlikely(!__pyx_t_14)) __PYX_ERR(0, 818, __pyx_L1_error) __pyx_t_5 = __Pyx_PyObject_IsTrue(__pyx_t_14); if (unlikely(__pyx_t_5 < 0)) __PYX_ERR(0, 818, __pyx_L1_error) __Pyx_DECREF(__pyx_t_14); __pyx_t_14 = 0; if (unlikely(__pyx_t_5)) { /* "numpy/random/mtrand.pyx":819 * else: * if size > pop_size: * raise ValueError("Cannot take a larger sample than " # <<<<<<<<<<<<<< * "population when 'replace=False'") * elif size < 0: */ __pyx_t_14 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__26, NULL); if (unlikely(!__pyx_t_14)) __PYX_ERR(0, 819, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_14); __Pyx_Raise(__pyx_t_14, 0, 0, 0); __Pyx_DECREF(__pyx_t_14); __pyx_t_14 = 0; __PYX_ERR(0, 819, __pyx_L1_error) /* "numpy/random/mtrand.pyx":818 * idx = self.randint(0, pop_size, size=shape) * else: * if size > pop_size: # <<<<<<<<<<<<<< * raise ValueError("Cannot take a larger sample than " * "population when 'replace=False'") */ } /* "numpy/random/mtrand.pyx":821 * raise ValueError("Cannot take a larger sample than " * "population when 'replace=False'") * elif size < 0: # <<<<<<<<<<<<<< * raise ValueError("negative dimensions are not allowed") * */ __pyx_t_14 = PyObject_RichCompare(__pyx_v_size, __pyx_int_0, Py_LT); __Pyx_XGOTREF(__pyx_t_14); if (unlikely(!__pyx_t_14)) __PYX_ERR(0, 821, __pyx_L1_error) __pyx_t_5 = __Pyx_PyObject_IsTrue(__pyx_t_14); if (unlikely(__pyx_t_5 < 0)) __PYX_ERR(0, 821, __pyx_L1_error) __Pyx_DECREF(__pyx_t_14); __pyx_t_14 = 0; if (unlikely(__pyx_t_5)) { /* "numpy/random/mtrand.pyx":822 * "population when 'replace=False'") * elif size < 0: * raise ValueError("negative dimensions are not allowed") # <<<<<<<<<<<<<< * * if p is not None: */ __pyx_t_14 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__27, NULL); if (unlikely(!__pyx_t_14)) __PYX_ERR(0, 822, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_14); __Pyx_Raise(__pyx_t_14, 0, 0, 0); __Pyx_DECREF(__pyx_t_14); __pyx_t_14 = 0; __PYX_ERR(0, 822, __pyx_L1_error) /* "numpy/random/mtrand.pyx":821 * raise ValueError("Cannot take a larger sample than " * "population when 'replace=False'") * elif size < 0: # <<<<<<<<<<<<<< * raise ValueError("negative dimensions are not allowed") * */ } /* "numpy/random/mtrand.pyx":824 * raise ValueError("negative dimensions are not allowed") * * if p is not None: # <<<<<<<<<<<<<< * if np.count_nonzero(p > 0) < size: * raise ValueError("Fewer non-zero entries in p than size") */ __pyx_t_5 = (__pyx_v_p != Py_None); __pyx_t_12 = (__pyx_t_5 != 0); if (__pyx_t_12) { /* "numpy/random/mtrand.pyx":825 * * if p is not None: * if np.count_nonzero(p > 0) < size: # <<<<<<<<<<<<<< * raise ValueError("Fewer non-zero entries in p than size") * n_uniq = 0 */ __Pyx_GetModuleGlobalName(__pyx_t_1, __pyx_n_s_np); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 825, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_count_nonzero); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 825, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = PyObject_RichCompare(__pyx_v_p, __pyx_int_0, Py_GT); __Pyx_XGOTREF(__pyx_t_1); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 825, __pyx_L1_error) __pyx_t_2 = NULL; if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_4))) { __pyx_t_2 = PyMethod_GET_SELF(__pyx_t_4); if (likely(__pyx_t_2)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_4); __Pyx_INCREF(__pyx_t_2); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_4, function); } } __pyx_t_14 = (__pyx_t_2) ? __Pyx_PyObject_Call2Args(__pyx_t_4, __pyx_t_2, __pyx_t_1) : __Pyx_PyObject_CallOneArg(__pyx_t_4, __pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; if (unlikely(!__pyx_t_14)) __PYX_ERR(0, 825, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_14); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = PyObject_RichCompare(__pyx_t_14, __pyx_v_size, Py_LT); __Pyx_XGOTREF(__pyx_t_4); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 825, __pyx_L1_error) __Pyx_DECREF(__pyx_t_14); __pyx_t_14 = 0; __pyx_t_12 = __Pyx_PyObject_IsTrue(__pyx_t_4); if (unlikely(__pyx_t_12 < 0)) __PYX_ERR(0, 825, __pyx_L1_error) __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; if (unlikely(__pyx_t_12)) { /* "numpy/random/mtrand.pyx":826 * if p is not None: * if np.count_nonzero(p > 0) < size: * raise ValueError("Fewer non-zero entries in p than size") # <<<<<<<<<<<<<< * n_uniq = 0 * p = p.copy() */ __pyx_t_4 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__28, NULL); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 826, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_Raise(__pyx_t_4, 0, 0, 0); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __PYX_ERR(0, 826, __pyx_L1_error) /* "numpy/random/mtrand.pyx":825 * * if p is not None: * if np.count_nonzero(p > 0) < size: # <<<<<<<<<<<<<< * raise ValueError("Fewer non-zero entries in p than size") * n_uniq = 0 */ } /* "numpy/random/mtrand.pyx":827 * if np.count_nonzero(p > 0) < size: * raise ValueError("Fewer non-zero entries in p than size") * n_uniq = 0 # <<<<<<<<<<<<<< * p = p.copy() * found = np.zeros(shape, dtype=int) */ __Pyx_INCREF(__pyx_int_0); __pyx_v_n_uniq = __pyx_int_0; /* "numpy/random/mtrand.pyx":828 * raise ValueError("Fewer non-zero entries in p than size") * n_uniq = 0 * p = p.copy() # <<<<<<<<<<<<<< * found = np.zeros(shape, dtype=int) * flat_found = found.ravel() */ __pyx_t_14 = __Pyx_PyObject_GetAttrStr(__pyx_v_p, __pyx_n_s_copy); if (unlikely(!__pyx_t_14)) __PYX_ERR(0, 828, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_14); __pyx_t_1 = NULL; if (CYTHON_UNPACK_METHODS && likely(PyMethod_Check(__pyx_t_14))) { __pyx_t_1 = PyMethod_GET_SELF(__pyx_t_14); if (likely(__pyx_t_1)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_14); __Pyx_INCREF(__pyx_t_1); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_14, function); } } __pyx_t_4 = (__pyx_t_1) ? __Pyx_PyObject_CallOneArg(__pyx_t_14, __pyx_t_1) : __Pyx_PyObject_CallNoArg(__pyx_t_14); __Pyx_XDECREF(__pyx_t_1); __pyx_t_1 = 0; if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 828, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_14); __pyx_t_14 = 0; __Pyx_DECREF_SET(__pyx_v_p, __pyx_t_4); __pyx_t_4 = 0; /* "numpy/random/mtrand.pyx":829 * n_uniq = 0 * p = p.copy() * found = np.zeros(shape, dtype=int) # <<<<<<<<<<<<<< * flat_found = found.ravel() * while n_uniq < size: */ __Pyx_GetModuleGlobalName(__pyx_t_4, __pyx_n_s_np); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 829, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_14 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_zeros); if (unlikely(!__pyx_t_14)) __PYX_ERR(0, 829, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_14); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = PyTuple_New(1); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 829, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_INCREF(__pyx_v_shape); __Pyx_GIVEREF(__pyx_v_shape); PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_v_shape); __pyx_t_1 = __Pyx_PyDict_NewPresized(1); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 829, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); if (PyDict_SetItem(__pyx_t_1, __pyx_n_s_dtype, ((PyObject *)(&PyInt_Type))) < 0) __PYX_ERR(0, 829, __pyx_L1_error) __pyx_t_2 = __Pyx_PyObject_Call(__pyx_t_14, __pyx_t_4, __pyx_t_1); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 829, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_14); __pyx_t_14 = 0; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_v_found = __pyx_t_2; __pyx_t_2 = 0; /* "numpy/random/mtrand.pyx":830 * p = p.copy() * found = np.zeros(shape, dtype=int) * flat_found = found.ravel() # <<<<<<<<<<<<<< * while n_uniq < size: * x = self.rand(size - n_uniq) */ __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_found, __pyx_n_s_ravel); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 830, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_4 = NULL; if (CYTHON_UNPACK_METHODS && likely(PyMethod_Check(__pyx_t_1))) { __pyx_t_4 = PyMethod_GET_SELF(__pyx_t_1); if (likely(__pyx_t_4)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_1); __Pyx_INCREF(__pyx_t_4); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_1, function); } } __pyx_t_2 = (__pyx_t_4) ? __Pyx_PyObject_CallOneArg(__pyx_t_1, __pyx_t_4) : __Pyx_PyObject_CallNoArg(__pyx_t_1); __Pyx_XDECREF(__pyx_t_4); __pyx_t_4 = 0; if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 830, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_v_flat_found = __pyx_t_2; __pyx_t_2 = 0; /* "numpy/random/mtrand.pyx":831 * found = np.zeros(shape, dtype=int) * flat_found = found.ravel() * while n_uniq < size: # <<<<<<<<<<<<<< * x = self.rand(size - n_uniq) * if n_uniq > 0: */ while (1) { __pyx_t_2 = PyObject_RichCompare(__pyx_v_n_uniq, __pyx_v_size, Py_LT); __Pyx_XGOTREF(__pyx_t_2); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 831, __pyx_L1_error) __pyx_t_12 = __Pyx_PyObject_IsTrue(__pyx_t_2); if (unlikely(__pyx_t_12 < 0)) __PYX_ERR(0, 831, __pyx_L1_error) __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; if (!__pyx_t_12) break; /* "numpy/random/mtrand.pyx":832 * flat_found = found.ravel() * while n_uniq < size: * x = self.rand(size - n_uniq) # <<<<<<<<<<<<<< * if n_uniq > 0: * p[flat_found[0:n_uniq]] = 0 */ __pyx_t_1 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_self), __pyx_n_s_rand); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 832, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_4 = PyNumber_Subtract(__pyx_v_size, __pyx_v_n_uniq); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 832, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_14 = NULL; if (CYTHON_UNPACK_METHODS && likely(PyMethod_Check(__pyx_t_1))) { __pyx_t_14 = PyMethod_GET_SELF(__pyx_t_1); if (likely(__pyx_t_14)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_1); __Pyx_INCREF(__pyx_t_14); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_1, function); } } __pyx_t_2 = (__pyx_t_14) ? __Pyx_PyObject_Call2Args(__pyx_t_1, __pyx_t_14, __pyx_t_4) : __Pyx_PyObject_CallOneArg(__pyx_t_1, __pyx_t_4); __Pyx_XDECREF(__pyx_t_14); __pyx_t_14 = 0; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 832, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_XDECREF_SET(__pyx_v_x, __pyx_t_2); __pyx_t_2 = 0; /* "numpy/random/mtrand.pyx":833 * while n_uniq < size: * x = self.rand(size - n_uniq) * if n_uniq > 0: # <<<<<<<<<<<<<< * p[flat_found[0:n_uniq]] = 0 * cdf = np.cumsum(p) */ __pyx_t_2 = PyObject_RichCompare(__pyx_v_n_uniq, __pyx_int_0, Py_GT); __Pyx_XGOTREF(__pyx_t_2); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 833, __pyx_L1_error) __pyx_t_12 = __Pyx_PyObject_IsTrue(__pyx_t_2); if (unlikely(__pyx_t_12 < 0)) __PYX_ERR(0, 833, __pyx_L1_error) __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; if (__pyx_t_12) { /* "numpy/random/mtrand.pyx":834 * x = self.rand(size - n_uniq) * if n_uniq > 0: * p[flat_found[0:n_uniq]] = 0 # <<<<<<<<<<<<<< * cdf = np.cumsum(p) * cdf /= cdf[-1] */ __pyx_t_2 = __Pyx_PyObject_GetSlice(__pyx_v_flat_found, 0, 0, NULL, &__pyx_v_n_uniq, NULL, 1, 0, 1); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 834, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); if (unlikely(PyObject_SetItem(__pyx_v_p, __pyx_t_2, __pyx_int_0) < 0)) __PYX_ERR(0, 834, __pyx_L1_error) __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; /* "numpy/random/mtrand.pyx":833 * while n_uniq < size: * x = self.rand(size - n_uniq) * if n_uniq > 0: # <<<<<<<<<<<<<< * p[flat_found[0:n_uniq]] = 0 * cdf = np.cumsum(p) */ } /* "numpy/random/mtrand.pyx":835 * if n_uniq > 0: * p[flat_found[0:n_uniq]] = 0 * cdf = np.cumsum(p) # <<<<<<<<<<<<<< * cdf /= cdf[-1] * new = cdf.searchsorted(x, side='right') */ __Pyx_GetModuleGlobalName(__pyx_t_1, __pyx_n_s_np); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 835, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_cumsum); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 835, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = NULL; if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_4))) { __pyx_t_1 = PyMethod_GET_SELF(__pyx_t_4); if (likely(__pyx_t_1)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_4); __Pyx_INCREF(__pyx_t_1); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_4, function); } } __pyx_t_2 = (__pyx_t_1) ? __Pyx_PyObject_Call2Args(__pyx_t_4, __pyx_t_1, __pyx_v_p) : __Pyx_PyObject_CallOneArg(__pyx_t_4, __pyx_v_p); __Pyx_XDECREF(__pyx_t_1); __pyx_t_1 = 0; if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 835, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_XDECREF_SET(__pyx_v_cdf, __pyx_t_2); __pyx_t_2 = 0; /* "numpy/random/mtrand.pyx":836 * p[flat_found[0:n_uniq]] = 0 * cdf = np.cumsum(p) * cdf /= cdf[-1] # <<<<<<<<<<<<<< * new = cdf.searchsorted(x, side='right') * _, unique_indices = np.unique(new, return_index=True) */ __pyx_t_2 = __Pyx_GetItemInt(__pyx_v_cdf, -1L, long, 1, __Pyx_PyInt_From_long, 0, 1, 0); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 836, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_4 = __Pyx_PyNumber_InPlaceDivide(__pyx_v_cdf, __pyx_t_2); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 836, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF_SET(__pyx_v_cdf, __pyx_t_4); __pyx_t_4 = 0; /* "numpy/random/mtrand.pyx":837 * cdf = np.cumsum(p) * cdf /= cdf[-1] * new = cdf.searchsorted(x, side='right') # <<<<<<<<<<<<<< * _, unique_indices = np.unique(new, return_index=True) * unique_indices.sort() */ __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_v_cdf, __pyx_n_s_searchsorted); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 837, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_2 = PyTuple_New(1); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 837, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_INCREF(__pyx_v_x); __Pyx_GIVEREF(__pyx_v_x); PyTuple_SET_ITEM(__pyx_t_2, 0, __pyx_v_x); __pyx_t_1 = __Pyx_PyDict_NewPresized(1); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 837, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); if (PyDict_SetItem(__pyx_t_1, __pyx_n_s_side, __pyx_n_u_right) < 0) __PYX_ERR(0, 837, __pyx_L1_error) __pyx_t_14 = __Pyx_PyObject_Call(__pyx_t_4, __pyx_t_2, __pyx_t_1); if (unlikely(!__pyx_t_14)) __PYX_ERR(0, 837, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_14); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_XDECREF_SET(__pyx_v_new, __pyx_t_14); __pyx_t_14 = 0; /* "numpy/random/mtrand.pyx":838 * cdf /= cdf[-1] * new = cdf.searchsorted(x, side='right') * _, unique_indices = np.unique(new, return_index=True) # <<<<<<<<<<<<<< * unique_indices.sort() * new = new.take(unique_indices) */ __Pyx_GetModuleGlobalName(__pyx_t_14, __pyx_n_s_np); if (unlikely(!__pyx_t_14)) __PYX_ERR(0, 838, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_14); __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_14, __pyx_n_s_unique); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 838, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_14); __pyx_t_14 = 0; __pyx_t_14 = PyTuple_New(1); if (unlikely(!__pyx_t_14)) __PYX_ERR(0, 838, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_14); __Pyx_INCREF(__pyx_v_new); __Pyx_GIVEREF(__pyx_v_new); PyTuple_SET_ITEM(__pyx_t_14, 0, __pyx_v_new); __pyx_t_2 = __Pyx_PyDict_NewPresized(1); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 838, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); if (PyDict_SetItem(__pyx_t_2, __pyx_n_s_return_index, Py_True) < 0) __PYX_ERR(0, 838, __pyx_L1_error) __pyx_t_4 = __Pyx_PyObject_Call(__pyx_t_1, __pyx_t_14, __pyx_t_2); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 838, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF(__pyx_t_14); __pyx_t_14 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; if ((likely(PyTuple_CheckExact(__pyx_t_4))) || (PyList_CheckExact(__pyx_t_4))) { PyObject* sequence = __pyx_t_4; Py_ssize_t size = __Pyx_PySequence_SIZE(sequence); if (unlikely(size != 2)) { if (size > 2) __Pyx_RaiseTooManyValuesError(2); else if (size >= 0) __Pyx_RaiseNeedMoreValuesError(size); __PYX_ERR(0, 838, __pyx_L1_error) } #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS if (likely(PyTuple_CheckExact(sequence))) { __pyx_t_2 = PyTuple_GET_ITEM(sequence, 0); __pyx_t_14 = PyTuple_GET_ITEM(sequence, 1); } else { __pyx_t_2 = PyList_GET_ITEM(sequence, 0); __pyx_t_14 = PyList_GET_ITEM(sequence, 1); } __Pyx_INCREF(__pyx_t_2); __Pyx_INCREF(__pyx_t_14); #else __pyx_t_2 = PySequence_ITEM(sequence, 0); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 838, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_14 = PySequence_ITEM(sequence, 1); if (unlikely(!__pyx_t_14)) __PYX_ERR(0, 838, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_14); #endif __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; } else { Py_ssize_t index = -1; __pyx_t_1 = PyObject_GetIter(__pyx_t_4); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 838, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_15 = Py_TYPE(__pyx_t_1)->tp_iternext; index = 0; __pyx_t_2 = __pyx_t_15(__pyx_t_1); if (unlikely(!__pyx_t_2)) goto __pyx_L35_unpacking_failed; __Pyx_GOTREF(__pyx_t_2); index = 1; __pyx_t_14 = __pyx_t_15(__pyx_t_1); if (unlikely(!__pyx_t_14)) goto __pyx_L35_unpacking_failed; __Pyx_GOTREF(__pyx_t_14); if (__Pyx_IternextUnpackEndCheck(__pyx_t_15(__pyx_t_1), 2) < 0) __PYX_ERR(0, 838, __pyx_L1_error) __pyx_t_15 = NULL; __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; goto __pyx_L36_unpacking_done; __pyx_L35_unpacking_failed:; __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_15 = NULL; if (__Pyx_IterFinish() == 0) __Pyx_RaiseNeedMoreValuesError(index); __PYX_ERR(0, 838, __pyx_L1_error) __pyx_L36_unpacking_done:; } __Pyx_XDECREF_SET(__pyx_v__, __pyx_t_2); __pyx_t_2 = 0; __Pyx_XDECREF_SET(__pyx_v_unique_indices, __pyx_t_14); __pyx_t_14 = 0; /* "numpy/random/mtrand.pyx":839 * new = cdf.searchsorted(x, side='right') * _, unique_indices = np.unique(new, return_index=True) * unique_indices.sort() # <<<<<<<<<<<<<< * new = new.take(unique_indices) * flat_found[n_uniq:n_uniq + new.size] = new */ __pyx_t_14 = __Pyx_PyObject_GetAttrStr(__pyx_v_unique_indices, __pyx_n_s_sort); if (unlikely(!__pyx_t_14)) __PYX_ERR(0, 839, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_14); __pyx_t_2 = NULL; if (CYTHON_UNPACK_METHODS && likely(PyMethod_Check(__pyx_t_14))) { __pyx_t_2 = PyMethod_GET_SELF(__pyx_t_14); if (likely(__pyx_t_2)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_14); __Pyx_INCREF(__pyx_t_2); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_14, function); } } __pyx_t_4 = (__pyx_t_2) ? __Pyx_PyObject_CallOneArg(__pyx_t_14, __pyx_t_2) : __Pyx_PyObject_CallNoArg(__pyx_t_14); __Pyx_XDECREF(__pyx_t_2); __pyx_t_2 = 0; if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 839, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_14); __pyx_t_14 = 0; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; /* "numpy/random/mtrand.pyx":840 * _, unique_indices = np.unique(new, return_index=True) * unique_indices.sort() * new = new.take(unique_indices) # <<<<<<<<<<<<<< * flat_found[n_uniq:n_uniq + new.size] = new * n_uniq += new.size */ __pyx_t_14 = __Pyx_PyObject_GetAttrStr(__pyx_v_new, __pyx_n_s_take); if (unlikely(!__pyx_t_14)) __PYX_ERR(0, 840, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_14); __pyx_t_2 = NULL; if (CYTHON_UNPACK_METHODS && likely(PyMethod_Check(__pyx_t_14))) { __pyx_t_2 = PyMethod_GET_SELF(__pyx_t_14); if (likely(__pyx_t_2)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_14); __Pyx_INCREF(__pyx_t_2); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_14, function); } } __pyx_t_4 = (__pyx_t_2) ? __Pyx_PyObject_Call2Args(__pyx_t_14, __pyx_t_2, __pyx_v_unique_indices) : __Pyx_PyObject_CallOneArg(__pyx_t_14, __pyx_v_unique_indices); __Pyx_XDECREF(__pyx_t_2); __pyx_t_2 = 0; if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 840, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_14); __pyx_t_14 = 0; __Pyx_DECREF_SET(__pyx_v_new, __pyx_t_4); __pyx_t_4 = 0; /* "numpy/random/mtrand.pyx":841 * unique_indices.sort() * new = new.take(unique_indices) * flat_found[n_uniq:n_uniq + new.size] = new # <<<<<<<<<<<<<< * n_uniq += new.size * idx = found */ __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_v_new, __pyx_n_s_size); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 841, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_14 = PyNumber_Add(__pyx_v_n_uniq, __pyx_t_4); if (unlikely(!__pyx_t_14)) __PYX_ERR(0, 841, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_14); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; if (__Pyx_PyObject_SetSlice(__pyx_v_flat_found, __pyx_v_new, 0, 0, &__pyx_v_n_uniq, &__pyx_t_14, NULL, 0, 0, 1) < 0) __PYX_ERR(0, 841, __pyx_L1_error) __Pyx_DECREF(__pyx_t_14); __pyx_t_14 = 0; /* "numpy/random/mtrand.pyx":842 * new = new.take(unique_indices) * flat_found[n_uniq:n_uniq + new.size] = new * n_uniq += new.size # <<<<<<<<<<<<<< * idx = found * else: */ __pyx_t_14 = __Pyx_PyObject_GetAttrStr(__pyx_v_new, __pyx_n_s_size); if (unlikely(!__pyx_t_14)) __PYX_ERR(0, 842, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_14); __pyx_t_4 = PyNumber_InPlaceAdd(__pyx_v_n_uniq, __pyx_t_14); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 842, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_14); __pyx_t_14 = 0; __Pyx_DECREF_SET(__pyx_v_n_uniq, __pyx_t_4); __pyx_t_4 = 0; } /* "numpy/random/mtrand.pyx":843 * flat_found[n_uniq:n_uniq + new.size] = new * n_uniq += new.size * idx = found # <<<<<<<<<<<<<< * else: * idx = self.permutation(pop_size)[:size] */ __Pyx_INCREF(__pyx_v_found); __pyx_v_idx = __pyx_v_found; /* "numpy/random/mtrand.pyx":824 * raise ValueError("negative dimensions are not allowed") * * if p is not None: # <<<<<<<<<<<<<< * if np.count_nonzero(p > 0) < size: * raise ValueError("Fewer non-zero entries in p than size") */ goto __pyx_L30; } /* "numpy/random/mtrand.pyx":845 * idx = found * else: * idx = self.permutation(pop_size)[:size] # <<<<<<<<<<<<<< * if shape is not None: * idx.shape = shape */ /*else*/ { __pyx_t_14 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_self), __pyx_n_s_permutation); if (unlikely(!__pyx_t_14)) __PYX_ERR(0, 845, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_14); __pyx_t_2 = NULL; if (CYTHON_UNPACK_METHODS && likely(PyMethod_Check(__pyx_t_14))) { __pyx_t_2 = PyMethod_GET_SELF(__pyx_t_14); if (likely(__pyx_t_2)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_14); __Pyx_INCREF(__pyx_t_2); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_14, function); } } __pyx_t_4 = (__pyx_t_2) ? __Pyx_PyObject_Call2Args(__pyx_t_14, __pyx_t_2, __pyx_v_pop_size) : __Pyx_PyObject_CallOneArg(__pyx_t_14, __pyx_v_pop_size); __Pyx_XDECREF(__pyx_t_2); __pyx_t_2 = 0; if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 845, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_14); __pyx_t_14 = 0; __pyx_t_14 = __Pyx_PyObject_GetSlice(__pyx_t_4, 0, 0, NULL, &__pyx_v_size, NULL, 0, 0, 1); if (unlikely(!__pyx_t_14)) __PYX_ERR(0, 845, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_14); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_v_idx = __pyx_t_14; __pyx_t_14 = 0; /* "numpy/random/mtrand.pyx":846 * else: * idx = self.permutation(pop_size)[:size] * if shape is not None: # <<<<<<<<<<<<<< * idx.shape = shape * */ __pyx_t_12 = (__pyx_v_shape != Py_None); __pyx_t_5 = (__pyx_t_12 != 0); if (__pyx_t_5) { /* "numpy/random/mtrand.pyx":847 * idx = self.permutation(pop_size)[:size] * if shape is not None: * idx.shape = shape # <<<<<<<<<<<<<< * * if shape is None and isinstance(idx, np.ndarray): */ if (__Pyx_PyObject_SetAttrStr(__pyx_v_idx, __pyx_n_s_shape, __pyx_v_shape) < 0) __PYX_ERR(0, 847, __pyx_L1_error) /* "numpy/random/mtrand.pyx":846 * else: * idx = self.permutation(pop_size)[:size] * if shape is not None: # <<<<<<<<<<<<<< * idx.shape = shape * */ } } __pyx_L30:; } __pyx_L27:; /* "numpy/random/mtrand.pyx":849 * idx.shape = shape * * if shape is None and isinstance(idx, np.ndarray): # <<<<<<<<<<<<<< * # In most cases a scalar will have been made an array * idx = idx.item(0) */ __pyx_t_12 = (__pyx_v_shape == Py_None); __pyx_t_11 = (__pyx_t_12 != 0); if (__pyx_t_11) { } else { __pyx_t_5 = __pyx_t_11; goto __pyx_L39_bool_binop_done; } __pyx_t_11 = __Pyx_TypeCheck(__pyx_v_idx, __pyx_ptype_5numpy_ndarray); __pyx_t_12 = (__pyx_t_11 != 0); __pyx_t_5 = __pyx_t_12; __pyx_L39_bool_binop_done:; if (__pyx_t_5) { /* "numpy/random/mtrand.pyx":851 * if shape is None and isinstance(idx, np.ndarray): * # In most cases a scalar will have been made an array * idx = idx.item(0) # <<<<<<<<<<<<<< * * # Use samples as indices for a if a is array-like */ __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_v_idx, __pyx_n_s_item); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 851, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_2 = NULL; if (CYTHON_UNPACK_METHODS && likely(PyMethod_Check(__pyx_t_4))) { __pyx_t_2 = PyMethod_GET_SELF(__pyx_t_4); if (likely(__pyx_t_2)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_4); __Pyx_INCREF(__pyx_t_2); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_4, function); } } __pyx_t_14 = (__pyx_t_2) ? __Pyx_PyObject_Call2Args(__pyx_t_4, __pyx_t_2, __pyx_int_0) : __Pyx_PyObject_CallOneArg(__pyx_t_4, __pyx_int_0); __Pyx_XDECREF(__pyx_t_2); __pyx_t_2 = 0; if (unlikely(!__pyx_t_14)) __PYX_ERR(0, 851, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_14); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF_SET(__pyx_v_idx, __pyx_t_14); __pyx_t_14 = 0; /* "numpy/random/mtrand.pyx":849 * idx.shape = shape * * if shape is None and isinstance(idx, np.ndarray): # <<<<<<<<<<<<<< * # In most cases a scalar will have been made an array * idx = idx.item(0) */ } /* "numpy/random/mtrand.pyx":854 * * # Use samples as indices for a if a is array-like * if a.ndim == 0: # <<<<<<<<<<<<<< * return idx * */ __pyx_t_14 = __Pyx_PyObject_GetAttrStr(__pyx_v_a, __pyx_n_s_ndim); if (unlikely(!__pyx_t_14)) __PYX_ERR(0, 854, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_14); __pyx_t_4 = __Pyx_PyInt_EqObjC(__pyx_t_14, __pyx_int_0, 0, 0); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 854, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_14); __pyx_t_14 = 0; __pyx_t_5 = __Pyx_PyObject_IsTrue(__pyx_t_4); if (unlikely(__pyx_t_5 < 0)) __PYX_ERR(0, 854, __pyx_L1_error) __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; if (__pyx_t_5) { /* "numpy/random/mtrand.pyx":855 * # Use samples as indices for a if a is array-like * if a.ndim == 0: * return idx # <<<<<<<<<<<<<< * * if shape is not None and idx.ndim == 0: */ __Pyx_XDECREF(__pyx_r); __Pyx_INCREF(__pyx_v_idx); __pyx_r = __pyx_v_idx; goto __pyx_L0; /* "numpy/random/mtrand.pyx":854 * * # Use samples as indices for a if a is array-like * if a.ndim == 0: # <<<<<<<<<<<<<< * return idx * */ } /* "numpy/random/mtrand.pyx":857 * return idx * * if shape is not None and idx.ndim == 0: # <<<<<<<<<<<<<< * # If size == () then the user requested a 0-d array as opposed to * # a scalar object when size is None. However a[idx] is always a */ __pyx_t_12 = (__pyx_v_shape != Py_None); __pyx_t_11 = (__pyx_t_12 != 0); if (__pyx_t_11) { } else { __pyx_t_5 = __pyx_t_11; goto __pyx_L43_bool_binop_done; } __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_v_idx, __pyx_n_s_ndim); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 857, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_14 = __Pyx_PyInt_EqObjC(__pyx_t_4, __pyx_int_0, 0, 0); if (unlikely(!__pyx_t_14)) __PYX_ERR(0, 857, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_14); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_11 = __Pyx_PyObject_IsTrue(__pyx_t_14); if (unlikely(__pyx_t_11 < 0)) __PYX_ERR(0, 857, __pyx_L1_error) __Pyx_DECREF(__pyx_t_14); __pyx_t_14 = 0; __pyx_t_5 = __pyx_t_11; __pyx_L43_bool_binop_done:; if (__pyx_t_5) { /* "numpy/random/mtrand.pyx":863 * # array, taking into account that np.array(item) may not work * # for object arrays. * res = np.empty((), dtype=a.dtype) # <<<<<<<<<<<<<< * res[()] = a[idx] * return res */ __Pyx_GetModuleGlobalName(__pyx_t_14, __pyx_n_s_np); if (unlikely(!__pyx_t_14)) __PYX_ERR(0, 863, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_14); __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_14, __pyx_n_s_empty); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 863, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_14); __pyx_t_14 = 0; __pyx_t_14 = __Pyx_PyDict_NewPresized(1); if (unlikely(!__pyx_t_14)) __PYX_ERR(0, 863, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_14); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_v_a, __pyx_n_s_dtype); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 863, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); if (PyDict_SetItem(__pyx_t_14, __pyx_n_s_dtype, __pyx_t_2) < 0) __PYX_ERR(0, 863, __pyx_L1_error) __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = __Pyx_PyObject_Call(__pyx_t_4, __pyx_tuple__29, __pyx_t_14); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 863, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF(__pyx_t_14); __pyx_t_14 = 0; __pyx_v_res = __pyx_t_2; __pyx_t_2 = 0; /* "numpy/random/mtrand.pyx":864 * # for object arrays. * res = np.empty((), dtype=a.dtype) * res[()] = a[idx] # <<<<<<<<<<<<<< * return res * */ __pyx_t_2 = __Pyx_PyObject_GetItem(__pyx_v_a, __pyx_v_idx); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 864, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); if (unlikely(PyObject_SetItem(__pyx_v_res, __pyx_empty_tuple, __pyx_t_2) < 0)) __PYX_ERR(0, 864, __pyx_L1_error) __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; /* "numpy/random/mtrand.pyx":865 * res = np.empty((), dtype=a.dtype) * res[()] = a[idx] * return res # <<<<<<<<<<<<<< * * return a[idx] */ __Pyx_XDECREF(__pyx_r); __Pyx_INCREF(__pyx_v_res); __pyx_r = __pyx_v_res; goto __pyx_L0; /* "numpy/random/mtrand.pyx":857 * return idx * * if shape is not None and idx.ndim == 0: # <<<<<<<<<<<<<< * # If size == () then the user requested a 0-d array as opposed to * # a scalar object when size is None. However a[idx] is always a */ } /* "numpy/random/mtrand.pyx":867 * return res * * return a[idx] # <<<<<<<<<<<<<< * * def uniform(self, low=0.0, high=1.0, size=None): */ __Pyx_XDECREF(__pyx_r); __pyx_t_2 = __Pyx_PyObject_GetItem(__pyx_v_a, __pyx_v_idx); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 867, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_r = __pyx_t_2; __pyx_t_2 = 0; goto __pyx_L0; /* "numpy/random/mtrand.pyx":680 * * @cython.wraparound(True) * def choice(self, a, size=None, replace=True, p=None): # <<<<<<<<<<<<<< * """ * choice(a, size=None, replace=True, p=None) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __Pyx_XDECREF(__pyx_t_9); __Pyx_XDECREF(__pyx_t_14); __Pyx_AddTraceback("numpy.random.mtrand.RandomState.choice", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XDECREF(__pyx_v_pop_size); __Pyx_XDECREF(__pyx_v_atol); __Pyx_XDECREF(__pyx_v_shape); __Pyx_XDECREF(__pyx_v_cdf); __Pyx_XDECREF(__pyx_v_uniform_samples); __Pyx_XDECREF(__pyx_v_idx); __Pyx_XDECREF(__pyx_v_n_uniq); __Pyx_XDECREF(__pyx_v_found); __Pyx_XDECREF(__pyx_v_flat_found); __Pyx_XDECREF(__pyx_v_x); __Pyx_XDECREF(__pyx_v_new); __Pyx_XDECREF(__pyx_v__); __Pyx_XDECREF(__pyx_v_unique_indices); __Pyx_XDECREF(__pyx_v_res); __Pyx_XDECREF(__pyx_v_a); __Pyx_XDECREF(__pyx_v_size); __Pyx_XDECREF(__pyx_v_p); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "numpy/random/mtrand.pyx":869 * return a[idx] * * def uniform(self, low=0.0, high=1.0, size=None): # <<<<<<<<<<<<<< * """ * uniform(low=0.0, high=1.0, size=None) */ /* Python wrapper */ static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_37uniform(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static char __pyx_doc_5numpy_6random_6mtrand_11RandomState_36uniform[] = "\n uniform(low=0.0, high=1.0, size=None)\n\n Draw samples from a uniform distribution.\n\n Samples are uniformly distributed over the half-open interval\n ``[low, high)`` (includes low, but excludes high). In other words,\n any value within the given interval is equally likely to be drawn\n by `uniform`.\n\n Parameters\n ----------\n low : float or array_like of floats, optional\n Lower boundary of the output interval. All values generated will be\n greater than or equal to low. The default value is 0.\n high : float or array_like of floats\n Upper boundary of the output interval. All values generated will be\n less than high. The default value is 1.0.\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. If size is ``None`` (default),\n a single value is returned if ``low`` and ``high`` are both scalars.\n Otherwise, ``np.broadcast(low, high).size`` samples are drawn.\n\n Returns\n -------\n out : ndarray or scalar\n Drawn samples from the parameterized uniform distribution.\n\n See Also\n --------\n randint : Discrete uniform distribution, yielding integers.\n random_integers : Discrete uniform distribution over the closed\n interval ``[low, high]``.\n random_sample : Floats uniformly distributed over ``[0, 1)``.\n random : Alias for `random_sample`.\n rand : Convenience function that accepts dimensions as input, e.g.,\n ``rand(2,2)`` would generate a 2-by-2 array of floats,\n uniformly distributed over ``[0, 1)``.\n\n Notes\n -----\n The probability density function of the uniform distribution is\n\n .. math:: p(x) = \\frac{1}{b - a}\n\n anywhe""re within the interval ``[a, b)``, and zero elsewhere.\n\n When ``high`` == ``low``, values of ``low`` will be returned.\n If ``high`` < ``low``, the results are officially undefined\n and may eventually raise an error, i.e. do not rely on this\n function to behave when passed arguments satisfying that\n inequality condition.\n\n Examples\n --------\n Draw samples from the distribution:\n\n >>> s = np.random.uniform(-1,0,1000)\n\n All values are within the given interval:\n\n >>> np.all(s >= -1)\n True\n >>> np.all(s < 0)\n True\n\n Display the histogram of the samples, along with the\n probability density function:\n\n >>> import matplotlib.pyplot as plt\n >>> count, bins, ignored = plt.hist(s, 15, density=True)\n >>> plt.plot(bins, np.ones_like(bins), linewidth=2, color='r')\n >>> plt.show()\n\n "; static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_37uniform(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_low = 0; PyObject *__pyx_v_high = 0; PyObject *__pyx_v_size = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("uniform (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_low,&__pyx_n_s_high,&__pyx_n_s_size,0}; PyObject* values[3] = {0,0,0}; values[0] = ((PyObject *)__pyx_float_0_0); values[1] = ((PyObject *)__pyx_float_1_0); values[2] = ((PyObject *)Py_None); if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); CYTHON_FALLTHROUGH; case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); CYTHON_FALLTHROUGH; case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); CYTHON_FALLTHROUGH; case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_low); if (value) { values[0] = value; kw_args--; } } CYTHON_FALLTHROUGH; case 1: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_high); if (value) { values[1] = value; kw_args--; } } CYTHON_FALLTHROUGH; case 2: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_size); if (value) { values[2] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "uniform") < 0)) __PYX_ERR(0, 869, __pyx_L3_error) } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); CYTHON_FALLTHROUGH; case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); CYTHON_FALLTHROUGH; case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); CYTHON_FALLTHROUGH; case 0: break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_low = values[0]; __pyx_v_high = values[1]; __pyx_v_size = values[2]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("uniform", 0, 0, 3, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(0, 869, __pyx_L3_error) __pyx_L3_error:; __Pyx_AddTraceback("numpy.random.mtrand.RandomState.uniform", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_5numpy_6random_6mtrand_11RandomState_36uniform(((struct __pyx_obj_5numpy_6random_6mtrand_RandomState *)__pyx_v_self), __pyx_v_low, __pyx_v_high, __pyx_v_size); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_36uniform(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_low, PyObject *__pyx_v_high, PyObject *__pyx_v_size) { CYTHON_UNUSED int __pyx_v_is_scalar; PyArrayObject *__pyx_v_alow = 0; PyArrayObject *__pyx_v_ahigh = 0; PyArrayObject *__pyx_v_arange = 0; double __pyx_v__low; double __pyx_v__high; double __pyx_v_range; PyObject *__pyx_v_temp = 0; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; int __pyx_t_3; int __pyx_t_4; int __pyx_t_5; double __pyx_t_6; PyObject *__pyx_t_7 = NULL; PyObject *__pyx_t_8 = NULL; PyObject *__pyx_t_9 = NULL; __Pyx_RefNannySetupContext("uniform", 0); /* "numpy/random/mtrand.pyx":946 * * """ * cdef bint is_scalar = True # <<<<<<<<<<<<<< * cdef np.ndarray alow, ahigh, arange * cdef double _low, _high, range */ __pyx_v_is_scalar = 1; /* "numpy/random/mtrand.pyx":951 * cdef object temp * * alow = np.PyArray_FROM_OTF(low, np.NPY_DOUBLE, np.NPY_ALIGNED) # <<<<<<<<<<<<<< * ahigh = np.PyArray_FROM_OTF(high, np.NPY_DOUBLE, np.NPY_ALIGNED) * */ __pyx_t_1 = PyArray_FROM_OTF(__pyx_v_low, NPY_DOUBLE, NPY_ALIGNED); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 951, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = __pyx_t_1; __Pyx_INCREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_v_alow = ((PyArrayObject *)__pyx_t_2); __pyx_t_2 = 0; /* "numpy/random/mtrand.pyx":952 * * alow = np.PyArray_FROM_OTF(low, np.NPY_DOUBLE, np.NPY_ALIGNED) * ahigh = np.PyArray_FROM_OTF(high, np.NPY_DOUBLE, np.NPY_ALIGNED) # <<<<<<<<<<<<<< * * if np.PyArray_NDIM(alow) == np.PyArray_NDIM(ahigh) == 0: */ __pyx_t_2 = PyArray_FROM_OTF(__pyx_v_high, NPY_DOUBLE, NPY_ALIGNED); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 952, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_1 = __pyx_t_2; __Pyx_INCREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_v_ahigh = ((PyArrayObject *)__pyx_t_1); __pyx_t_1 = 0; /* "numpy/random/mtrand.pyx":954 * ahigh = np.PyArray_FROM_OTF(high, np.NPY_DOUBLE, np.NPY_ALIGNED) * * if np.PyArray_NDIM(alow) == np.PyArray_NDIM(ahigh) == 0: # <<<<<<<<<<<<<< * _low = PyFloat_AsDouble(low) * _high = PyFloat_AsDouble(high) */ __pyx_t_3 = PyArray_NDIM(__pyx_v_ahigh); __pyx_t_4 = (PyArray_NDIM(__pyx_v_alow) == __pyx_t_3); if (__pyx_t_4) { __pyx_t_4 = (__pyx_t_3 == 0); } __pyx_t_5 = (__pyx_t_4 != 0); if (__pyx_t_5) { /* "numpy/random/mtrand.pyx":955 * * if np.PyArray_NDIM(alow) == np.PyArray_NDIM(ahigh) == 0: * _low = PyFloat_AsDouble(low) # <<<<<<<<<<<<<< * _high = PyFloat_AsDouble(high) * range = _high - _low */ __pyx_t_6 = PyFloat_AsDouble(__pyx_v_low); if (unlikely(__pyx_t_6 == ((double)-1.0) && PyErr_Occurred())) __PYX_ERR(0, 955, __pyx_L1_error) __pyx_v__low = __pyx_t_6; /* "numpy/random/mtrand.pyx":956 * if np.PyArray_NDIM(alow) == np.PyArray_NDIM(ahigh) == 0: * _low = PyFloat_AsDouble(low) * _high = PyFloat_AsDouble(high) # <<<<<<<<<<<<<< * range = _high - _low * if not np.isfinite(range): */ __pyx_t_6 = PyFloat_AsDouble(__pyx_v_high); if (unlikely(__pyx_t_6 == ((double)-1.0) && PyErr_Occurred())) __PYX_ERR(0, 956, __pyx_L1_error) __pyx_v__high = __pyx_t_6; /* "numpy/random/mtrand.pyx":957 * _low = PyFloat_AsDouble(low) * _high = PyFloat_AsDouble(high) * range = _high - _low # <<<<<<<<<<<<<< * if not np.isfinite(range): * raise OverflowError('Range exceeds valid bounds') */ __pyx_v_range = (__pyx_v__high - __pyx_v__low); /* "numpy/random/mtrand.pyx":958 * _high = PyFloat_AsDouble(high) * range = _high - _low * if not np.isfinite(range): # <<<<<<<<<<<<<< * raise OverflowError('Range exceeds valid bounds') * */ __Pyx_GetModuleGlobalName(__pyx_t_2, __pyx_n_s_np); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 958, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_7 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_isfinite); if (unlikely(!__pyx_t_7)) __PYX_ERR(0, 958, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_7); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = PyFloat_FromDouble(__pyx_v_range); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 958, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_8 = NULL; if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_7))) { __pyx_t_8 = PyMethod_GET_SELF(__pyx_t_7); if (likely(__pyx_t_8)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_7); __Pyx_INCREF(__pyx_t_8); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_7, function); } } __pyx_t_1 = (__pyx_t_8) ? __Pyx_PyObject_Call2Args(__pyx_t_7, __pyx_t_8, __pyx_t_2) : __Pyx_PyObject_CallOneArg(__pyx_t_7, __pyx_t_2); __Pyx_XDECREF(__pyx_t_8); __pyx_t_8 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 958, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; __pyx_t_5 = __Pyx_PyObject_IsTrue(__pyx_t_1); if (unlikely(__pyx_t_5 < 0)) __PYX_ERR(0, 958, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_4 = ((!__pyx_t_5) != 0); if (unlikely(__pyx_t_4)) { /* "numpy/random/mtrand.pyx":959 * range = _high - _low * if not np.isfinite(range): * raise OverflowError('Range exceeds valid bounds') # <<<<<<<<<<<<<< * * return cont(&random_uniform, &self._bitgen, size, self.lock, 2, */ __pyx_t_1 = __Pyx_PyObject_Call(__pyx_builtin_OverflowError, __pyx_tuple__30, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 959, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_Raise(__pyx_t_1, 0, 0, 0); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __PYX_ERR(0, 959, __pyx_L1_error) /* "numpy/random/mtrand.pyx":958 * _high = PyFloat_AsDouble(high) * range = _high - _low * if not np.isfinite(range): # <<<<<<<<<<<<<< * raise OverflowError('Range exceeds valid bounds') * */ } /* "numpy/random/mtrand.pyx":961 * raise OverflowError('Range exceeds valid bounds') * * return cont(&random_uniform, &self._bitgen, size, self.lock, 2, # <<<<<<<<<<<<<< * _low, '', CONS_NONE, * range, '', CONS_NONE, */ __Pyx_XDECREF(__pyx_r); __pyx_t_1 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_1); /* "numpy/random/mtrand.pyx":962 * * return cont(&random_uniform, &self._bitgen, size, self.lock, 2, * _low, '', CONS_NONE, # <<<<<<<<<<<<<< * range, '', CONS_NONE, * 0.0, '', CONS_NONE, */ __pyx_t_7 = PyFloat_FromDouble(__pyx_v__low); if (unlikely(!__pyx_t_7)) __PYX_ERR(0, 962, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_7); /* "numpy/random/mtrand.pyx":963 * return cont(&random_uniform, &self._bitgen, size, self.lock, 2, * _low, '', CONS_NONE, * range, '', CONS_NONE, # <<<<<<<<<<<<<< * 0.0, '', CONS_NONE, * None) */ __pyx_t_2 = PyFloat_FromDouble(__pyx_v_range); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 963, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); /* "numpy/random/mtrand.pyx":961 * raise OverflowError('Range exceeds valid bounds') * * return cont(&random_uniform, &self._bitgen, size, self.lock, 2, # <<<<<<<<<<<<<< * _low, '', CONS_NONE, * range, '', CONS_NONE, */ __pyx_t_8 = __pyx_f_5numpy_6random_6common_cont((&random_uniform), (&__pyx_v_self->_bitgen), __pyx_v_size, __pyx_t_1, 2, __pyx_t_7, __pyx_kp_u__12, __pyx_e_5numpy_6random_6common_CONS_NONE, __pyx_t_2, __pyx_kp_u__12, __pyx_e_5numpy_6random_6common_CONS_NONE, __pyx_float_0_0, __pyx_kp_u__12, __pyx_e_5numpy_6random_6common_CONS_NONE, Py_None); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 961, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_8); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_r = __pyx_t_8; __pyx_t_8 = 0; goto __pyx_L0; /* "numpy/random/mtrand.pyx":954 * ahigh = np.PyArray_FROM_OTF(high, np.NPY_DOUBLE, np.NPY_ALIGNED) * * if np.PyArray_NDIM(alow) == np.PyArray_NDIM(ahigh) == 0: # <<<<<<<<<<<<<< * _low = PyFloat_AsDouble(low) * _high = PyFloat_AsDouble(high) */ } /* "numpy/random/mtrand.pyx":967 * None) * * temp = np.subtract(ahigh, alow) # <<<<<<<<<<<<<< * Py_INCREF(temp) * # needed to get around Pyrex's automatic reference-counting */ __Pyx_GetModuleGlobalName(__pyx_t_2, __pyx_n_s_np); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 967, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_7 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_subtract); if (unlikely(!__pyx_t_7)) __PYX_ERR(0, 967, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_7); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = NULL; __pyx_t_3 = 0; if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_7))) { __pyx_t_2 = PyMethod_GET_SELF(__pyx_t_7); if (likely(__pyx_t_2)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_7); __Pyx_INCREF(__pyx_t_2); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_7, function); __pyx_t_3 = 1; } } #if CYTHON_FAST_PYCALL if (PyFunction_Check(__pyx_t_7)) { PyObject *__pyx_temp[3] = {__pyx_t_2, ((PyObject *)__pyx_v_ahigh), ((PyObject *)__pyx_v_alow)}; __pyx_t_8 = __Pyx_PyFunction_FastCall(__pyx_t_7, __pyx_temp+1-__pyx_t_3, 2+__pyx_t_3); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 967, __pyx_L1_error) __Pyx_XDECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_GOTREF(__pyx_t_8); } else #endif #if CYTHON_FAST_PYCCALL if (__Pyx_PyFastCFunction_Check(__pyx_t_7)) { PyObject *__pyx_temp[3] = {__pyx_t_2, ((PyObject *)__pyx_v_ahigh), ((PyObject *)__pyx_v_alow)}; __pyx_t_8 = __Pyx_PyCFunction_FastCall(__pyx_t_7, __pyx_temp+1-__pyx_t_3, 2+__pyx_t_3); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 967, __pyx_L1_error) __Pyx_XDECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_GOTREF(__pyx_t_8); } else #endif { __pyx_t_1 = PyTuple_New(2+__pyx_t_3); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 967, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); if (__pyx_t_2) { __Pyx_GIVEREF(__pyx_t_2); PyTuple_SET_ITEM(__pyx_t_1, 0, __pyx_t_2); __pyx_t_2 = NULL; } __Pyx_INCREF(((PyObject *)__pyx_v_ahigh)); __Pyx_GIVEREF(((PyObject *)__pyx_v_ahigh)); PyTuple_SET_ITEM(__pyx_t_1, 0+__pyx_t_3, ((PyObject *)__pyx_v_ahigh)); __Pyx_INCREF(((PyObject *)__pyx_v_alow)); __Pyx_GIVEREF(((PyObject *)__pyx_v_alow)); PyTuple_SET_ITEM(__pyx_t_1, 1+__pyx_t_3, ((PyObject *)__pyx_v_alow)); __pyx_t_8 = __Pyx_PyObject_Call(__pyx_t_7, __pyx_t_1, NULL); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 967, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_8); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; } __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; __pyx_v_temp = __pyx_t_8; __pyx_t_8 = 0; /* "numpy/random/mtrand.pyx":968 * * temp = np.subtract(ahigh, alow) * Py_INCREF(temp) # <<<<<<<<<<<<<< * # needed to get around Pyrex's automatic reference-counting * # rules because EnsureArray steals a reference */ Py_INCREF(__pyx_v_temp); /* "numpy/random/mtrand.pyx":971 * # needed to get around Pyrex's automatic reference-counting * # rules because EnsureArray steals a reference * arange = np.PyArray_EnsureArray(temp) # <<<<<<<<<<<<<< * if not np.all(np.isfinite(arange)): * raise OverflowError('Range exceeds valid bounds') */ __pyx_t_8 = PyArray_EnsureArray(__pyx_v_temp); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 971, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_8); __pyx_t_7 = __pyx_t_8; __Pyx_INCREF(__pyx_t_7); __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; __pyx_v_arange = ((PyArrayObject *)__pyx_t_7); __pyx_t_7 = 0; /* "numpy/random/mtrand.pyx":972 * # rules because EnsureArray steals a reference * arange = np.PyArray_EnsureArray(temp) * if not np.all(np.isfinite(arange)): # <<<<<<<<<<<<<< * raise OverflowError('Range exceeds valid bounds') * return cont(&random_uniform, &self._bitgen, size, self.lock, 2, */ __Pyx_GetModuleGlobalName(__pyx_t_8, __pyx_n_s_np); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 972, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_8); __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_8, __pyx_n_s_all); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 972, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; __Pyx_GetModuleGlobalName(__pyx_t_2, __pyx_n_s_np); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 972, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_9 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_isfinite); if (unlikely(!__pyx_t_9)) __PYX_ERR(0, 972, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_9); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = NULL; if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_9))) { __pyx_t_2 = PyMethod_GET_SELF(__pyx_t_9); if (likely(__pyx_t_2)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_9); __Pyx_INCREF(__pyx_t_2); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_9, function); } } __pyx_t_8 = (__pyx_t_2) ? __Pyx_PyObject_Call2Args(__pyx_t_9, __pyx_t_2, ((PyObject *)__pyx_v_arange)) : __Pyx_PyObject_CallOneArg(__pyx_t_9, ((PyObject *)__pyx_v_arange)); __Pyx_XDECREF(__pyx_t_2); __pyx_t_2 = 0; if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 972, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_8); __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; __pyx_t_9 = NULL; if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_1))) { __pyx_t_9 = PyMethod_GET_SELF(__pyx_t_1); if (likely(__pyx_t_9)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_1); __Pyx_INCREF(__pyx_t_9); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_1, function); } } __pyx_t_7 = (__pyx_t_9) ? __Pyx_PyObject_Call2Args(__pyx_t_1, __pyx_t_9, __pyx_t_8) : __Pyx_PyObject_CallOneArg(__pyx_t_1, __pyx_t_8); __Pyx_XDECREF(__pyx_t_9); __pyx_t_9 = 0; __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; if (unlikely(!__pyx_t_7)) __PYX_ERR(0, 972, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_7); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_4 = __Pyx_PyObject_IsTrue(__pyx_t_7); if (unlikely(__pyx_t_4 < 0)) __PYX_ERR(0, 972, __pyx_L1_error) __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; __pyx_t_5 = ((!__pyx_t_4) != 0); if (unlikely(__pyx_t_5)) { /* "numpy/random/mtrand.pyx":973 * arange = np.PyArray_EnsureArray(temp) * if not np.all(np.isfinite(arange)): * raise OverflowError('Range exceeds valid bounds') # <<<<<<<<<<<<<< * return cont(&random_uniform, &self._bitgen, size, self.lock, 2, * alow, '', CONS_NONE, */ __pyx_t_7 = __Pyx_PyObject_Call(__pyx_builtin_OverflowError, __pyx_tuple__30, NULL); if (unlikely(!__pyx_t_7)) __PYX_ERR(0, 973, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_7); __Pyx_Raise(__pyx_t_7, 0, 0, 0); __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; __PYX_ERR(0, 973, __pyx_L1_error) /* "numpy/random/mtrand.pyx":972 * # rules because EnsureArray steals a reference * arange = np.PyArray_EnsureArray(temp) * if not np.all(np.isfinite(arange)): # <<<<<<<<<<<<<< * raise OverflowError('Range exceeds valid bounds') * return cont(&random_uniform, &self._bitgen, size, self.lock, 2, */ } /* "numpy/random/mtrand.pyx":974 * if not np.all(np.isfinite(arange)): * raise OverflowError('Range exceeds valid bounds') * return cont(&random_uniform, &self._bitgen, size, self.lock, 2, # <<<<<<<<<<<<<< * alow, '', CONS_NONE, * arange, '', CONS_NONE, */ __Pyx_XDECREF(__pyx_r); __pyx_t_7 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_7); /* "numpy/random/mtrand.pyx":978 * arange, '', CONS_NONE, * 0.0, '', CONS_NONE, * None) # <<<<<<<<<<<<<< * * def rand(self, *args): */ __pyx_t_1 = __pyx_f_5numpy_6random_6common_cont((&random_uniform), (&__pyx_v_self->_bitgen), __pyx_v_size, __pyx_t_7, 2, ((PyObject *)__pyx_v_alow), __pyx_kp_u__12, __pyx_e_5numpy_6random_6common_CONS_NONE, ((PyObject *)__pyx_v_arange), __pyx_kp_u__12, __pyx_e_5numpy_6random_6common_CONS_NONE, __pyx_float_0_0, __pyx_kp_u__12, __pyx_e_5numpy_6random_6common_CONS_NONE, Py_None); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 974, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; __pyx_r = __pyx_t_1; __pyx_t_1 = 0; goto __pyx_L0; /* "numpy/random/mtrand.pyx":869 * return a[idx] * * def uniform(self, low=0.0, high=1.0, size=None): # <<<<<<<<<<<<<< * """ * uniform(low=0.0, high=1.0, size=None) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_7); __Pyx_XDECREF(__pyx_t_8); __Pyx_XDECREF(__pyx_t_9); __Pyx_AddTraceback("numpy.random.mtrand.RandomState.uniform", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XDECREF((PyObject *)__pyx_v_alow); __Pyx_XDECREF((PyObject *)__pyx_v_ahigh); __Pyx_XDECREF((PyObject *)__pyx_v_arange); __Pyx_XDECREF(__pyx_v_temp); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "numpy/random/mtrand.pyx":980 * None) * * def rand(self, *args): # <<<<<<<<<<<<<< * """ * rand(d0, d1, ..., dn) */ /* Python wrapper */ static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_39rand(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static char __pyx_doc_5numpy_6random_6mtrand_11RandomState_38rand[] = "\n rand(d0, d1, ..., dn)\n\n Random values in a given shape.\n\n .. note::\n This is a convenience function for users porting code from Matlab,\n and wraps `numpy.random.random_sample`. That function takes a\n tuple to specify the size of the output, which is consistent with\n other NumPy functions like `numpy.zeros` and `numpy.ones`.\n\n Create an array of the given shape and populate it with\n random samples from a uniform distribution\n over ``[0, 1)``.\n\n Parameters\n ----------\n d0, d1, ..., dn : int, optional\n The dimensions of the returned array, must be non-negative.\n If no argument is given a single Python float is returned.\n\n Returns\n -------\n out : ndarray, shape ``(d0, d1, ..., dn)``\n Random values.\n\n See Also\n --------\n random\n\n Examples\n --------\n >>> np.random.rand(3,2)\n array([[ 0.14022471, 0.96360618], #random\n [ 0.37601032, 0.25528411], #random\n [ 0.49313049, 0.94909878]]) #random\n\n "; static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_39rand(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_args = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("rand (wrapper)", 0); if (unlikely(__pyx_kwds) && unlikely(PyDict_Size(__pyx_kwds) > 0) && unlikely(!__Pyx_CheckKeywordStrings(__pyx_kwds, "rand", 0))) return NULL; __Pyx_INCREF(__pyx_args); __pyx_v_args = __pyx_args; __pyx_r = __pyx_pf_5numpy_6random_6mtrand_11RandomState_38rand(((struct __pyx_obj_5numpy_6random_6mtrand_RandomState *)__pyx_v_self), __pyx_v_args); /* function exit code */ __Pyx_XDECREF(__pyx_v_args); __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_38rand(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_args) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations Py_ssize_t __pyx_t_1; int __pyx_t_2; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; PyObject *__pyx_t_5 = NULL; __Pyx_RefNannySetupContext("rand", 0); /* "numpy/random/mtrand.pyx":1019 * * """ * if len(args) == 0: # <<<<<<<<<<<<<< * return self.random_sample() * else: */ __pyx_t_1 = PyTuple_GET_SIZE(__pyx_v_args); if (unlikely(__pyx_t_1 == ((Py_ssize_t)-1))) __PYX_ERR(0, 1019, __pyx_L1_error) __pyx_t_2 = ((__pyx_t_1 == 0) != 0); if (__pyx_t_2) { /* "numpy/random/mtrand.pyx":1020 * """ * if len(args) == 0: * return self.random_sample() # <<<<<<<<<<<<<< * else: * return self.random_sample(size=args) */ __Pyx_XDECREF(__pyx_r); __pyx_t_4 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_self), __pyx_n_s_random_sample); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 1020, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_5 = NULL; if (CYTHON_UNPACK_METHODS && likely(PyMethod_Check(__pyx_t_4))) { __pyx_t_5 = PyMethod_GET_SELF(__pyx_t_4); if (likely(__pyx_t_5)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_4); __Pyx_INCREF(__pyx_t_5); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_4, function); } } __pyx_t_3 = (__pyx_t_5) ? __Pyx_PyObject_CallOneArg(__pyx_t_4, __pyx_t_5) : __Pyx_PyObject_CallNoArg(__pyx_t_4); __Pyx_XDECREF(__pyx_t_5); __pyx_t_5 = 0; if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 1020, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_r = __pyx_t_3; __pyx_t_3 = 0; goto __pyx_L0; /* "numpy/random/mtrand.pyx":1019 * * """ * if len(args) == 0: # <<<<<<<<<<<<<< * return self.random_sample() * else: */ } /* "numpy/random/mtrand.pyx":1022 * return self.random_sample() * else: * return self.random_sample(size=args) # <<<<<<<<<<<<<< * * def randn(self, *args): */ /*else*/ { __Pyx_XDECREF(__pyx_r); __pyx_t_3 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_self), __pyx_n_s_random_sample); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 1022, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_4 = __Pyx_PyDict_NewPresized(1); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 1022, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); if (PyDict_SetItem(__pyx_t_4, __pyx_n_s_size, __pyx_v_args) < 0) __PYX_ERR(0, 1022, __pyx_L1_error) __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_empty_tuple, __pyx_t_4); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 1022, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_r = __pyx_t_5; __pyx_t_5 = 0; goto __pyx_L0; } /* "numpy/random/mtrand.pyx":980 * None) * * def rand(self, *args): # <<<<<<<<<<<<<< * """ * rand(d0, d1, ..., dn) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __Pyx_XDECREF(__pyx_t_5); __Pyx_AddTraceback("numpy.random.mtrand.RandomState.rand", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "numpy/random/mtrand.pyx":1024 * return self.random_sample(size=args) * * def randn(self, *args): # <<<<<<<<<<<<<< * """ * randn(d0, d1, ..., dn) */ /* Python wrapper */ static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_41randn(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static char __pyx_doc_5numpy_6random_6mtrand_11RandomState_40randn[] = "\n randn(d0, d1, ..., dn)\n\n Return a sample (or samples) from the \"standard normal\" distribution.\n\n .. note::\n This is a convenience function for users porting code from Matlab,\n and wraps `numpy.random.standard_normal`. That function takes a\n tuple to specify the size of the output, which is consistent with\n other NumPy functions like `numpy.zeros` and `numpy.ones`.\n\n If positive int_like arguments are provided, `randn` generates an array\n of shape ``(d0, d1, ..., dn)``, filled\n with random floats sampled from a univariate \"normal\" (Gaussian)\n distribution of mean 0 and variance 1. A single float randomly sampled\n from the distribution is returned if no argument is provided.\n\n Parameters\n ----------\n d0, d1, ..., dn : int, optional\n The dimensions of the returned array, must be non-negative.\n If no argument is given a single Python float is returned.\n\n Returns\n -------\n Z : ndarray or float\n A ``(d0, d1, ..., dn)``-shaped array of floating-point samples from\n the standard normal distribution, or a single such float if\n no parameters were supplied.\n\n See Also\n --------\n standard_normal : Similar, but takes a tuple as its argument.\n normal : Also accepts mu and sigma arguments.\n\n Notes\n -----\n For random samples from :math:`N(\\mu, \\sigma^2)`, use:\n\n ``sigma * np.random.randn(...) + mu``\n\n Examples\n --------\n >>> np.random.randn()\n 2.1923875335537315 # random\n\n Two-by-four array of samples from N(3, 6.25):\n\n >>> 3 + 2.5 * np.random.randn(2, 4)\n array([[-4.49401501, 4.00950034, -1.81814867, 7.29718677], # random\n [ 0.39924804, 4.68456316, 4.99394529, 4.84057254]]) # random\n\n "; static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_41randn(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_args = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("randn (wrapper)", 0); if (unlikely(__pyx_kwds) && unlikely(PyDict_Size(__pyx_kwds) > 0) && unlikely(!__Pyx_CheckKeywordStrings(__pyx_kwds, "randn", 0))) return NULL; __Pyx_INCREF(__pyx_args); __pyx_v_args = __pyx_args; __pyx_r = __pyx_pf_5numpy_6random_6mtrand_11RandomState_40randn(((struct __pyx_obj_5numpy_6random_6mtrand_RandomState *)__pyx_v_self), __pyx_v_args); /* function exit code */ __Pyx_XDECREF(__pyx_v_args); __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_40randn(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_args) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations Py_ssize_t __pyx_t_1; int __pyx_t_2; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; PyObject *__pyx_t_5 = NULL; __Pyx_RefNannySetupContext("randn", 0); /* "numpy/random/mtrand.pyx":1078 * * """ * if len(args) == 0: # <<<<<<<<<<<<<< * return self.standard_normal() * else: */ __pyx_t_1 = PyTuple_GET_SIZE(__pyx_v_args); if (unlikely(__pyx_t_1 == ((Py_ssize_t)-1))) __PYX_ERR(0, 1078, __pyx_L1_error) __pyx_t_2 = ((__pyx_t_1 == 0) != 0); if (__pyx_t_2) { /* "numpy/random/mtrand.pyx":1079 * """ * if len(args) == 0: * return self.standard_normal() # <<<<<<<<<<<<<< * else: * return self.standard_normal(size=args) */ __Pyx_XDECREF(__pyx_r); __pyx_t_4 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_self), __pyx_n_s_standard_normal); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 1079, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_5 = NULL; if (CYTHON_UNPACK_METHODS && likely(PyMethod_Check(__pyx_t_4))) { __pyx_t_5 = PyMethod_GET_SELF(__pyx_t_4); if (likely(__pyx_t_5)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_4); __Pyx_INCREF(__pyx_t_5); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_4, function); } } __pyx_t_3 = (__pyx_t_5) ? __Pyx_PyObject_CallOneArg(__pyx_t_4, __pyx_t_5) : __Pyx_PyObject_CallNoArg(__pyx_t_4); __Pyx_XDECREF(__pyx_t_5); __pyx_t_5 = 0; if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 1079, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_r = __pyx_t_3; __pyx_t_3 = 0; goto __pyx_L0; /* "numpy/random/mtrand.pyx":1078 * * """ * if len(args) == 0: # <<<<<<<<<<<<<< * return self.standard_normal() * else: */ } /* "numpy/random/mtrand.pyx":1081 * return self.standard_normal() * else: * return self.standard_normal(size=args) # <<<<<<<<<<<<<< * * def random_integers(self, low, high=None, size=None): */ /*else*/ { __Pyx_XDECREF(__pyx_r); __pyx_t_3 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_self), __pyx_n_s_standard_normal); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 1081, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_4 = __Pyx_PyDict_NewPresized(1); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 1081, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); if (PyDict_SetItem(__pyx_t_4, __pyx_n_s_size, __pyx_v_args) < 0) __PYX_ERR(0, 1081, __pyx_L1_error) __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_empty_tuple, __pyx_t_4); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 1081, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_r = __pyx_t_5; __pyx_t_5 = 0; goto __pyx_L0; } /* "numpy/random/mtrand.pyx":1024 * return self.random_sample(size=args) * * def randn(self, *args): # <<<<<<<<<<<<<< * """ * randn(d0, d1, ..., dn) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __Pyx_XDECREF(__pyx_t_5); __Pyx_AddTraceback("numpy.random.mtrand.RandomState.randn", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "numpy/random/mtrand.pyx":1083 * return self.standard_normal(size=args) * * def random_integers(self, low, high=None, size=None): # <<<<<<<<<<<<<< * """ * random_integers(low, high=None, size=None) */ /* Python wrapper */ static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_43random_integers(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static char __pyx_doc_5numpy_6random_6mtrand_11RandomState_42random_integers[] = "\n random_integers(low, high=None, size=None)\n\n Random integers of type np.int between `low` and `high`, inclusive.\n\n Return random integers of type np.int from the \"discrete uniform\"\n distribution in the closed interval [`low`, `high`]. If `high` is\n None (the default), then results are from [1, `low`]. The np.int\n type translates to the C long integer type and its precision\n is platform dependent.\n\n This function has been deprecated. Use randint instead.\n\n .. deprecated:: 1.11.0\n\n Parameters\n ----------\n low : int\n Lowest (signed) integer to be drawn from the distribution (unless\n ``high=None``, in which case this parameter is the *highest* such\n integer).\n high : int, optional\n If provided, the largest (signed) integer to be drawn from the\n distribution (see above for behavior if ``high=None``).\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. Default is None, in which case a\n single value is returned.\n\n Returns\n -------\n out : int or ndarray of ints\n `size`-shaped array of random integers from the appropriate\n distribution, or a single such random int if `size` not provided.\n\n See Also\n --------\n randint : Similar to `random_integers`, only for the half-open\n interval [`low`, `high`), and 0 is the lowest value if `high` is\n omitted.\n\n Notes\n -----\n To sample from N evenly spaced floating-point numbers between a and b,\n use::\n\n a + (b - a) * (np.random.random_integers(N) - 1) / (N - 1.)\n\n Examples\n --------\n >>> np.random.random_integers(5)\n 4 # random\n >>> type(np.random.random_integ""ers(5))\n \n >>> np.random.random_integers(5, size=(3,2))\n array([[5, 4], # random\n [3, 3],\n [4, 5]])\n\n Choose five random numbers from the set of five evenly-spaced\n numbers between 0 and 2.5, inclusive (*i.e.*, from the set\n :math:`{0, 5/8, 10/8, 15/8, 20/8}`):\n\n >>> 2.5 * (np.random.random_integers(5, size=(5,)) - 1) / 4.\n array([ 0.625, 1.25 , 0.625, 0.625, 2.5 ]) # random\n\n Roll two six sided dice 1000 times and sum the results:\n\n >>> d1 = np.random.random_integers(1, 6, 1000)\n >>> d2 = np.random.random_integers(1, 6, 1000)\n >>> dsums = d1 + d2\n\n Display results as a histogram:\n\n >>> import matplotlib.pyplot as plt\n >>> count, bins, ignored = plt.hist(dsums, 11, density=True)\n >>> plt.show()\n\n "; static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_43random_integers(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_low = 0; PyObject *__pyx_v_high = 0; PyObject *__pyx_v_size = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("random_integers (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_low,&__pyx_n_s_high,&__pyx_n_s_size,0}; PyObject* values[3] = {0,0,0}; values[1] = ((PyObject *)Py_None); values[2] = ((PyObject *)Py_None); if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); CYTHON_FALLTHROUGH; case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); CYTHON_FALLTHROUGH; case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); CYTHON_FALLTHROUGH; case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (likely((values[0] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_low)) != 0)) kw_args--; else goto __pyx_L5_argtuple_error; CYTHON_FALLTHROUGH; case 1: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_high); if (value) { values[1] = value; kw_args--; } } CYTHON_FALLTHROUGH; case 2: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_size); if (value) { values[2] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "random_integers") < 0)) __PYX_ERR(0, 1083, __pyx_L3_error) } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); CYTHON_FALLTHROUGH; case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); CYTHON_FALLTHROUGH; case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_low = values[0]; __pyx_v_high = values[1]; __pyx_v_size = values[2]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("random_integers", 0, 1, 3, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(0, 1083, __pyx_L3_error) __pyx_L3_error:; __Pyx_AddTraceback("numpy.random.mtrand.RandomState.random_integers", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_5numpy_6random_6mtrand_11RandomState_42random_integers(((struct __pyx_obj_5numpy_6random_6mtrand_RandomState *)__pyx_v_self), __pyx_v_low, __pyx_v_high, __pyx_v_size); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_42random_integers(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_low, PyObject *__pyx_v_high, PyObject *__pyx_v_size) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations int __pyx_t_1; int __pyx_t_2; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; PyObject *__pyx_t_5 = NULL; PyObject *__pyx_t_6 = NULL; PyObject *__pyx_t_7 = NULL; int __pyx_t_8; __Pyx_RefNannySetupContext("random_integers", 0); __Pyx_INCREF(__pyx_v_low); __Pyx_INCREF(__pyx_v_high); /* "numpy/random/mtrand.pyx":1163 * * """ * if high is None: # <<<<<<<<<<<<<< * warnings.warn(("This function is deprecated. Please call " * "randint(1, {low} + 1) instead".format(low=low)), */ __pyx_t_1 = (__pyx_v_high == Py_None); __pyx_t_2 = (__pyx_t_1 != 0); if (__pyx_t_2) { /* "numpy/random/mtrand.pyx":1164 * """ * if high is None: * warnings.warn(("This function is deprecated. Please call " # <<<<<<<<<<<<<< * "randint(1, {low} + 1) instead".format(low=low)), * DeprecationWarning) */ __Pyx_GetModuleGlobalName(__pyx_t_4, __pyx_n_s_warnings); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 1164, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_5 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_warn); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 1164, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; /* "numpy/random/mtrand.pyx":1165 * if high is None: * warnings.warn(("This function is deprecated. Please call " * "randint(1, {low} + 1) instead".format(low=low)), # <<<<<<<<<<<<<< * DeprecationWarning) * high = low */ __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_kp_u_This_function_is_deprecated_Plea, __pyx_n_s_format); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 1165, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_6 = __Pyx_PyDict_NewPresized(1); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 1165, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); if (PyDict_SetItem(__pyx_t_6, __pyx_n_s_low, __pyx_v_low) < 0) __PYX_ERR(0, 1165, __pyx_L1_error) __pyx_t_7 = __Pyx_PyObject_Call(__pyx_t_4, __pyx_empty_tuple, __pyx_t_6); if (unlikely(!__pyx_t_7)) __PYX_ERR(0, 1165, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_7); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; /* "numpy/random/mtrand.pyx":1166 * warnings.warn(("This function is deprecated. Please call " * "randint(1, {low} + 1) instead".format(low=low)), * DeprecationWarning) # <<<<<<<<<<<<<< * high = low * low = 1 */ __pyx_t_6 = NULL; __pyx_t_8 = 0; if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_5))) { __pyx_t_6 = PyMethod_GET_SELF(__pyx_t_5); if (likely(__pyx_t_6)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_5); __Pyx_INCREF(__pyx_t_6); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_5, function); __pyx_t_8 = 1; } } #if CYTHON_FAST_PYCALL if (PyFunction_Check(__pyx_t_5)) { PyObject *__pyx_temp[3] = {__pyx_t_6, __pyx_t_7, __pyx_builtin_DeprecationWarning}; __pyx_t_3 = __Pyx_PyFunction_FastCall(__pyx_t_5, __pyx_temp+1-__pyx_t_8, 2+__pyx_t_8); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 1164, __pyx_L1_error) __Pyx_XDECREF(__pyx_t_6); __pyx_t_6 = 0; __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; } else #endif #if CYTHON_FAST_PYCCALL if (__Pyx_PyFastCFunction_Check(__pyx_t_5)) { PyObject *__pyx_temp[3] = {__pyx_t_6, __pyx_t_7, __pyx_builtin_DeprecationWarning}; __pyx_t_3 = __Pyx_PyCFunction_FastCall(__pyx_t_5, __pyx_temp+1-__pyx_t_8, 2+__pyx_t_8); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 1164, __pyx_L1_error) __Pyx_XDECREF(__pyx_t_6); __pyx_t_6 = 0; __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; } else #endif { __pyx_t_4 = PyTuple_New(2+__pyx_t_8); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 1164, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); if (__pyx_t_6) { __Pyx_GIVEREF(__pyx_t_6); PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_t_6); __pyx_t_6 = NULL; } __Pyx_GIVEREF(__pyx_t_7); PyTuple_SET_ITEM(__pyx_t_4, 0+__pyx_t_8, __pyx_t_7); __Pyx_INCREF(__pyx_builtin_DeprecationWarning); __Pyx_GIVEREF(__pyx_builtin_DeprecationWarning); PyTuple_SET_ITEM(__pyx_t_4, 1+__pyx_t_8, __pyx_builtin_DeprecationWarning); __pyx_t_7 = 0; __pyx_t_3 = __Pyx_PyObject_Call(__pyx_t_5, __pyx_t_4, NULL); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 1164, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; } __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; /* "numpy/random/mtrand.pyx":1167 * "randint(1, {low} + 1) instead".format(low=low)), * DeprecationWarning) * high = low # <<<<<<<<<<<<<< * low = 1 * */ __Pyx_INCREF(__pyx_v_low); __Pyx_DECREF_SET(__pyx_v_high, __pyx_v_low); /* "numpy/random/mtrand.pyx":1168 * DeprecationWarning) * high = low * low = 1 # <<<<<<<<<<<<<< * * else: */ __Pyx_INCREF(__pyx_int_1); __Pyx_DECREF_SET(__pyx_v_low, __pyx_int_1); /* "numpy/random/mtrand.pyx":1163 * * """ * if high is None: # <<<<<<<<<<<<<< * warnings.warn(("This function is deprecated. Please call " * "randint(1, {low} + 1) instead".format(low=low)), */ goto __pyx_L3; } /* "numpy/random/mtrand.pyx":1171 * * else: * warnings.warn(("This function is deprecated. Please call " # <<<<<<<<<<<<<< * "randint({low}, {high} + 1) " * "instead".format(low=low, high=high)), */ /*else*/ { __Pyx_GetModuleGlobalName(__pyx_t_5, __pyx_n_s_warnings); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 1171, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_5, __pyx_n_s_warn); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 1171, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; /* "numpy/random/mtrand.pyx":1173 * warnings.warn(("This function is deprecated. Please call " * "randint({low}, {high} + 1) " * "instead".format(low=low, high=high)), # <<<<<<<<<<<<<< * DeprecationWarning) * */ __pyx_t_5 = __Pyx_PyObject_GetAttrStr(__pyx_kp_u_This_function_is_deprecated_Plea_2, __pyx_n_s_format); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 1173, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __pyx_t_7 = __Pyx_PyDict_NewPresized(2); if (unlikely(!__pyx_t_7)) __PYX_ERR(0, 1173, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_7); if (PyDict_SetItem(__pyx_t_7, __pyx_n_s_low, __pyx_v_low) < 0) __PYX_ERR(0, 1173, __pyx_L1_error) if (PyDict_SetItem(__pyx_t_7, __pyx_n_s_high, __pyx_v_high) < 0) __PYX_ERR(0, 1173, __pyx_L1_error) __pyx_t_6 = __Pyx_PyObject_Call(__pyx_t_5, __pyx_empty_tuple, __pyx_t_7); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 1173, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; /* "numpy/random/mtrand.pyx":1174 * "randint({low}, {high} + 1) " * "instead".format(low=low, high=high)), * DeprecationWarning) # <<<<<<<<<<<<<< * * return self.randint(low, int(high) + 1, size=size, dtype='l') */ __pyx_t_7 = NULL; __pyx_t_8 = 0; if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_4))) { __pyx_t_7 = PyMethod_GET_SELF(__pyx_t_4); if (likely(__pyx_t_7)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_4); __Pyx_INCREF(__pyx_t_7); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_4, function); __pyx_t_8 = 1; } } #if CYTHON_FAST_PYCALL if (PyFunction_Check(__pyx_t_4)) { PyObject *__pyx_temp[3] = {__pyx_t_7, __pyx_t_6, __pyx_builtin_DeprecationWarning}; __pyx_t_3 = __Pyx_PyFunction_FastCall(__pyx_t_4, __pyx_temp+1-__pyx_t_8, 2+__pyx_t_8); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 1171, __pyx_L1_error) __Pyx_XDECREF(__pyx_t_7); __pyx_t_7 = 0; __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; } else #endif #if CYTHON_FAST_PYCCALL if (__Pyx_PyFastCFunction_Check(__pyx_t_4)) { PyObject *__pyx_temp[3] = {__pyx_t_7, __pyx_t_6, __pyx_builtin_DeprecationWarning}; __pyx_t_3 = __Pyx_PyCFunction_FastCall(__pyx_t_4, __pyx_temp+1-__pyx_t_8, 2+__pyx_t_8); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 1171, __pyx_L1_error) __Pyx_XDECREF(__pyx_t_7); __pyx_t_7 = 0; __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; } else #endif { __pyx_t_5 = PyTuple_New(2+__pyx_t_8); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 1171, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); if (__pyx_t_7) { __Pyx_GIVEREF(__pyx_t_7); PyTuple_SET_ITEM(__pyx_t_5, 0, __pyx_t_7); __pyx_t_7 = NULL; } __Pyx_GIVEREF(__pyx_t_6); PyTuple_SET_ITEM(__pyx_t_5, 0+__pyx_t_8, __pyx_t_6); __Pyx_INCREF(__pyx_builtin_DeprecationWarning); __Pyx_GIVEREF(__pyx_builtin_DeprecationWarning); PyTuple_SET_ITEM(__pyx_t_5, 1+__pyx_t_8, __pyx_builtin_DeprecationWarning); __pyx_t_6 = 0; __pyx_t_3 = __Pyx_PyObject_Call(__pyx_t_4, __pyx_t_5, NULL); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 1171, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; } __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; } __pyx_L3:; /* "numpy/random/mtrand.pyx":1176 * DeprecationWarning) * * return self.randint(low, int(high) + 1, size=size, dtype='l') # <<<<<<<<<<<<<< * * # Complicated, continuous distributions: */ __Pyx_XDECREF(__pyx_r); __pyx_t_3 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_self), __pyx_n_s_randint); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 1176, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_4 = __Pyx_PyNumber_Int(__pyx_v_high); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 1176, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_5 = __Pyx_PyInt_AddObjC(__pyx_t_4, __pyx_int_1, 1, 0, 0); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 1176, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_4 = PyTuple_New(2); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 1176, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_INCREF(__pyx_v_low); __Pyx_GIVEREF(__pyx_v_low); PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_v_low); __Pyx_GIVEREF(__pyx_t_5); PyTuple_SET_ITEM(__pyx_t_4, 1, __pyx_t_5); __pyx_t_5 = 0; __pyx_t_5 = __Pyx_PyDict_NewPresized(2); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 1176, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); if (PyDict_SetItem(__pyx_t_5, __pyx_n_s_size, __pyx_v_size) < 0) __PYX_ERR(0, 1176, __pyx_L1_error) if (PyDict_SetItem(__pyx_t_5, __pyx_n_s_dtype, __pyx_n_u_l) < 0) __PYX_ERR(0, 1176, __pyx_L1_error) __pyx_t_6 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_t_4, __pyx_t_5); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 1176, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_r = __pyx_t_6; __pyx_t_6 = 0; goto __pyx_L0; /* "numpy/random/mtrand.pyx":1083 * return self.standard_normal(size=args) * * def random_integers(self, low, high=None, size=None): # <<<<<<<<<<<<<< * """ * random_integers(low, high=None, size=None) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __Pyx_XDECREF(__pyx_t_5); __Pyx_XDECREF(__pyx_t_6); __Pyx_XDECREF(__pyx_t_7); __Pyx_AddTraceback("numpy.random.mtrand.RandomState.random_integers", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XDECREF(__pyx_v_low); __Pyx_XDECREF(__pyx_v_high); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "numpy/random/mtrand.pyx":1179 * * # Complicated, continuous distributions: * def standard_normal(self, size=None): # <<<<<<<<<<<<<< * """ * standard_normal(size=None) */ /* Python wrapper */ static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_45standard_normal(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static char __pyx_doc_5numpy_6random_6mtrand_11RandomState_44standard_normal[] = "\n standard_normal(size=None)\n\n Draw samples from a standard Normal distribution (mean=0, stdev=1).\n\n Parameters\n ----------\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. Default is None, in which case a\n single value is returned.\n\n Returns\n -------\n out : float or ndarray\n A floating-point array of shape ``size`` of drawn samples, or a\n single sample if ``size`` was not specified.\n\n Notes\n -----\n For random samples from :math:`N(\\mu, \\sigma^2)`, use one of::\n\n mu + sigma * np.random.standard_normal(size=...)\n np.random.normal(mu, sigma, size=...)\n\n See Also\n --------\n normal :\n Equivalent function with additional ``loc`` and ``scale`` arguments\n for setting the mean and standard deviation.\n\n Examples\n --------\n >>> np.random.standard_normal()\n 2.1923875335537315 #random\n\n >>> s = np.random.standard_normal(8000)\n >>> s\n array([ 0.6888893 , 0.78096262, -0.89086505, ..., 0.49876311, # random\n -0.38672696, -0.4685006 ]) # random\n >>> s.shape\n (8000,)\n >>> s = np.random.standard_normal(size=(3, 4, 2))\n >>> s.shape\n (3, 4, 2)\n\n Two-by-four array of samples from :math:`N(3, 6.25)`:\n\n >>> 3 + 2.5 * np.random.standard_normal(size=(2, 4))\n array([[-4.49401501, 4.00950034, -1.81814867, 7.29718677], # random\n [ 0.39924804, 4.68456316, 4.99394529, 4.84057254]]) # random\n\n "; static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_45standard_normal(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_size = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("standard_normal (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_size,0}; PyObject* values[1] = {0}; values[0] = ((PyObject *)Py_None); if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); CYTHON_FALLTHROUGH; case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_size); if (value) { values[0] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "standard_normal") < 0)) __PYX_ERR(0, 1179, __pyx_L3_error) } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); CYTHON_FALLTHROUGH; case 0: break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_size = values[0]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("standard_normal", 0, 0, 1, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(0, 1179, __pyx_L3_error) __pyx_L3_error:; __Pyx_AddTraceback("numpy.random.mtrand.RandomState.standard_normal", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_5numpy_6random_6mtrand_11RandomState_44standard_normal(((struct __pyx_obj_5numpy_6random_6mtrand_RandomState *)__pyx_v_self), __pyx_v_size); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_44standard_normal(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_size) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; __Pyx_RefNannySetupContext("standard_normal", 0); /* "numpy/random/mtrand.pyx":1233 * * """ * return cont(&legacy_gauss, &self._aug_state, size, self.lock, 0, # <<<<<<<<<<<<<< * None, None, CONS_NONE, * None, None, CONS_NONE, */ __Pyx_XDECREF(__pyx_r); __pyx_t_1 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_1); /* "numpy/random/mtrand.pyx":1237 * None, None, CONS_NONE, * None, None, CONS_NONE, * None) # <<<<<<<<<<<<<< * * def normal(self, loc=0.0, scale=1.0, size=None): */ __pyx_t_2 = __pyx_f_5numpy_6random_6common_cont((&legacy_gauss), (&__pyx_v_self->_aug_state), __pyx_v_size, __pyx_t_1, 0, Py_None, Py_None, __pyx_e_5numpy_6random_6common_CONS_NONE, Py_None, Py_None, __pyx_e_5numpy_6random_6common_CONS_NONE, Py_None, Py_None, __pyx_e_5numpy_6random_6common_CONS_NONE, Py_None); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 1233, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_r = __pyx_t_2; __pyx_t_2 = 0; goto __pyx_L0; /* "numpy/random/mtrand.pyx":1179 * * # Complicated, continuous distributions: * def standard_normal(self, size=None): # <<<<<<<<<<<<<< * """ * standard_normal(size=None) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_AddTraceback("numpy.random.mtrand.RandomState.standard_normal", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "numpy/random/mtrand.pyx":1239 * None) * * def normal(self, loc=0.0, scale=1.0, size=None): # <<<<<<<<<<<<<< * """ * normal(loc=0.0, scale=1.0, size=None) */ /* Python wrapper */ static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_47normal(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static char __pyx_doc_5numpy_6random_6mtrand_11RandomState_46normal[] = "\n normal(loc=0.0, scale=1.0, size=None)\n\n Draw random samples from a normal (Gaussian) distribution.\n\n The probability density function of the normal distribution, first\n derived by De Moivre and 200 years later by both Gauss and Laplace\n independently [2]_, is often called the bell curve because of\n its characteristic shape (see the example below).\n\n The normal distributions occurs often in nature. For example, it\n describes the commonly occurring distribution of samples influenced\n by a large number of tiny, random disturbances, each with its own\n unique distribution [2]_.\n\n Parameters\n ----------\n loc : float or array_like of floats\n Mean (\"centre\") of the distribution.\n scale : float or array_like of floats\n Standard deviation (spread or \"width\") of the distribution. Must be\n non-negative.\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. If size is ``None`` (default),\n a single value is returned if ``loc`` and ``scale`` are both scalars.\n Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.\n\n Returns\n -------\n out : ndarray or scalar\n Drawn samples from the parameterized normal distribution.\n\n See Also\n --------\n scipy.stats.norm : probability density function, distribution or\n cumulative density function, etc.\n\n Notes\n -----\n The probability density for the Gaussian distribution is\n\n .. math:: p(x) = \\frac{1}{\\sqrt{ 2 \\pi \\sigma^2 }}\n e^{ - \\frac{ (x - \\mu)^2 } {2 \\sigma^2} },\n\n where :math:`\\mu` is the mean and :math:`\\sigma` the standard\n deviation. The square of the standard deviation, :math:`""\\sigma^2`,\n is called the variance.\n\n The function has its peak at the mean, and its \"spread\" increases with\n the standard deviation (the function reaches 0.607 times its maximum at\n :math:`x + \\sigma` and :math:`x - \\sigma` [2]_). This implies that\n `numpy.random.normal` is more likely to return samples lying close to\n the mean, rather than those far away.\n\n References\n ----------\n .. [1] Wikipedia, \"Normal distribution\",\n https://en.wikipedia.org/wiki/Normal_distribution\n .. [2] P. R. Peebles Jr., \"Central Limit Theorem\" in \"Probability,\n Random Variables and Random Signal Principles\", 4th ed., 2001,\n pp. 51, 51, 125.\n\n Examples\n --------\n Draw samples from the distribution:\n\n >>> mu, sigma = 0, 0.1 # mean and standard deviation\n >>> s = np.random.normal(mu, sigma, 1000)\n\n Verify the mean and the variance:\n\n >>> abs(mu - np.mean(s))\n 0.0 # may vary\n\n >>> abs(sigma - np.std(s, ddof=1))\n 0.1 # may vary\n\n Display the histogram of the samples, along with\n the probability density function:\n\n >>> import matplotlib.pyplot as plt\n >>> count, bins, ignored = plt.hist(s, 30, density=True)\n >>> plt.plot(bins, 1/(sigma * np.sqrt(2 * np.pi)) *\n ... np.exp( - (bins - mu)**2 / (2 * sigma**2) ),\n ... linewidth=2, color='r')\n >>> plt.show()\n\n Two-by-four array of samples from N(3, 6.25):\n\n >>> np.random.normal(3, 2.5, size=(2, 4))\n array([[-4.49401501, 4.00950034, -1.81814867, 7.29718677], # random\n [ 0.39924804, 4.68456316, 4.99394529, 4.84057254]]) # random\n\n "; static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_47normal(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_loc = 0; PyObject *__pyx_v_scale = 0; PyObject *__pyx_v_size = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("normal (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_loc,&__pyx_n_s_scale,&__pyx_n_s_size,0}; PyObject* values[3] = {0,0,0}; values[0] = ((PyObject *)__pyx_float_0_0); values[1] = ((PyObject *)__pyx_float_1_0); values[2] = ((PyObject *)Py_None); if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); CYTHON_FALLTHROUGH; case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); CYTHON_FALLTHROUGH; case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); CYTHON_FALLTHROUGH; case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_loc); if (value) { values[0] = value; kw_args--; } } CYTHON_FALLTHROUGH; case 1: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_scale); if (value) { values[1] = value; kw_args--; } } CYTHON_FALLTHROUGH; case 2: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_size); if (value) { values[2] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "normal") < 0)) __PYX_ERR(0, 1239, __pyx_L3_error) } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); CYTHON_FALLTHROUGH; case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); CYTHON_FALLTHROUGH; case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); CYTHON_FALLTHROUGH; case 0: break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_loc = values[0]; __pyx_v_scale = values[1]; __pyx_v_size = values[2]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("normal", 0, 0, 3, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(0, 1239, __pyx_L3_error) __pyx_L3_error:; __Pyx_AddTraceback("numpy.random.mtrand.RandomState.normal", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_5numpy_6random_6mtrand_11RandomState_46normal(((struct __pyx_obj_5numpy_6random_6mtrand_RandomState *)__pyx_v_self), __pyx_v_loc, __pyx_v_scale, __pyx_v_size); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_46normal(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_loc, PyObject *__pyx_v_scale, PyObject *__pyx_v_size) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; __Pyx_RefNannySetupContext("normal", 0); /* "numpy/random/mtrand.pyx":1335 * * """ * return cont(&legacy_normal, &self._aug_state, size, self.lock, 2, # <<<<<<<<<<<<<< * loc, '', CONS_NONE, * scale, 'scale', CONS_NON_NEGATIVE, */ __Pyx_XDECREF(__pyx_r); __pyx_t_1 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_1); /* "numpy/random/mtrand.pyx":1339 * scale, 'scale', CONS_NON_NEGATIVE, * 0.0, '', CONS_NONE, * None) # <<<<<<<<<<<<<< * * def standard_gamma(self, shape, size=None): */ __pyx_t_2 = __pyx_f_5numpy_6random_6common_cont((&legacy_normal), (&__pyx_v_self->_aug_state), __pyx_v_size, __pyx_t_1, 2, __pyx_v_loc, __pyx_kp_u__12, __pyx_e_5numpy_6random_6common_CONS_NONE, __pyx_v_scale, __pyx_n_u_scale, __pyx_e_5numpy_6random_6common_CONS_NON_NEGATIVE, __pyx_float_0_0, __pyx_kp_u__12, __pyx_e_5numpy_6random_6common_CONS_NONE, Py_None); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 1335, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_r = __pyx_t_2; __pyx_t_2 = 0; goto __pyx_L0; /* "numpy/random/mtrand.pyx":1239 * None) * * def normal(self, loc=0.0, scale=1.0, size=None): # <<<<<<<<<<<<<< * """ * normal(loc=0.0, scale=1.0, size=None) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_AddTraceback("numpy.random.mtrand.RandomState.normal", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "numpy/random/mtrand.pyx":1341 * None) * * def standard_gamma(self, shape, size=None): # <<<<<<<<<<<<<< * """ * standard_gamma(shape, size=None) */ /* Python wrapper */ static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_49standard_gamma(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static char __pyx_doc_5numpy_6random_6mtrand_11RandomState_48standard_gamma[] = "\n standard_gamma(shape, size=None)\n\n Draw samples from a standard Gamma distribution.\n\n Samples are drawn from a Gamma distribution with specified parameters,\n shape (sometimes designated \"k\") and scale=1.\n\n Parameters\n ----------\n shape : float or array_like of floats\n Parameter, must be non-negative.\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. If size is ``None`` (default),\n a single value is returned if ``shape`` is a scalar. Otherwise,\n ``np.array(shape).size`` samples are drawn.\n\n Returns\n -------\n out : ndarray or scalar\n Drawn samples from the parameterized standard gamma distribution.\n\n See Also\n --------\n scipy.stats.gamma : probability density function, distribution or\n cumulative density function, etc.\n\n Notes\n -----\n The probability density for the Gamma distribution is\n\n .. math:: p(x) = x^{k-1}\\frac{e^{-x/\\theta}}{\\theta^k\\Gamma(k)},\n\n where :math:`k` is the shape and :math:`\\theta` the scale,\n and :math:`\\Gamma` is the Gamma function.\n\n The Gamma distribution is often used to model the times to failure of\n electronic components, and arises naturally in processes for which the\n waiting times between Poisson distributed events are relevant.\n\n References\n ----------\n .. [1] Weisstein, Eric W. \"Gamma Distribution.\" From MathWorld--A\n Wolfram Web Resource.\n http://mathworld.wolfram.com/GammaDistribution.html\n .. [2] Wikipedia, \"Gamma distribution\",\n https://en.wikipedia.org/wiki/Gamma_distribution\n\n Examples\n --------\n Draw samples from the distribution:\n\n >>> shape, s""cale = 2., 1. # mean and width\n >>> s = np.random.standard_gamma(shape, 1000000)\n\n Display the histogram of the samples, along with\n the probability density function:\n\n >>> import matplotlib.pyplot as plt\n >>> import scipy.special as sps # doctest: +SKIP\n >>> count, bins, ignored = plt.hist(s, 50, density=True)\n >>> y = bins**(shape-1) * ((np.exp(-bins/scale))/ # doctest: +SKIP\n ... (sps.gamma(shape) * scale**shape))\n >>> plt.plot(bins, y, linewidth=2, color='r') # doctest: +SKIP\n >>> plt.show()\n\n "; static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_49standard_gamma(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_shape = 0; PyObject *__pyx_v_size = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("standard_gamma (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_shape,&__pyx_n_s_size,0}; PyObject* values[2] = {0,0}; values[1] = ((PyObject *)Py_None); if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); CYTHON_FALLTHROUGH; case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); CYTHON_FALLTHROUGH; case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (likely((values[0] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_shape)) != 0)) kw_args--; else goto __pyx_L5_argtuple_error; CYTHON_FALLTHROUGH; case 1: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_size); if (value) { values[1] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "standard_gamma") < 0)) __PYX_ERR(0, 1341, __pyx_L3_error) } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); CYTHON_FALLTHROUGH; case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_shape = values[0]; __pyx_v_size = values[1]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("standard_gamma", 0, 1, 2, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(0, 1341, __pyx_L3_error) __pyx_L3_error:; __Pyx_AddTraceback("numpy.random.mtrand.RandomState.standard_gamma", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_5numpy_6random_6mtrand_11RandomState_48standard_gamma(((struct __pyx_obj_5numpy_6random_6mtrand_RandomState *)__pyx_v_self), __pyx_v_shape, __pyx_v_size); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_48standard_gamma(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_shape, PyObject *__pyx_v_size) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; __Pyx_RefNannySetupContext("standard_gamma", 0); /* "numpy/random/mtrand.pyx":1410 * * """ * return cont(&legacy_standard_gamma, &self._aug_state, size, self.lock, 1, # <<<<<<<<<<<<<< * shape, 'shape', CONS_NON_NEGATIVE, * 0.0, '', CONS_NONE, */ __Pyx_XDECREF(__pyx_r); __pyx_t_1 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_1); /* "numpy/random/mtrand.pyx":1414 * 0.0, '', CONS_NONE, * 0.0, '', CONS_NONE, * None) # <<<<<<<<<<<<<< * * def gamma(self, shape, scale=1.0, size=None): */ __pyx_t_2 = __pyx_f_5numpy_6random_6common_cont((&legacy_standard_gamma), (&__pyx_v_self->_aug_state), __pyx_v_size, __pyx_t_1, 1, __pyx_v_shape, __pyx_n_u_shape, __pyx_e_5numpy_6random_6common_CONS_NON_NEGATIVE, __pyx_float_0_0, __pyx_kp_u__12, __pyx_e_5numpy_6random_6common_CONS_NONE, __pyx_float_0_0, __pyx_kp_u__12, __pyx_e_5numpy_6random_6common_CONS_NONE, Py_None); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 1410, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_r = __pyx_t_2; __pyx_t_2 = 0; goto __pyx_L0; /* "numpy/random/mtrand.pyx":1341 * None) * * def standard_gamma(self, shape, size=None): # <<<<<<<<<<<<<< * """ * standard_gamma(shape, size=None) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_AddTraceback("numpy.random.mtrand.RandomState.standard_gamma", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "numpy/random/mtrand.pyx":1416 * None) * * def gamma(self, shape, scale=1.0, size=None): # <<<<<<<<<<<<<< * """ * gamma(shape, scale=1.0, size=None) */ /* Python wrapper */ static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_51gamma(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static char __pyx_doc_5numpy_6random_6mtrand_11RandomState_50gamma[] = "\n gamma(shape, scale=1.0, size=None)\n\n Draw samples from a Gamma distribution.\n\n Samples are drawn from a Gamma distribution with specified parameters,\n `shape` (sometimes designated \"k\") and `scale` (sometimes designated\n \"theta\"), where both parameters are > 0.\n\n Parameters\n ----------\n shape : float or array_like of floats\n The shape of the gamma distribution. Must be non-negative.\n scale : float or array_like of floats, optional\n The scale of the gamma distribution. Must be non-negative.\n Default is equal to 1.\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. If size is ``None`` (default),\n a single value is returned if ``shape`` and ``scale`` are both scalars.\n Otherwise, ``np.broadcast(shape, scale).size`` samples are drawn.\n\n Returns\n -------\n out : ndarray or scalar\n Drawn samples from the parameterized gamma distribution.\n\n See Also\n --------\n scipy.stats.gamma : probability density function, distribution or\n cumulative density function, etc.\n\n Notes\n -----\n The probability density for the Gamma distribution is\n\n .. math:: p(x) = x^{k-1}\\frac{e^{-x/\\theta}}{\\theta^k\\Gamma(k)},\n\n where :math:`k` is the shape and :math:`\\theta` the scale,\n and :math:`\\Gamma` is the Gamma function.\n\n The Gamma distribution is often used to model the times to failure of\n electronic components, and arises naturally in processes for which the\n waiting times between Poisson distributed events are relevant.\n\n References\n ----------\n .. [1] Weisstein, Eric W. \"Gamma Distribution.\" From MathWorld--A\n Wolfram Web Resource.\n "" http://mathworld.wolfram.com/GammaDistribution.html\n .. [2] Wikipedia, \"Gamma distribution\",\n https://en.wikipedia.org/wiki/Gamma_distribution\n\n Examples\n --------\n Draw samples from the distribution:\n\n >>> shape, scale = 2., 2. # mean=4, std=2*sqrt(2)\n >>> s = np.random.gamma(shape, scale, 1000)\n\n Display the histogram of the samples, along with\n the probability density function:\n\n >>> import matplotlib.pyplot as plt\n >>> import scipy.special as sps # doctest: +SKIP\n >>> count, bins, ignored = plt.hist(s, 50, density=True)\n >>> y = bins**(shape-1)*(np.exp(-bins/scale) / # doctest: +SKIP\n ... (sps.gamma(shape)*scale**shape))\n >>> plt.plot(bins, y, linewidth=2, color='r') # doctest: +SKIP\n >>> plt.show()\n\n "; static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_51gamma(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_shape = 0; PyObject *__pyx_v_scale = 0; PyObject *__pyx_v_size = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("gamma (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_shape,&__pyx_n_s_scale,&__pyx_n_s_size,0}; PyObject* values[3] = {0,0,0}; values[1] = ((PyObject *)__pyx_float_1_0); values[2] = ((PyObject *)Py_None); if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); CYTHON_FALLTHROUGH; case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); CYTHON_FALLTHROUGH; case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); CYTHON_FALLTHROUGH; case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (likely((values[0] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_shape)) != 0)) kw_args--; else goto __pyx_L5_argtuple_error; CYTHON_FALLTHROUGH; case 1: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_scale); if (value) { values[1] = value; kw_args--; } } CYTHON_FALLTHROUGH; case 2: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_size); if (value) { values[2] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "gamma") < 0)) __PYX_ERR(0, 1416, __pyx_L3_error) } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); CYTHON_FALLTHROUGH; case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); CYTHON_FALLTHROUGH; case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_shape = values[0]; __pyx_v_scale = values[1]; __pyx_v_size = values[2]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("gamma", 0, 1, 3, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(0, 1416, __pyx_L3_error) __pyx_L3_error:; __Pyx_AddTraceback("numpy.random.mtrand.RandomState.gamma", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_5numpy_6random_6mtrand_11RandomState_50gamma(((struct __pyx_obj_5numpy_6random_6mtrand_RandomState *)__pyx_v_self), __pyx_v_shape, __pyx_v_scale, __pyx_v_size); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_50gamma(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_shape, PyObject *__pyx_v_scale, PyObject *__pyx_v_size) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; __Pyx_RefNannySetupContext("gamma", 0); /* "numpy/random/mtrand.pyx":1489 * * """ * return cont(&legacy_gamma, &self._aug_state, size, self.lock, 2, # <<<<<<<<<<<<<< * shape, 'shape', CONS_NON_NEGATIVE, * scale, 'scale', CONS_NON_NEGATIVE, */ __Pyx_XDECREF(__pyx_r); __pyx_t_1 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_1); /* "numpy/random/mtrand.pyx":1492 * shape, 'shape', CONS_NON_NEGATIVE, * scale, 'scale', CONS_NON_NEGATIVE, * 0.0, '', CONS_NONE, None) # <<<<<<<<<<<<<< * * def f(self, dfnum, dfden, size=None): */ __pyx_t_2 = __pyx_f_5numpy_6random_6common_cont((&legacy_gamma), (&__pyx_v_self->_aug_state), __pyx_v_size, __pyx_t_1, 2, __pyx_v_shape, __pyx_n_u_shape, __pyx_e_5numpy_6random_6common_CONS_NON_NEGATIVE, __pyx_v_scale, __pyx_n_u_scale, __pyx_e_5numpy_6random_6common_CONS_NON_NEGATIVE, __pyx_float_0_0, __pyx_kp_u__12, __pyx_e_5numpy_6random_6common_CONS_NONE, Py_None); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 1489, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_r = __pyx_t_2; __pyx_t_2 = 0; goto __pyx_L0; /* "numpy/random/mtrand.pyx":1416 * None) * * def gamma(self, shape, scale=1.0, size=None): # <<<<<<<<<<<<<< * """ * gamma(shape, scale=1.0, size=None) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_AddTraceback("numpy.random.mtrand.RandomState.gamma", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "numpy/random/mtrand.pyx":1494 * 0.0, '', CONS_NONE, None) * * def f(self, dfnum, dfden, size=None): # <<<<<<<<<<<<<< * """ * f(dfnum, dfden, size=None) */ /* Python wrapper */ static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_53f(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static char __pyx_doc_5numpy_6random_6mtrand_11RandomState_52f[] = "\n f(dfnum, dfden, size=None)\n\n Draw samples from an F distribution.\n\n Samples are drawn from an F distribution with specified parameters,\n `dfnum` (degrees of freedom in numerator) and `dfden` (degrees of\n freedom in denominator), where both parameters must be greater than\n zero.\n\n The random variate of the F distribution (also known as the\n Fisher distribution) is a continuous probability distribution\n that arises in ANOVA tests, and is the ratio of two chi-square\n variates.\n\n Parameters\n ----------\n dfnum : float or array_like of floats\n Degrees of freedom in numerator, must be > 0.\n dfden : float or array_like of float\n Degrees of freedom in denominator, must be > 0.\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. If size is ``None`` (default),\n a single value is returned if ``dfnum`` and ``dfden`` are both scalars.\n Otherwise, ``np.broadcast(dfnum, dfden).size`` samples are drawn.\n\n Returns\n -------\n out : ndarray or scalar\n Drawn samples from the parameterized Fisher distribution.\n\n See Also\n --------\n scipy.stats.f : probability density function, distribution or\n cumulative density function, etc.\n\n Notes\n -----\n The F statistic is used to compare in-group variances to between-group\n variances. Calculating the distribution depends on the sampling, and\n so it is a function of the respective degrees of freedom in the\n problem. The variable `dfnum` is the number of samples minus one, the\n between-groups degrees of freedom, while `dfden` is the within-groups\n degrees of freedom, the sum of the number of samples in each group\n minus the nu""mber of groups.\n\n References\n ----------\n .. [1] Glantz, Stanton A. \"Primer of Biostatistics.\", McGraw-Hill,\n Fifth Edition, 2002.\n .. [2] Wikipedia, \"F-distribution\",\n https://en.wikipedia.org/wiki/F-distribution\n\n Examples\n --------\n An example from Glantz[1], pp 47-40:\n\n Two groups, children of diabetics (25 people) and children from people\n without diabetes (25 controls). Fasting blood glucose was measured,\n case group had a mean value of 86.1, controls had a mean value of\n 82.2. Standard deviations were 2.09 and 2.49 respectively. Are these\n data consistent with the null hypothesis that the parents diabetic\n status does not affect their children's blood glucose levels?\n Calculating the F statistic from the data gives a value of 36.01.\n\n Draw samples from the distribution:\n\n >>> dfnum = 1. # between group degrees of freedom\n >>> dfden = 48. # within groups degrees of freedom\n >>> s = np.random.f(dfnum, dfden, 1000)\n\n The lower bound for the top 1% of the samples is :\n\n >>> np.sort(s)[-10]\n 7.61988120985 # random\n\n So there is about a 1% chance that the F statistic will exceed 7.62,\n the measured value is 36, so the null hypothesis is rejected at the 1%\n level.\n\n "; static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_53f(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_dfnum = 0; PyObject *__pyx_v_dfden = 0; PyObject *__pyx_v_size = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("f (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_dfnum,&__pyx_n_s_dfden,&__pyx_n_s_size,0}; PyObject* values[3] = {0,0,0}; values[2] = ((PyObject *)Py_None); if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); CYTHON_FALLTHROUGH; case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); CYTHON_FALLTHROUGH; case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); CYTHON_FALLTHROUGH; case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (likely((values[0] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_dfnum)) != 0)) kw_args--; else goto __pyx_L5_argtuple_error; CYTHON_FALLTHROUGH; case 1: if (likely((values[1] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_dfden)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("f", 0, 2, 3, 1); __PYX_ERR(0, 1494, __pyx_L3_error) } CYTHON_FALLTHROUGH; case 2: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_size); if (value) { values[2] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "f") < 0)) __PYX_ERR(0, 1494, __pyx_L3_error) } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); CYTHON_FALLTHROUGH; case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); values[0] = PyTuple_GET_ITEM(__pyx_args, 0); break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_dfnum = values[0]; __pyx_v_dfden = values[1]; __pyx_v_size = values[2]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("f", 0, 2, 3, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(0, 1494, __pyx_L3_error) __pyx_L3_error:; __Pyx_AddTraceback("numpy.random.mtrand.RandomState.f", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_5numpy_6random_6mtrand_11RandomState_52f(((struct __pyx_obj_5numpy_6random_6mtrand_RandomState *)__pyx_v_self), __pyx_v_dfnum, __pyx_v_dfden, __pyx_v_size); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_52f(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_dfnum, PyObject *__pyx_v_dfden, PyObject *__pyx_v_size) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; __Pyx_RefNannySetupContext("f", 0); /* "numpy/random/mtrand.pyx":1577 * * """ * return cont(&legacy_f, &self._aug_state, size, self.lock, 2, # <<<<<<<<<<<<<< * dfnum, 'dfnum', CONS_POSITIVE, * dfden, 'dfden', CONS_POSITIVE, */ __Pyx_XDECREF(__pyx_r); __pyx_t_1 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_1); /* "numpy/random/mtrand.pyx":1580 * dfnum, 'dfnum', CONS_POSITIVE, * dfden, 'dfden', CONS_POSITIVE, * 0.0, '', CONS_NONE, None) # <<<<<<<<<<<<<< * * def noncentral_f(self, dfnum, dfden, nonc, size=None): */ __pyx_t_2 = __pyx_f_5numpy_6random_6common_cont((&legacy_f), (&__pyx_v_self->_aug_state), __pyx_v_size, __pyx_t_1, 2, __pyx_v_dfnum, __pyx_n_u_dfnum, __pyx_e_5numpy_6random_6common_CONS_POSITIVE, __pyx_v_dfden, __pyx_n_u_dfden, __pyx_e_5numpy_6random_6common_CONS_POSITIVE, __pyx_float_0_0, __pyx_kp_u__12, __pyx_e_5numpy_6random_6common_CONS_NONE, Py_None); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 1577, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_r = __pyx_t_2; __pyx_t_2 = 0; goto __pyx_L0; /* "numpy/random/mtrand.pyx":1494 * 0.0, '', CONS_NONE, None) * * def f(self, dfnum, dfden, size=None): # <<<<<<<<<<<<<< * """ * f(dfnum, dfden, size=None) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_AddTraceback("numpy.random.mtrand.RandomState.f", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "numpy/random/mtrand.pyx":1582 * 0.0, '', CONS_NONE, None) * * def noncentral_f(self, dfnum, dfden, nonc, size=None): # <<<<<<<<<<<<<< * """ * noncentral_f(dfnum, dfden, nonc, size=None) */ /* Python wrapper */ static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_55noncentral_f(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static char __pyx_doc_5numpy_6random_6mtrand_11RandomState_54noncentral_f[] = "\n noncentral_f(dfnum, dfden, nonc, size=None)\n\n Draw samples from the noncentral F distribution.\n\n Samples are drawn from an F distribution with specified parameters,\n `dfnum` (degrees of freedom in numerator) and `dfden` (degrees of\n freedom in denominator), where both parameters > 1.\n `nonc` is the non-centrality parameter.\n\n Parameters\n ----------\n dfnum : float or array_like of floats\n Numerator degrees of freedom, must be > 0.\n\n .. versionchanged:: 1.14.0\n Earlier NumPy versions required dfnum > 1.\n dfden : float or array_like of floats\n Denominator degrees of freedom, must be > 0.\n nonc : float or array_like of floats\n Non-centrality parameter, the sum of the squares of the numerator\n means, must be >= 0.\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. If size is ``None`` (default),\n a single value is returned if ``dfnum``, ``dfden``, and ``nonc``\n are all scalars. Otherwise, ``np.broadcast(dfnum, dfden, nonc).size``\n samples are drawn.\n\n Returns\n -------\n out : ndarray or scalar\n Drawn samples from the parameterized noncentral Fisher distribution.\n\n Notes\n -----\n When calculating the power of an experiment (power = probability of\n rejecting the null hypothesis when a specific alternative is true) the\n non-central F statistic becomes important. When the null hypothesis is\n true, the F statistic follows a central F distribution. When the null\n hypothesis is not true, then it follows a non-central F statistic.\n\n References\n ----------\n .. [1] Weisstein, Eric W. \"Noncentral F-Distribution.\"\n From MathWorld--""A Wolfram Web Resource.\n http://mathworld.wolfram.com/NoncentralF-Distribution.html\n .. [2] Wikipedia, \"Noncentral F-distribution\",\n https://en.wikipedia.org/wiki/Noncentral_F-distribution\n\n Examples\n --------\n In a study, testing for a specific alternative to the null hypothesis\n requires use of the Noncentral F distribution. We need to calculate the\n area in the tail of the distribution that exceeds the value of the F\n distribution for the null hypothesis. We'll plot the two probability\n distributions for comparison.\n\n >>> dfnum = 3 # between group deg of freedom\n >>> dfden = 20 # within groups degrees of freedom\n >>> nonc = 3.0\n >>> nc_vals = np.random.noncentral_f(dfnum, dfden, nonc, 1000000)\n >>> NF = np.histogram(nc_vals, bins=50, density=True)\n >>> c_vals = np.random.f(dfnum, dfden, 1000000)\n >>> F = np.histogram(c_vals, bins=50, density=True)\n >>> import matplotlib.pyplot as plt\n >>> plt.plot(F[1][1:], F[0])\n >>> plt.plot(NF[1][1:], NF[0])\n >>> plt.show()\n\n "; static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_55noncentral_f(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_dfnum = 0; PyObject *__pyx_v_dfden = 0; PyObject *__pyx_v_nonc = 0; PyObject *__pyx_v_size = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("noncentral_f (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_dfnum,&__pyx_n_s_dfden,&__pyx_n_s_nonc,&__pyx_n_s_size,0}; PyObject* values[4] = {0,0,0,0}; values[3] = ((PyObject *)Py_None); if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 4: values[3] = PyTuple_GET_ITEM(__pyx_args, 3); CYTHON_FALLTHROUGH; case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); CYTHON_FALLTHROUGH; case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); CYTHON_FALLTHROUGH; case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); CYTHON_FALLTHROUGH; case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (likely((values[0] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_dfnum)) != 0)) kw_args--; else goto __pyx_L5_argtuple_error; CYTHON_FALLTHROUGH; case 1: if (likely((values[1] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_dfden)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("noncentral_f", 0, 3, 4, 1); __PYX_ERR(0, 1582, __pyx_L3_error) } CYTHON_FALLTHROUGH; case 2: if (likely((values[2] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_nonc)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("noncentral_f", 0, 3, 4, 2); __PYX_ERR(0, 1582, __pyx_L3_error) } CYTHON_FALLTHROUGH; case 3: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_size); if (value) { values[3] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "noncentral_f") < 0)) __PYX_ERR(0, 1582, __pyx_L3_error) } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 4: values[3] = PyTuple_GET_ITEM(__pyx_args, 3); CYTHON_FALLTHROUGH; case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); values[1] = PyTuple_GET_ITEM(__pyx_args, 1); values[0] = PyTuple_GET_ITEM(__pyx_args, 0); break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_dfnum = values[0]; __pyx_v_dfden = values[1]; __pyx_v_nonc = values[2]; __pyx_v_size = values[3]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("noncentral_f", 0, 3, 4, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(0, 1582, __pyx_L3_error) __pyx_L3_error:; __Pyx_AddTraceback("numpy.random.mtrand.RandomState.noncentral_f", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_5numpy_6random_6mtrand_11RandomState_54noncentral_f(((struct __pyx_obj_5numpy_6random_6mtrand_RandomState *)__pyx_v_self), __pyx_v_dfnum, __pyx_v_dfden, __pyx_v_nonc, __pyx_v_size); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_54noncentral_f(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_dfnum, PyObject *__pyx_v_dfden, PyObject *__pyx_v_nonc, PyObject *__pyx_v_size) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; __Pyx_RefNannySetupContext("noncentral_f", 0); /* "numpy/random/mtrand.pyx":1654 * * """ * return cont(&legacy_noncentral_f, &self._aug_state, size, self.lock, 3, # <<<<<<<<<<<<<< * dfnum, 'dfnum', CONS_POSITIVE, * dfden, 'dfden', CONS_POSITIVE, */ __Pyx_XDECREF(__pyx_r); __pyx_t_1 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_1); /* "numpy/random/mtrand.pyx":1657 * dfnum, 'dfnum', CONS_POSITIVE, * dfden, 'dfden', CONS_POSITIVE, * nonc, 'nonc', CONS_NON_NEGATIVE, None) # <<<<<<<<<<<<<< * * def chisquare(self, df, size=None): */ __pyx_t_2 = __pyx_f_5numpy_6random_6common_cont((&legacy_noncentral_f), (&__pyx_v_self->_aug_state), __pyx_v_size, __pyx_t_1, 3, __pyx_v_dfnum, __pyx_n_u_dfnum, __pyx_e_5numpy_6random_6common_CONS_POSITIVE, __pyx_v_dfden, __pyx_n_u_dfden, __pyx_e_5numpy_6random_6common_CONS_POSITIVE, __pyx_v_nonc, __pyx_n_u_nonc, __pyx_e_5numpy_6random_6common_CONS_NON_NEGATIVE, Py_None); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 1654, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_r = __pyx_t_2; __pyx_t_2 = 0; goto __pyx_L0; /* "numpy/random/mtrand.pyx":1582 * 0.0, '', CONS_NONE, None) * * def noncentral_f(self, dfnum, dfden, nonc, size=None): # <<<<<<<<<<<<<< * """ * noncentral_f(dfnum, dfden, nonc, size=None) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_AddTraceback("numpy.random.mtrand.RandomState.noncentral_f", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "numpy/random/mtrand.pyx":1659 * nonc, 'nonc', CONS_NON_NEGATIVE, None) * * def chisquare(self, df, size=None): # <<<<<<<<<<<<<< * """ * chisquare(df, size=None) */ /* Python wrapper */ static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_57chisquare(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static char __pyx_doc_5numpy_6random_6mtrand_11RandomState_56chisquare[] = "\n chisquare(df, size=None)\n\n Draw samples from a chi-square distribution.\n\n When `df` independent random variables, each with standard normal\n distributions (mean 0, variance 1), are squared and summed, the\n resulting distribution is chi-square (see Notes). This distribution\n is often used in hypothesis testing.\n\n Parameters\n ----------\n df : float or array_like of floats\n Number of degrees of freedom, must be > 0.\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. If size is ``None`` (default),\n a single value is returned if ``df`` is a scalar. Otherwise,\n ``np.array(df).size`` samples are drawn.\n\n Returns\n -------\n out : ndarray or scalar\n Drawn samples from the parameterized chi-square distribution.\n\n Raises\n ------\n ValueError\n When `df` <= 0 or when an inappropriate `size` (e.g. ``size=-1``)\n is given.\n\n Notes\n -----\n The variable obtained by summing the squares of `df` independent,\n standard normally distributed random variables:\n\n .. math:: Q = \\sum_{i=0}^{\\mathtt{df}} X^2_i\n\n is chi-square distributed, denoted\n\n .. math:: Q \\sim \\chi^2_k.\n\n The probability density function of the chi-squared distribution is\n\n .. math:: p(x) = \\frac{(1/2)^{k/2}}{\\Gamma(k/2)}\n x^{k/2 - 1} e^{-x/2},\n\n where :math:`\\Gamma` is the gamma function,\n\n .. math:: \\Gamma(x) = \\int_0^{-\\infty} t^{x - 1} e^{-t} dt.\n\n References\n ----------\n .. [1] NIST \"Engineering Statistics Handbook\"\n https://www.itl.nist.gov/div898/handbook/eda/section3/eda3666.htm\n\n Examples\n --------\n >>> np"".random.chisquare(2,4)\n array([ 1.89920014, 9.00867716, 3.13710533, 5.62318272]) # random\n\n "; static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_57chisquare(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_df = 0; PyObject *__pyx_v_size = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("chisquare (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_df,&__pyx_n_s_size,0}; PyObject* values[2] = {0,0}; values[1] = ((PyObject *)Py_None); if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); CYTHON_FALLTHROUGH; case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); CYTHON_FALLTHROUGH; case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (likely((values[0] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_df)) != 0)) kw_args--; else goto __pyx_L5_argtuple_error; CYTHON_FALLTHROUGH; case 1: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_size); if (value) { values[1] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "chisquare") < 0)) __PYX_ERR(0, 1659, __pyx_L3_error) } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); CYTHON_FALLTHROUGH; case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_df = values[0]; __pyx_v_size = values[1]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("chisquare", 0, 1, 2, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(0, 1659, __pyx_L3_error) __pyx_L3_error:; __Pyx_AddTraceback("numpy.random.mtrand.RandomState.chisquare", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_5numpy_6random_6mtrand_11RandomState_56chisquare(((struct __pyx_obj_5numpy_6random_6mtrand_RandomState *)__pyx_v_self), __pyx_v_df, __pyx_v_size); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_56chisquare(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_df, PyObject *__pyx_v_size) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; __Pyx_RefNannySetupContext("chisquare", 0); /* "numpy/random/mtrand.pyx":1722 * * """ * return cont(&legacy_chisquare, &self._aug_state, size, self.lock, 1, # <<<<<<<<<<<<<< * df, 'df', CONS_POSITIVE, * 0.0, '', CONS_NONE, */ __Pyx_XDECREF(__pyx_r); __pyx_t_1 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_1); /* "numpy/random/mtrand.pyx":1725 * df, 'df', CONS_POSITIVE, * 0.0, '', CONS_NONE, * 0.0, '', CONS_NONE, None) # <<<<<<<<<<<<<< * * def noncentral_chisquare(self, df, nonc, size=None): */ __pyx_t_2 = __pyx_f_5numpy_6random_6common_cont((&legacy_chisquare), (&__pyx_v_self->_aug_state), __pyx_v_size, __pyx_t_1, 1, __pyx_v_df, __pyx_n_u_df, __pyx_e_5numpy_6random_6common_CONS_POSITIVE, __pyx_float_0_0, __pyx_kp_u__12, __pyx_e_5numpy_6random_6common_CONS_NONE, __pyx_float_0_0, __pyx_kp_u__12, __pyx_e_5numpy_6random_6common_CONS_NONE, Py_None); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 1722, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_r = __pyx_t_2; __pyx_t_2 = 0; goto __pyx_L0; /* "numpy/random/mtrand.pyx":1659 * nonc, 'nonc', CONS_NON_NEGATIVE, None) * * def chisquare(self, df, size=None): # <<<<<<<<<<<<<< * """ * chisquare(df, size=None) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_AddTraceback("numpy.random.mtrand.RandomState.chisquare", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "numpy/random/mtrand.pyx":1727 * 0.0, '', CONS_NONE, None) * * def noncentral_chisquare(self, df, nonc, size=None): # <<<<<<<<<<<<<< * """ * noncentral_chisquare(df, nonc, size=None) */ /* Python wrapper */ static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_59noncentral_chisquare(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static char __pyx_doc_5numpy_6random_6mtrand_11RandomState_58noncentral_chisquare[] = "\n noncentral_chisquare(df, nonc, size=None)\n\n Draw samples from a noncentral chi-square distribution.\n\n The noncentral :math:`\\chi^2` distribution is a generalization of\n the :math:`\\chi^2` distribution.\n\n Parameters\n ----------\n df : float or array_like of floats\n Degrees of freedom, must be > 0.\n\n .. versionchanged:: 1.10.0\n Earlier NumPy versions required dfnum > 1.\n nonc : float or array_like of floats\n Non-centrality, must be non-negative.\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. If size is ``None`` (default),\n a single value is returned if ``df`` and ``nonc`` are both scalars.\n Otherwise, ``np.broadcast(df, nonc).size`` samples are drawn.\n\n Returns\n -------\n out : ndarray or scalar\n Drawn samples from the parameterized noncentral chi-square distribution.\n\n Notes\n -----\n The probability density function for the noncentral Chi-square\n distribution is\n\n .. math:: P(x;df,nonc) = \\sum^{\\infty}_{i=0}\n \\frac{e^{-nonc/2}(nonc/2)^{i}}{i!}\n P_{Y_{df+2i}}(x),\n\n where :math:`Y_{q}` is the Chi-square with q degrees of freedom.\n\n References\n ----------\n .. [1] Wikipedia, \"Noncentral chi-squared distribution\"\n https://en.wikipedia.org/wiki/Noncentral_chi-squared_distribution\n\n Examples\n --------\n Draw values from the distribution and plot the histogram\n\n >>> import matplotlib.pyplot as plt\n >>> values = plt.hist(np.random.noncentral_chisquare(3, 20, 100000),\n ... bins=200, density=True)\n >>> plt.show()\n\n Draw values from a noncent""ral chisquare with very small noncentrality,\n and compare to a chisquare.\n\n >>> plt.figure()\n >>> values = plt.hist(np.random.noncentral_chisquare(3, .0000001, 100000),\n ... bins=np.arange(0., 25, .1), density=True)\n >>> values2 = plt.hist(np.random.chisquare(3, 100000),\n ... bins=np.arange(0., 25, .1), density=True)\n >>> plt.plot(values[1][0:-1], values[0]-values2[0], 'ob')\n >>> plt.show()\n\n Demonstrate how large values of non-centrality lead to a more symmetric\n distribution.\n\n >>> plt.figure()\n >>> values = plt.hist(np.random.noncentral_chisquare(3, 20, 100000),\n ... bins=200, density=True)\n >>> plt.show()\n\n "; static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_59noncentral_chisquare(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_df = 0; PyObject *__pyx_v_nonc = 0; PyObject *__pyx_v_size = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("noncentral_chisquare (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_df,&__pyx_n_s_nonc,&__pyx_n_s_size,0}; PyObject* values[3] = {0,0,0}; values[2] = ((PyObject *)Py_None); if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); CYTHON_FALLTHROUGH; case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); CYTHON_FALLTHROUGH; case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); CYTHON_FALLTHROUGH; case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (likely((values[0] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_df)) != 0)) kw_args--; else goto __pyx_L5_argtuple_error; CYTHON_FALLTHROUGH; case 1: if (likely((values[1] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_nonc)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("noncentral_chisquare", 0, 2, 3, 1); __PYX_ERR(0, 1727, __pyx_L3_error) } CYTHON_FALLTHROUGH; case 2: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_size); if (value) { values[2] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "noncentral_chisquare") < 0)) __PYX_ERR(0, 1727, __pyx_L3_error) } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); CYTHON_FALLTHROUGH; case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); values[0] = PyTuple_GET_ITEM(__pyx_args, 0); break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_df = values[0]; __pyx_v_nonc = values[1]; __pyx_v_size = values[2]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("noncentral_chisquare", 0, 2, 3, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(0, 1727, __pyx_L3_error) __pyx_L3_error:; __Pyx_AddTraceback("numpy.random.mtrand.RandomState.noncentral_chisquare", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_5numpy_6random_6mtrand_11RandomState_58noncentral_chisquare(((struct __pyx_obj_5numpy_6random_6mtrand_RandomState *)__pyx_v_self), __pyx_v_df, __pyx_v_nonc, __pyx_v_size); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_58noncentral_chisquare(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_df, PyObject *__pyx_v_nonc, PyObject *__pyx_v_size) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; __Pyx_RefNannySetupContext("noncentral_chisquare", 0); /* "numpy/random/mtrand.pyx":1801 * * """ * return cont(&legacy_noncentral_chisquare, &self._aug_state, size, self.lock, 2, # <<<<<<<<<<<<<< * df, 'df', CONS_POSITIVE, * nonc, 'nonc', CONS_NON_NEGATIVE, */ __Pyx_XDECREF(__pyx_r); __pyx_t_1 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_1); /* "numpy/random/mtrand.pyx":1804 * df, 'df', CONS_POSITIVE, * nonc, 'nonc', CONS_NON_NEGATIVE, * 0.0, '', CONS_NONE, None) # <<<<<<<<<<<<<< * * def standard_cauchy(self, size=None): */ __pyx_t_2 = __pyx_f_5numpy_6random_6common_cont((&legacy_noncentral_chisquare), (&__pyx_v_self->_aug_state), __pyx_v_size, __pyx_t_1, 2, __pyx_v_df, __pyx_n_u_df, __pyx_e_5numpy_6random_6common_CONS_POSITIVE, __pyx_v_nonc, __pyx_n_u_nonc, __pyx_e_5numpy_6random_6common_CONS_NON_NEGATIVE, __pyx_float_0_0, __pyx_kp_u__12, __pyx_e_5numpy_6random_6common_CONS_NONE, Py_None); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 1801, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_r = __pyx_t_2; __pyx_t_2 = 0; goto __pyx_L0; /* "numpy/random/mtrand.pyx":1727 * 0.0, '', CONS_NONE, None) * * def noncentral_chisquare(self, df, nonc, size=None): # <<<<<<<<<<<<<< * """ * noncentral_chisquare(df, nonc, size=None) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_AddTraceback("numpy.random.mtrand.RandomState.noncentral_chisquare", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "numpy/random/mtrand.pyx":1806 * 0.0, '', CONS_NONE, None) * * def standard_cauchy(self, size=None): # <<<<<<<<<<<<<< * """ * standard_cauchy(size=None) */ /* Python wrapper */ static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_61standard_cauchy(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static char __pyx_doc_5numpy_6random_6mtrand_11RandomState_60standard_cauchy[] = "\n standard_cauchy(size=None)\n\n Draw samples from a standard Cauchy distribution with mode = 0.\n\n Also known as the Lorentz distribution.\n\n Parameters\n ----------\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. Default is None, in which case a\n single value is returned.\n\n Returns\n -------\n samples : ndarray or scalar\n The drawn samples.\n\n Notes\n -----\n The probability density function for the full Cauchy distribution is\n\n .. math:: P(x; x_0, \\gamma) = \\frac{1}{\\pi \\gamma \\bigl[ 1+\n (\\frac{x-x_0}{\\gamma})^2 \\bigr] }\n\n and the Standard Cauchy distribution just sets :math:`x_0=0` and\n :math:`\\gamma=1`\n\n The Cauchy distribution arises in the solution to the driven harmonic\n oscillator problem, and also describes spectral line broadening. It\n also describes the distribution of values at which a line tilted at\n a random angle will cut the x axis.\n\n When studying hypothesis tests that assume normality, seeing how the\n tests perform on data from a Cauchy distribution is a good indicator of\n their sensitivity to a heavy-tailed distribution, since the Cauchy looks\n very much like a Gaussian distribution, but with heavier tails.\n\n References\n ----------\n .. [1] NIST/SEMATECH e-Handbook of Statistical Methods, \"Cauchy\n Distribution\",\n https://www.itl.nist.gov/div898/handbook/eda/section3/eda3663.htm\n .. [2] Weisstein, Eric W. \"Cauchy Distribution.\" From MathWorld--A\n Wolfram Web Resource.\n http://mathworld.wolfram.com/CauchyDistribution.html\n .. [3] Wikipedia, \"Cauchy distribution\"\n https://en.wikipedia.org/wiki""/Cauchy_distribution\n\n Examples\n --------\n Draw samples and plot the distribution:\n\n >>> import matplotlib.pyplot as plt\n >>> s = np.random.standard_cauchy(1000000)\n >>> s = s[(s>-25) & (s<25)] # truncate distribution so it plots well\n >>> plt.hist(s, bins=100)\n >>> plt.show()\n\n "; static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_61standard_cauchy(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_size = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("standard_cauchy (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_size,0}; PyObject* values[1] = {0}; values[0] = ((PyObject *)Py_None); if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); CYTHON_FALLTHROUGH; case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_size); if (value) { values[0] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "standard_cauchy") < 0)) __PYX_ERR(0, 1806, __pyx_L3_error) } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); CYTHON_FALLTHROUGH; case 0: break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_size = values[0]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("standard_cauchy", 0, 0, 1, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(0, 1806, __pyx_L3_error) __pyx_L3_error:; __Pyx_AddTraceback("numpy.random.mtrand.RandomState.standard_cauchy", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_5numpy_6random_6mtrand_11RandomState_60standard_cauchy(((struct __pyx_obj_5numpy_6random_6mtrand_RandomState *)__pyx_v_self), __pyx_v_size); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_60standard_cauchy(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_size) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; __Pyx_RefNannySetupContext("standard_cauchy", 0); /* "numpy/random/mtrand.pyx":1868 * * """ * return cont(&legacy_standard_cauchy, &self._aug_state, size, self.lock, 0, # <<<<<<<<<<<<<< * 0.0, '', CONS_NONE, 0.0, '', CONS_NONE, 0.0, '', CONS_NONE, None) * */ __Pyx_XDECREF(__pyx_r); __pyx_t_1 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_1); /* "numpy/random/mtrand.pyx":1869 * """ * return cont(&legacy_standard_cauchy, &self._aug_state, size, self.lock, 0, * 0.0, '', CONS_NONE, 0.0, '', CONS_NONE, 0.0, '', CONS_NONE, None) # <<<<<<<<<<<<<< * * def standard_t(self, df, size=None): */ __pyx_t_2 = __pyx_f_5numpy_6random_6common_cont((&legacy_standard_cauchy), (&__pyx_v_self->_aug_state), __pyx_v_size, __pyx_t_1, 0, __pyx_float_0_0, __pyx_kp_u__12, __pyx_e_5numpy_6random_6common_CONS_NONE, __pyx_float_0_0, __pyx_kp_u__12, __pyx_e_5numpy_6random_6common_CONS_NONE, __pyx_float_0_0, __pyx_kp_u__12, __pyx_e_5numpy_6random_6common_CONS_NONE, Py_None); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 1868, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_r = __pyx_t_2; __pyx_t_2 = 0; goto __pyx_L0; /* "numpy/random/mtrand.pyx":1806 * 0.0, '', CONS_NONE, None) * * def standard_cauchy(self, size=None): # <<<<<<<<<<<<<< * """ * standard_cauchy(size=None) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_AddTraceback("numpy.random.mtrand.RandomState.standard_cauchy", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "numpy/random/mtrand.pyx":1871 * 0.0, '', CONS_NONE, 0.0, '', CONS_NONE, 0.0, '', CONS_NONE, None) * * def standard_t(self, df, size=None): # <<<<<<<<<<<<<< * """ * standard_t(df, size=None) */ /* Python wrapper */ static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_63standard_t(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static char __pyx_doc_5numpy_6random_6mtrand_11RandomState_62standard_t[] = "\n standard_t(df, size=None)\n\n Draw samples from a standard Student's t distribution with `df` degrees\n of freedom.\n\n A special case of the hyperbolic distribution. As `df` gets\n large, the result resembles that of the standard normal\n distribution (`standard_normal`).\n\n Parameters\n ----------\n df : float or array_like of floats\n Degrees of freedom, must be > 0.\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. If size is ``None`` (default),\n a single value is returned if ``df`` is a scalar. Otherwise,\n ``np.array(df).size`` samples are drawn.\n\n Returns\n -------\n out : ndarray or scalar\n Drawn samples from the parameterized standard Student's t distribution.\n\n Notes\n -----\n The probability density function for the t distribution is\n\n .. math:: P(x, df) = \\frac{\\Gamma(\\frac{df+1}{2})}{\\sqrt{\\pi df}\n \\Gamma(\\frac{df}{2})}\\Bigl( 1+\\frac{x^2}{df} \\Bigr)^{-(df+1)/2}\n\n The t test is based on an assumption that the data come from a\n Normal distribution. The t test provides a way to test whether\n the sample mean (that is the mean calculated from the data) is\n a good estimate of the true mean.\n\n The derivation of the t-distribution was first published in\n 1908 by William Gosset while working for the Guinness Brewery\n in Dublin. Due to proprietary issues, he had to publish under\n a pseudonym, and so he used the name Student.\n\n References\n ----------\n .. [1] Dalgaard, Peter, \"Introductory Statistics With R\",\n Springer, 2002.\n .. [2] Wikipedia, \"Student's t-distribution\"\n https://en.wikipedia.org/wiki/Student's_t-distribu""tion\n\n Examples\n --------\n From Dalgaard page 83 [1]_, suppose the daily energy intake for 11\n women in kilojoules (kJ) is:\n\n >>> intake = np.array([5260., 5470, 5640, 6180, 6390, 6515, 6805, 7515, \\\n ... 7515, 8230, 8770])\n\n Does their energy intake deviate systematically from the recommended\n value of 7725 kJ?\n\n We have 10 degrees of freedom, so is the sample mean within 95% of the\n recommended value?\n\n >>> s = np.random.standard_t(10, size=100000)\n >>> np.mean(intake)\n 6753.636363636364\n >>> intake.std(ddof=1)\n 1142.1232221373727\n\n Calculate the t statistic, setting the ddof parameter to the unbiased\n value so the divisor in the standard deviation will be degrees of\n freedom, N-1.\n\n >>> t = (np.mean(intake)-7725)/(intake.std(ddof=1)/np.sqrt(len(intake)))\n >>> import matplotlib.pyplot as plt\n >>> h = plt.hist(s, bins=100, density=True)\n\n For a one-sided t-test, how far out in the distribution does the t\n statistic appear?\n\n >>> np.sum(s 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_size); if (value) { values[1] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "standard_t") < 0)) __PYX_ERR(0, 1871, __pyx_L3_error) } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); CYTHON_FALLTHROUGH; case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_df = values[0]; __pyx_v_size = values[1]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("standard_t", 0, 1, 2, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(0, 1871, __pyx_L3_error) __pyx_L3_error:; __Pyx_AddTraceback("numpy.random.mtrand.RandomState.standard_t", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_5numpy_6random_6mtrand_11RandomState_62standard_t(((struct __pyx_obj_5numpy_6random_6mtrand_RandomState *)__pyx_v_self), __pyx_v_df, __pyx_v_size); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_62standard_t(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_df, PyObject *__pyx_v_size) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; __Pyx_RefNannySetupContext("standard_t", 0); /* "numpy/random/mtrand.pyx":1959 * * """ * return cont(&legacy_standard_t, &self._aug_state, size, self.lock, 1, # <<<<<<<<<<<<<< * df, 'df', CONS_POSITIVE, * 0, '', CONS_NONE, */ __Pyx_XDECREF(__pyx_r); __pyx_t_1 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_1); /* "numpy/random/mtrand.pyx":1963 * 0, '', CONS_NONE, * 0, '', CONS_NONE, * None) # <<<<<<<<<<<<<< * * def vonmises(self, mu, kappa, size=None): */ __pyx_t_2 = __pyx_f_5numpy_6random_6common_cont((&legacy_standard_t), (&__pyx_v_self->_aug_state), __pyx_v_size, __pyx_t_1, 1, __pyx_v_df, __pyx_n_u_df, __pyx_e_5numpy_6random_6common_CONS_POSITIVE, __pyx_int_0, __pyx_kp_u__12, __pyx_e_5numpy_6random_6common_CONS_NONE, __pyx_int_0, __pyx_kp_u__12, __pyx_e_5numpy_6random_6common_CONS_NONE, Py_None); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 1959, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_r = __pyx_t_2; __pyx_t_2 = 0; goto __pyx_L0; /* "numpy/random/mtrand.pyx":1871 * 0.0, '', CONS_NONE, 0.0, '', CONS_NONE, 0.0, '', CONS_NONE, None) * * def standard_t(self, df, size=None): # <<<<<<<<<<<<<< * """ * standard_t(df, size=None) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_AddTraceback("numpy.random.mtrand.RandomState.standard_t", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "numpy/random/mtrand.pyx":1965 * None) * * def vonmises(self, mu, kappa, size=None): # <<<<<<<<<<<<<< * """ * vonmises(mu, kappa, size=None) */ /* Python wrapper */ static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_65vonmises(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static char __pyx_doc_5numpy_6random_6mtrand_11RandomState_64vonmises[] = "\n vonmises(mu, kappa, size=None)\n\n Draw samples from a von Mises distribution.\n\n Samples are drawn from a von Mises distribution with specified mode\n (mu) and dispersion (kappa), on the interval [-pi, pi].\n\n The von Mises distribution (also known as the circular normal\n distribution) is a continuous probability distribution on the unit\n circle. It may be thought of as the circular analogue of the normal\n distribution.\n\n Parameters\n ----------\n mu : float or array_like of floats\n Mode (\"center\") of the distribution.\n kappa : float or array_like of floats\n Dispersion of the distribution, has to be >=0.\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. If size is ``None`` (default),\n a single value is returned if ``mu`` and ``kappa`` are both scalars.\n Otherwise, ``np.broadcast(mu, kappa).size`` samples are drawn.\n\n Returns\n -------\n out : ndarray or scalar\n Drawn samples from the parameterized von Mises distribution.\n\n See Also\n --------\n scipy.stats.vonmises : probability density function, distribution, or\n cumulative density function, etc.\n\n Notes\n -----\n The probability density for the von Mises distribution is\n\n .. math:: p(x) = \\frac{e^{\\kappa cos(x-\\mu)}}{2\\pi I_0(\\kappa)},\n\n where :math:`\\mu` is the mode and :math:`\\kappa` the dispersion,\n and :math:`I_0(\\kappa)` is the modified Bessel function of order 0.\n\n The von Mises is named for Richard Edler von Mises, who was born in\n Austria-Hungary, in what is now the Ukraine. He fled to the United\n States in 1939 and became a professor at Harvard. He worked in\n probability theory, aero""dynamics, fluid mechanics, and philosophy of\n science.\n\n References\n ----------\n .. [1] Abramowitz, M. and Stegun, I. A. (Eds.). \"Handbook of\n Mathematical Functions with Formulas, Graphs, and Mathematical\n Tables, 9th printing,\" New York: Dover, 1972.\n .. [2] von Mises, R., \"Mathematical Theory of Probability\n and Statistics\", New York: Academic Press, 1964.\n\n Examples\n --------\n Draw samples from the distribution:\n\n >>> mu, kappa = 0.0, 4.0 # mean and dispersion\n >>> s = np.random.vonmises(mu, kappa, 1000)\n\n Display the histogram of the samples, along with\n the probability density function:\n\n >>> import matplotlib.pyplot as plt\n >>> from scipy.special import i0 # doctest: +SKIP\n >>> plt.hist(s, 50, density=True)\n >>> x = np.linspace(-np.pi, np.pi, num=51)\n >>> y = np.exp(kappa*np.cos(x-mu))/(2*np.pi*i0(kappa)) # doctest: +SKIP\n >>> plt.plot(x, y, linewidth=2, color='r') # doctest: +SKIP\n >>> plt.show()\n\n "; static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_65vonmises(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_mu = 0; PyObject *__pyx_v_kappa = 0; PyObject *__pyx_v_size = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("vonmises (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_mu,&__pyx_n_s_kappa,&__pyx_n_s_size,0}; PyObject* values[3] = {0,0,0}; values[2] = ((PyObject *)Py_None); if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); CYTHON_FALLTHROUGH; case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); CYTHON_FALLTHROUGH; case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); CYTHON_FALLTHROUGH; case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (likely((values[0] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_mu)) != 0)) kw_args--; else goto __pyx_L5_argtuple_error; CYTHON_FALLTHROUGH; case 1: if (likely((values[1] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_kappa)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("vonmises", 0, 2, 3, 1); __PYX_ERR(0, 1965, __pyx_L3_error) } CYTHON_FALLTHROUGH; case 2: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_size); if (value) { values[2] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "vonmises") < 0)) __PYX_ERR(0, 1965, __pyx_L3_error) } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); CYTHON_FALLTHROUGH; case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); values[0] = PyTuple_GET_ITEM(__pyx_args, 0); break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_mu = values[0]; __pyx_v_kappa = values[1]; __pyx_v_size = values[2]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("vonmises", 0, 2, 3, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(0, 1965, __pyx_L3_error) __pyx_L3_error:; __Pyx_AddTraceback("numpy.random.mtrand.RandomState.vonmises", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_5numpy_6random_6mtrand_11RandomState_64vonmises(((struct __pyx_obj_5numpy_6random_6mtrand_RandomState *)__pyx_v_self), __pyx_v_mu, __pyx_v_kappa, __pyx_v_size); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_64vonmises(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_mu, PyObject *__pyx_v_kappa, PyObject *__pyx_v_size) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; __Pyx_RefNannySetupContext("vonmises", 0); /* "numpy/random/mtrand.pyx":2043 * * """ * return cont(&random_vonmises, &self._bitgen, size, self.lock, 2, # <<<<<<<<<<<<<< * mu, 'mu', CONS_NONE, * kappa, 'kappa', CONS_NON_NEGATIVE, */ __Pyx_XDECREF(__pyx_r); __pyx_t_1 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_1); /* "numpy/random/mtrand.pyx":2046 * mu, 'mu', CONS_NONE, * kappa, 'kappa', CONS_NON_NEGATIVE, * 0.0, '', CONS_NONE, None) # <<<<<<<<<<<<<< * * def pareto(self, a, size=None): */ __pyx_t_2 = __pyx_f_5numpy_6random_6common_cont((&random_vonmises), (&__pyx_v_self->_bitgen), __pyx_v_size, __pyx_t_1, 2, __pyx_v_mu, __pyx_n_u_mu, __pyx_e_5numpy_6random_6common_CONS_NONE, __pyx_v_kappa, __pyx_n_u_kappa, __pyx_e_5numpy_6random_6common_CONS_NON_NEGATIVE, __pyx_float_0_0, __pyx_kp_u__12, __pyx_e_5numpy_6random_6common_CONS_NONE, Py_None); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 2043, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_r = __pyx_t_2; __pyx_t_2 = 0; goto __pyx_L0; /* "numpy/random/mtrand.pyx":1965 * None) * * def vonmises(self, mu, kappa, size=None): # <<<<<<<<<<<<<< * """ * vonmises(mu, kappa, size=None) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_AddTraceback("numpy.random.mtrand.RandomState.vonmises", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "numpy/random/mtrand.pyx":2048 * 0.0, '', CONS_NONE, None) * * def pareto(self, a, size=None): # <<<<<<<<<<<<<< * """ * pareto(a, size=None) */ /* Python wrapper */ static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_67pareto(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static char __pyx_doc_5numpy_6random_6mtrand_11RandomState_66pareto[] = "\n pareto(a, size=None)\n\n Draw samples from a Pareto II or Lomax distribution with\n specified shape.\n\n The Lomax or Pareto II distribution is a shifted Pareto\n distribution. The classical Pareto distribution can be\n obtained from the Lomax distribution by adding 1 and\n multiplying by the scale parameter ``m`` (see Notes). The\n smallest value of the Lomax distribution is zero while for the\n classical Pareto distribution it is ``mu``, where the standard\n Pareto distribution has location ``mu = 1``. Lomax can also\n be considered as a simplified version of the Generalized\n Pareto distribution (available in SciPy), with the scale set\n to one and the location set to zero.\n\n The Pareto distribution must be greater than zero, and is\n unbounded above. It is also known as the \"80-20 rule\". In\n this distribution, 80 percent of the weights are in the lowest\n 20 percent of the range, while the other 20 percent fill the\n remaining 80 percent of the range.\n\n Parameters\n ----------\n a : float or array_like of floats\n Shape of the distribution. Must be positive.\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. If size is ``None`` (default),\n a single value is returned if ``a`` is a scalar. Otherwise,\n ``np.array(a).size`` samples are drawn.\n\n Returns\n -------\n out : ndarray or scalar\n Drawn samples from the parameterized Pareto distribution.\n\n See Also\n --------\n scipy.stats.lomax : probability density function, distribution or\n cumulative density function, etc.\n scipy.stats.genpareto : probability density function, distribution or\n cumulative density function,"" etc.\n\n Notes\n -----\n The probability density for the Pareto distribution is\n\n .. math:: p(x) = \\frac{am^a}{x^{a+1}}\n\n where :math:`a` is the shape and :math:`m` the scale.\n\n The Pareto distribution, named after the Italian economist\n Vilfredo Pareto, is a power law probability distribution\n useful in many real world problems. Outside the field of\n economics it is generally referred to as the Bradford\n distribution. Pareto developed the distribution to describe\n the distribution of wealth in an economy. It has also found\n use in insurance, web page access statistics, oil field sizes,\n and many other problems, including the download frequency for\n projects in Sourceforge [1]_. It is one of the so-called\n \"fat-tailed\" distributions.\n\n References\n ----------\n .. [1] Francis Hunt and Paul Johnson, On the Pareto Distribution of\n Sourceforge projects.\n .. [2] Pareto, V. (1896). Course of Political Economy. Lausanne.\n .. [3] Reiss, R.D., Thomas, M.(2001), Statistical Analysis of Extreme\n Values, Birkhauser Verlag, Basel, pp 23-30.\n .. [4] Wikipedia, \"Pareto distribution\",\n https://en.wikipedia.org/wiki/Pareto_distribution\n\n Examples\n --------\n Draw samples from the distribution:\n\n >>> a, m = 3., 2. # shape and mode\n >>> s = (np.random.pareto(a, 1000) + 1) * m\n\n Display the histogram of the samples, along with the probability\n density function:\n\n >>> import matplotlib.pyplot as plt\n >>> count, bins, _ = plt.hist(s, 100, density=True)\n >>> fit = a*m**a / bins**(a+1)\n >>> plt.plot(bins, max(count)*fit/max(fit), linewidth=2, color='r')\n >>> plt.show()\n\n "; static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_67pareto(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_a = 0; PyObject *__pyx_v_size = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("pareto (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_a,&__pyx_n_s_size,0}; PyObject* values[2] = {0,0}; values[1] = ((PyObject *)Py_None); if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); CYTHON_FALLTHROUGH; case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); CYTHON_FALLTHROUGH; case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (likely((values[0] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_a)) != 0)) kw_args--; else goto __pyx_L5_argtuple_error; CYTHON_FALLTHROUGH; case 1: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_size); if (value) { values[1] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "pareto") < 0)) __PYX_ERR(0, 2048, __pyx_L3_error) } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); CYTHON_FALLTHROUGH; case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_a = values[0]; __pyx_v_size = values[1]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("pareto", 0, 1, 2, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(0, 2048, __pyx_L3_error) __pyx_L3_error:; __Pyx_AddTraceback("numpy.random.mtrand.RandomState.pareto", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_5numpy_6random_6mtrand_11RandomState_66pareto(((struct __pyx_obj_5numpy_6random_6mtrand_RandomState *)__pyx_v_self), __pyx_v_a, __pyx_v_size); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_66pareto(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_a, PyObject *__pyx_v_size) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; __Pyx_RefNannySetupContext("pareto", 0); /* "numpy/random/mtrand.pyx":2140 * * """ * return cont(&legacy_pareto, &self._aug_state, size, self.lock, 1, # <<<<<<<<<<<<<< * a, 'a', CONS_POSITIVE, * 0.0, '', CONS_NONE, */ __Pyx_XDECREF(__pyx_r); __pyx_t_1 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_1); /* "numpy/random/mtrand.pyx":2143 * a, 'a', CONS_POSITIVE, * 0.0, '', CONS_NONE, * 0.0, '', CONS_NONE, None) # <<<<<<<<<<<<<< * * def weibull(self, a, size=None): */ __pyx_t_2 = __pyx_f_5numpy_6random_6common_cont((&legacy_pareto), (&__pyx_v_self->_aug_state), __pyx_v_size, __pyx_t_1, 1, __pyx_v_a, __pyx_n_u_a, __pyx_e_5numpy_6random_6common_CONS_POSITIVE, __pyx_float_0_0, __pyx_kp_u__12, __pyx_e_5numpy_6random_6common_CONS_NONE, __pyx_float_0_0, __pyx_kp_u__12, __pyx_e_5numpy_6random_6common_CONS_NONE, Py_None); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 2140, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_r = __pyx_t_2; __pyx_t_2 = 0; goto __pyx_L0; /* "numpy/random/mtrand.pyx":2048 * 0.0, '', CONS_NONE, None) * * def pareto(self, a, size=None): # <<<<<<<<<<<<<< * """ * pareto(a, size=None) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_AddTraceback("numpy.random.mtrand.RandomState.pareto", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "numpy/random/mtrand.pyx":2145 * 0.0, '', CONS_NONE, None) * * def weibull(self, a, size=None): # <<<<<<<<<<<<<< * """ * weibull(a, size=None) */ /* Python wrapper */ static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_69weibull(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static char __pyx_doc_5numpy_6random_6mtrand_11RandomState_68weibull[] = "\n weibull(a, size=None)\n\n Draw samples from a Weibull distribution.\n\n Draw samples from a 1-parameter Weibull distribution with the given\n shape parameter `a`.\n\n .. math:: X = (-ln(U))^{1/a}\n\n Here, U is drawn from the uniform distribution over (0,1].\n\n The more common 2-parameter Weibull, including a scale parameter\n :math:`\\lambda` is just :math:`X = \\lambda(-ln(U))^{1/a}`.\n\n Parameters\n ----------\n a : float or array_like of floats\n Shape parameter of the distribution. Must be nonnegative.\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. If size is ``None`` (default),\n a single value is returned if ``a`` is a scalar. Otherwise,\n ``np.array(a).size`` samples are drawn.\n\n Returns\n -------\n out : ndarray or scalar\n Drawn samples from the parameterized Weibull distribution.\n\n See Also\n --------\n scipy.stats.weibull_max\n scipy.stats.weibull_min\n scipy.stats.genextreme\n gumbel\n\n Notes\n -----\n The Weibull (or Type III asymptotic extreme value distribution\n for smallest values, SEV Type III, or Rosin-Rammler\n distribution) is one of a class of Generalized Extreme Value\n (GEV) distributions used in modeling extreme value problems.\n This class includes the Gumbel and Frechet distributions.\n\n The probability density for the Weibull distribution is\n\n .. math:: p(x) = \\frac{a}\n {\\lambda}(\\frac{x}{\\lambda})^{a-1}e^{-(x/\\lambda)^a},\n\n where :math:`a` is the shape and :math:`\\lambda` the scale.\n\n The function has its peak (the mode) at\n :math:`\\lambda(\\frac{a-1}{a})^{1/a}`.\n\n When ``a = 1``, the Weibull"" distribution reduces to the exponential\n distribution.\n\n References\n ----------\n .. [1] Waloddi Weibull, Royal Technical University, Stockholm,\n 1939 \"A Statistical Theory Of The Strength Of Materials\",\n Ingeniorsvetenskapsakademiens Handlingar Nr 151, 1939,\n Generalstabens Litografiska Anstalts Forlag, Stockholm.\n .. [2] Waloddi Weibull, \"A Statistical Distribution Function of\n Wide Applicability\", Journal Of Applied Mechanics ASME Paper\n 1951.\n .. [3] Wikipedia, \"Weibull distribution\",\n https://en.wikipedia.org/wiki/Weibull_distribution\n\n Examples\n --------\n Draw samples from the distribution:\n\n >>> a = 5. # shape\n >>> s = np.random.weibull(a, 1000)\n\n Display the histogram of the samples, along with\n the probability density function:\n\n >>> import matplotlib.pyplot as plt\n >>> x = np.arange(1,100.)/50.\n >>> def weib(x,n,a):\n ... return (a / n) * (x / n)**(a - 1) * np.exp(-(x / n)**a)\n\n >>> count, bins, ignored = plt.hist(np.random.weibull(5.,1000))\n >>> x = np.arange(1,100.)/50.\n >>> scale = count.max()/weib(x, 1., 5.).max()\n >>> plt.plot(x, weib(x, 1., 5.)*scale)\n >>> plt.show()\n\n "; static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_69weibull(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_a = 0; PyObject *__pyx_v_size = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("weibull (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_a,&__pyx_n_s_size,0}; PyObject* values[2] = {0,0}; values[1] = ((PyObject *)Py_None); if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); CYTHON_FALLTHROUGH; case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); CYTHON_FALLTHROUGH; case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (likely((values[0] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_a)) != 0)) kw_args--; else goto __pyx_L5_argtuple_error; CYTHON_FALLTHROUGH; case 1: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_size); if (value) { values[1] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "weibull") < 0)) __PYX_ERR(0, 2145, __pyx_L3_error) } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); CYTHON_FALLTHROUGH; case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_a = values[0]; __pyx_v_size = values[1]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("weibull", 0, 1, 2, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(0, 2145, __pyx_L3_error) __pyx_L3_error:; __Pyx_AddTraceback("numpy.random.mtrand.RandomState.weibull", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_5numpy_6random_6mtrand_11RandomState_68weibull(((struct __pyx_obj_5numpy_6random_6mtrand_RandomState *)__pyx_v_self), __pyx_v_a, __pyx_v_size); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_68weibull(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_a, PyObject *__pyx_v_size) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; __Pyx_RefNannySetupContext("weibull", 0); /* "numpy/random/mtrand.pyx":2238 * * """ * return cont(&legacy_weibull, &self._aug_state, size, self.lock, 1, # <<<<<<<<<<<<<< * a, 'a', CONS_NON_NEGATIVE, * 0.0, '', CONS_NONE, */ __Pyx_XDECREF(__pyx_r); __pyx_t_1 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_1); /* "numpy/random/mtrand.pyx":2241 * a, 'a', CONS_NON_NEGATIVE, * 0.0, '', CONS_NONE, * 0.0, '', CONS_NONE, None) # <<<<<<<<<<<<<< * * def power(self, a, size=None): */ __pyx_t_2 = __pyx_f_5numpy_6random_6common_cont((&legacy_weibull), (&__pyx_v_self->_aug_state), __pyx_v_size, __pyx_t_1, 1, __pyx_v_a, __pyx_n_u_a, __pyx_e_5numpy_6random_6common_CONS_NON_NEGATIVE, __pyx_float_0_0, __pyx_kp_u__12, __pyx_e_5numpy_6random_6common_CONS_NONE, __pyx_float_0_0, __pyx_kp_u__12, __pyx_e_5numpy_6random_6common_CONS_NONE, Py_None); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 2238, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_r = __pyx_t_2; __pyx_t_2 = 0; goto __pyx_L0; /* "numpy/random/mtrand.pyx":2145 * 0.0, '', CONS_NONE, None) * * def weibull(self, a, size=None): # <<<<<<<<<<<<<< * """ * weibull(a, size=None) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_AddTraceback("numpy.random.mtrand.RandomState.weibull", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "numpy/random/mtrand.pyx":2243 * 0.0, '', CONS_NONE, None) * * def power(self, a, size=None): # <<<<<<<<<<<<<< * """ * power(a, size=None) */ /* Python wrapper */ static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_71power(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static char __pyx_doc_5numpy_6random_6mtrand_11RandomState_70power[] = "\n power(a, size=None)\n\n Draws samples in [0, 1] from a power distribution with positive\n exponent a - 1.\n\n Also known as the power function distribution.\n\n Parameters\n ----------\n a : float or array_like of floats\n Parameter of the distribution. Must be non-negative.\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. If size is ``None`` (default),\n a single value is returned if ``a`` is a scalar. Otherwise,\n ``np.array(a).size`` samples are drawn.\n\n Returns\n -------\n out : ndarray or scalar\n Drawn samples from the parameterized power distribution.\n\n Raises\n ------\n ValueError\n If a < 1.\n\n Notes\n -----\n The probability density function is\n\n .. math:: P(x; a) = ax^{a-1}, 0 \\le x \\le 1, a>0.\n\n The power function distribution is just the inverse of the Pareto\n distribution. It may also be seen as a special case of the Beta\n distribution.\n\n It is used, for example, in modeling the over-reporting of insurance\n claims.\n\n References\n ----------\n .. [1] Christian Kleiber, Samuel Kotz, \"Statistical size distributions\n in economics and actuarial sciences\", Wiley, 2003.\n .. [2] Heckert, N. A. and Filliben, James J. \"NIST Handbook 148:\n Dataplot Reference Manual, Volume 2: Let Subcommands and Library\n Functions\", National Institute of Standards and Technology\n Handbook Series, June 2003.\n https://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/powpdf.pdf\n\n Examples\n --------\n Draw samples from the distribution:\n\n >>> a = 5. # shape\n >>> samples = 1000\n "" >>> s = np.random.power(a, samples)\n\n Display the histogram of the samples, along with\n the probability density function:\n\n >>> import matplotlib.pyplot as plt\n >>> count, bins, ignored = plt.hist(s, bins=30)\n >>> x = np.linspace(0, 1, 100)\n >>> y = a*x**(a-1.)\n >>> normed_y = samples*np.diff(bins)[0]*y\n >>> plt.plot(x, normed_y)\n >>> plt.show()\n\n Compare the power function distribution to the inverse of the Pareto.\n\n >>> from scipy import stats # doctest: +SKIP\n >>> rvs = np.random.power(5, 1000000)\n >>> rvsp = np.random.pareto(5, 1000000)\n >>> xx = np.linspace(0,1,100)\n >>> powpdf = stats.powerlaw.pdf(xx,5) # doctest: +SKIP\n\n >>> plt.figure()\n >>> plt.hist(rvs, bins=50, density=True)\n >>> plt.plot(xx,powpdf,'r-') # doctest: +SKIP\n >>> plt.title('np.random.power(5)')\n\n >>> plt.figure()\n >>> plt.hist(1./(1.+rvsp), bins=50, density=True)\n >>> plt.plot(xx,powpdf,'r-') # doctest: +SKIP\n >>> plt.title('inverse of 1 + np.random.pareto(5)')\n\n >>> plt.figure()\n >>> plt.hist(1./(1.+rvsp), bins=50, density=True)\n >>> plt.plot(xx,powpdf,'r-') # doctest: +SKIP\n >>> plt.title('inverse of stats.pareto(5)')\n\n "; static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_71power(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_a = 0; PyObject *__pyx_v_size = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("power (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_a,&__pyx_n_s_size,0}; PyObject* values[2] = {0,0}; values[1] = ((PyObject *)Py_None); if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); CYTHON_FALLTHROUGH; case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); CYTHON_FALLTHROUGH; case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (likely((values[0] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_a)) != 0)) kw_args--; else goto __pyx_L5_argtuple_error; CYTHON_FALLTHROUGH; case 1: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_size); if (value) { values[1] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "power") < 0)) __PYX_ERR(0, 2243, __pyx_L3_error) } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); CYTHON_FALLTHROUGH; case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_a = values[0]; __pyx_v_size = values[1]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("power", 0, 1, 2, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(0, 2243, __pyx_L3_error) __pyx_L3_error:; __Pyx_AddTraceback("numpy.random.mtrand.RandomState.power", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_5numpy_6random_6mtrand_11RandomState_70power(((struct __pyx_obj_5numpy_6random_6mtrand_RandomState *)__pyx_v_self), __pyx_v_a, __pyx_v_size); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_70power(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_a, PyObject *__pyx_v_size) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; __Pyx_RefNannySetupContext("power", 0); /* "numpy/random/mtrand.pyx":2338 * * """ * return cont(&legacy_power, &self._aug_state, size, self.lock, 1, # <<<<<<<<<<<<<< * a, 'a', CONS_POSITIVE, * 0.0, '', CONS_NONE, */ __Pyx_XDECREF(__pyx_r); __pyx_t_1 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_1); /* "numpy/random/mtrand.pyx":2341 * a, 'a', CONS_POSITIVE, * 0.0, '', CONS_NONE, * 0.0, '', CONS_NONE, None) # <<<<<<<<<<<<<< * * def laplace(self, loc=0.0, scale=1.0, size=None): */ __pyx_t_2 = __pyx_f_5numpy_6random_6common_cont((&legacy_power), (&__pyx_v_self->_aug_state), __pyx_v_size, __pyx_t_1, 1, __pyx_v_a, __pyx_n_u_a, __pyx_e_5numpy_6random_6common_CONS_POSITIVE, __pyx_float_0_0, __pyx_kp_u__12, __pyx_e_5numpy_6random_6common_CONS_NONE, __pyx_float_0_0, __pyx_kp_u__12, __pyx_e_5numpy_6random_6common_CONS_NONE, Py_None); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 2338, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_r = __pyx_t_2; __pyx_t_2 = 0; goto __pyx_L0; /* "numpy/random/mtrand.pyx":2243 * 0.0, '', CONS_NONE, None) * * def power(self, a, size=None): # <<<<<<<<<<<<<< * """ * power(a, size=None) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_AddTraceback("numpy.random.mtrand.RandomState.power", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "numpy/random/mtrand.pyx":2343 * 0.0, '', CONS_NONE, None) * * def laplace(self, loc=0.0, scale=1.0, size=None): # <<<<<<<<<<<<<< * """ * laplace(loc=0.0, scale=1.0, size=None) */ /* Python wrapper */ static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_73laplace(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static char __pyx_doc_5numpy_6random_6mtrand_11RandomState_72laplace[] = "\n laplace(loc=0.0, scale=1.0, size=None)\n\n Draw samples from the Laplace or double exponential distribution with\n specified location (or mean) and scale (decay).\n\n The Laplace distribution is similar to the Gaussian/normal distribution,\n but is sharper at the peak and has fatter tails. It represents the\n difference between two independent, identically distributed exponential\n random variables.\n\n Parameters\n ----------\n loc : float or array_like of floats, optional\n The position, :math:`\\mu`, of the distribution peak. Default is 0.\n scale : float or array_like of floats, optional\n :math:`\\lambda`, the exponential decay. Default is 1. Must be non-\n negative.\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. If size is ``None`` (default),\n a single value is returned if ``loc`` and ``scale`` are both scalars.\n Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.\n\n Returns\n -------\n out : ndarray or scalar\n Drawn samples from the parameterized Laplace distribution.\n\n Notes\n -----\n It has the probability density function\n\n .. math:: f(x; \\mu, \\lambda) = \\frac{1}{2\\lambda}\n \\exp\\left(-\\frac{|x - \\mu|}{\\lambda}\\right).\n\n The first law of Laplace, from 1774, states that the frequency\n of an error can be expressed as an exponential function of the\n absolute magnitude of the error, which leads to the Laplace\n distribution. For many problems in economics and health\n sciences, this distribution seems to model the data better\n than the standard Gaussian distribution.\n\n References\n ----------\n .. [1] Abramowitz"", M. and Stegun, I. A. (Eds.). \"Handbook of\n Mathematical Functions with Formulas, Graphs, and Mathematical\n Tables, 9th printing,\" New York: Dover, 1972.\n .. [2] Kotz, Samuel, et. al. \"The Laplace Distribution and\n Generalizations, \" Birkhauser, 2001.\n .. [3] Weisstein, Eric W. \"Laplace Distribution.\"\n From MathWorld--A Wolfram Web Resource.\n http://mathworld.wolfram.com/LaplaceDistribution.html\n .. [4] Wikipedia, \"Laplace distribution\",\n https://en.wikipedia.org/wiki/Laplace_distribution\n\n Examples\n --------\n Draw samples from the distribution\n\n >>> loc, scale = 0., 1.\n >>> s = np.random.laplace(loc, scale, 1000)\n\n Display the histogram of the samples, along with\n the probability density function:\n\n >>> import matplotlib.pyplot as plt\n >>> count, bins, ignored = plt.hist(s, 30, density=True)\n >>> x = np.arange(-8., 8., .01)\n >>> pdf = np.exp(-abs(x-loc)/scale)/(2.*scale)\n >>> plt.plot(x, pdf)\n\n Plot Gaussian for comparison:\n\n >>> g = (1/(scale * np.sqrt(2 * np.pi)) *\n ... np.exp(-(x - loc)**2 / (2 * scale**2)))\n >>> plt.plot(x,g)\n\n "; static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_73laplace(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_loc = 0; PyObject *__pyx_v_scale = 0; PyObject *__pyx_v_size = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("laplace (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_loc,&__pyx_n_s_scale,&__pyx_n_s_size,0}; PyObject* values[3] = {0,0,0}; values[0] = ((PyObject *)__pyx_float_0_0); values[1] = ((PyObject *)__pyx_float_1_0); values[2] = ((PyObject *)Py_None); if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); CYTHON_FALLTHROUGH; case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); CYTHON_FALLTHROUGH; case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); CYTHON_FALLTHROUGH; case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_loc); if (value) { values[0] = value; kw_args--; } } CYTHON_FALLTHROUGH; case 1: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_scale); if (value) { values[1] = value; kw_args--; } } CYTHON_FALLTHROUGH; case 2: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_size); if (value) { values[2] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "laplace") < 0)) __PYX_ERR(0, 2343, __pyx_L3_error) } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); CYTHON_FALLTHROUGH; case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); CYTHON_FALLTHROUGH; case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); CYTHON_FALLTHROUGH; case 0: break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_loc = values[0]; __pyx_v_scale = values[1]; __pyx_v_size = values[2]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("laplace", 0, 0, 3, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(0, 2343, __pyx_L3_error) __pyx_L3_error:; __Pyx_AddTraceback("numpy.random.mtrand.RandomState.laplace", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_5numpy_6random_6mtrand_11RandomState_72laplace(((struct __pyx_obj_5numpy_6random_6mtrand_RandomState *)__pyx_v_self), __pyx_v_loc, __pyx_v_scale, __pyx_v_size); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_72laplace(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_loc, PyObject *__pyx_v_scale, PyObject *__pyx_v_size) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; __Pyx_RefNannySetupContext("laplace", 0); /* "numpy/random/mtrand.pyx":2423 * * """ * return cont(&random_laplace, &self._bitgen, size, self.lock, 2, # <<<<<<<<<<<<<< * loc, 'loc', CONS_NONE, * scale, 'scale', CONS_NON_NEGATIVE, */ __Pyx_XDECREF(__pyx_r); __pyx_t_1 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_1); /* "numpy/random/mtrand.pyx":2426 * loc, 'loc', CONS_NONE, * scale, 'scale', CONS_NON_NEGATIVE, * 0.0, '', CONS_NONE, None) # <<<<<<<<<<<<<< * * def gumbel(self, loc=0.0, scale=1.0, size=None): */ __pyx_t_2 = __pyx_f_5numpy_6random_6common_cont((&random_laplace), (&__pyx_v_self->_bitgen), __pyx_v_size, __pyx_t_1, 2, __pyx_v_loc, __pyx_n_u_loc, __pyx_e_5numpy_6random_6common_CONS_NONE, __pyx_v_scale, __pyx_n_u_scale, __pyx_e_5numpy_6random_6common_CONS_NON_NEGATIVE, __pyx_float_0_0, __pyx_kp_u__12, __pyx_e_5numpy_6random_6common_CONS_NONE, Py_None); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 2423, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_r = __pyx_t_2; __pyx_t_2 = 0; goto __pyx_L0; /* "numpy/random/mtrand.pyx":2343 * 0.0, '', CONS_NONE, None) * * def laplace(self, loc=0.0, scale=1.0, size=None): # <<<<<<<<<<<<<< * """ * laplace(loc=0.0, scale=1.0, size=None) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_AddTraceback("numpy.random.mtrand.RandomState.laplace", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "numpy/random/mtrand.pyx":2428 * 0.0, '', CONS_NONE, None) * * def gumbel(self, loc=0.0, scale=1.0, size=None): # <<<<<<<<<<<<<< * """ * gumbel(loc=0.0, scale=1.0, size=None) */ /* Python wrapper */ static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_75gumbel(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static char __pyx_doc_5numpy_6random_6mtrand_11RandomState_74gumbel[] = "\n gumbel(loc=0.0, scale=1.0, size=None)\n\n Draw samples from a Gumbel distribution.\n\n Draw samples from a Gumbel distribution with specified location and\n scale. For more information on the Gumbel distribution, see\n Notes and References below.\n\n Parameters\n ----------\n loc : float or array_like of floats, optional\n The location of the mode of the distribution. Default is 0.\n scale : float or array_like of floats, optional\n The scale parameter of the distribution. Default is 1. Must be non-\n negative.\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. If size is ``None`` (default),\n a single value is returned if ``loc`` and ``scale`` are both scalars.\n Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.\n\n Returns\n -------\n out : ndarray or scalar\n Drawn samples from the parameterized Gumbel distribution.\n\n See Also\n --------\n scipy.stats.gumbel_l\n scipy.stats.gumbel_r\n scipy.stats.genextreme\n weibull\n\n Notes\n -----\n The Gumbel (or Smallest Extreme Value (SEV) or the Smallest Extreme\n Value Type I) distribution is one of a class of Generalized Extreme\n Value (GEV) distributions used in modeling extreme value problems.\n The Gumbel is a special case of the Extreme Value Type I distribution\n for maximums from distributions with \"exponential-like\" tails.\n\n The probability density for the Gumbel distribution is\n\n .. math:: p(x) = \\frac{e^{-(x - \\mu)/ \\beta}}{\\beta} e^{ -e^{-(x - \\mu)/\n \\beta}},\n\n where :math:`\\mu` is the mode, a location parameter, and\n :math:`\\beta` is the scale parameter.\n\n The Gum""bel (named for German mathematician Emil Julius Gumbel) was used\n very early in the hydrology literature, for modeling the occurrence of\n flood events. It is also used for modeling maximum wind speed and\n rainfall rates. It is a \"fat-tailed\" distribution - the probability of\n an event in the tail of the distribution is larger than if one used a\n Gaussian, hence the surprisingly frequent occurrence of 100-year\n floods. Floods were initially modeled as a Gaussian process, which\n underestimated the frequency of extreme events.\n\n It is one of a class of extreme value distributions, the Generalized\n Extreme Value (GEV) distributions, which also includes the Weibull and\n Frechet.\n\n The function has a mean of :math:`\\mu + 0.57721\\beta` and a variance\n of :math:`\\frac{\\pi^2}{6}\\beta^2`.\n\n References\n ----------\n .. [1] Gumbel, E. J., \"Statistics of Extremes,\"\n New York: Columbia University Press, 1958.\n .. [2] Reiss, R.-D. and Thomas, M., \"Statistical Analysis of Extreme\n Values from Insurance, Finance, Hydrology and Other Fields,\"\n Basel: Birkhauser Verlag, 2001.\n\n Examples\n --------\n Draw samples from the distribution:\n\n >>> mu, beta = 0, 0.1 # location and scale\n >>> s = np.random.gumbel(mu, beta, 1000)\n\n Display the histogram of the samples, along with\n the probability density function:\n\n >>> import matplotlib.pyplot as plt\n >>> count, bins, ignored = plt.hist(s, 30, density=True)\n >>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta)\n ... * np.exp( -np.exp( -(bins - mu) /beta) ),\n ... linewidth=2, color='r')\n >>> plt.show()\n\n Show how an extreme value distribution can arise from a Gaussian process\n and compare to a Gaussian:\n\n >>> mean""s = []\n >>> maxima = []\n >>> for i in range(0,1000) :\n ... a = np.random.normal(mu, beta, 1000)\n ... means.append(a.mean())\n ... maxima.append(a.max())\n >>> count, bins, ignored = plt.hist(maxima, 30, density=True)\n >>> beta = np.std(maxima) * np.sqrt(6) / np.pi\n >>> mu = np.mean(maxima) - 0.57721*beta\n >>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta)\n ... * np.exp(-np.exp(-(bins - mu)/beta)),\n ... linewidth=2, color='r')\n >>> plt.plot(bins, 1/(beta * np.sqrt(2 * np.pi))\n ... * np.exp(-(bins - mu)**2 / (2 * beta**2)),\n ... linewidth=2, color='g')\n >>> plt.show()\n\n "; static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_75gumbel(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_loc = 0; PyObject *__pyx_v_scale = 0; PyObject *__pyx_v_size = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("gumbel (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_loc,&__pyx_n_s_scale,&__pyx_n_s_size,0}; PyObject* values[3] = {0,0,0}; values[0] = ((PyObject *)__pyx_float_0_0); values[1] = ((PyObject *)__pyx_float_1_0); values[2] = ((PyObject *)Py_None); if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); CYTHON_FALLTHROUGH; case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); CYTHON_FALLTHROUGH; case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); CYTHON_FALLTHROUGH; case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_loc); if (value) { values[0] = value; kw_args--; } } CYTHON_FALLTHROUGH; case 1: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_scale); if (value) { values[1] = value; kw_args--; } } CYTHON_FALLTHROUGH; case 2: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_size); if (value) { values[2] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "gumbel") < 0)) __PYX_ERR(0, 2428, __pyx_L3_error) } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); CYTHON_FALLTHROUGH; case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); CYTHON_FALLTHROUGH; case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); CYTHON_FALLTHROUGH; case 0: break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_loc = values[0]; __pyx_v_scale = values[1]; __pyx_v_size = values[2]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("gumbel", 0, 0, 3, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(0, 2428, __pyx_L3_error) __pyx_L3_error:; __Pyx_AddTraceback("numpy.random.mtrand.RandomState.gumbel", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_5numpy_6random_6mtrand_11RandomState_74gumbel(((struct __pyx_obj_5numpy_6random_6mtrand_RandomState *)__pyx_v_self), __pyx_v_loc, __pyx_v_scale, __pyx_v_size); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_74gumbel(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_loc, PyObject *__pyx_v_scale, PyObject *__pyx_v_size) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; __Pyx_RefNannySetupContext("gumbel", 0); /* "numpy/random/mtrand.pyx":2541 * * """ * return cont(&random_gumbel, &self._bitgen, size, self.lock, 2, # <<<<<<<<<<<<<< * loc, 'loc', CONS_NONE, * scale, 'scale', CONS_NON_NEGATIVE, */ __Pyx_XDECREF(__pyx_r); __pyx_t_1 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_1); /* "numpy/random/mtrand.pyx":2544 * loc, 'loc', CONS_NONE, * scale, 'scale', CONS_NON_NEGATIVE, * 0.0, '', CONS_NONE, None) # <<<<<<<<<<<<<< * * def logistic(self, loc=0.0, scale=1.0, size=None): */ __pyx_t_2 = __pyx_f_5numpy_6random_6common_cont((&random_gumbel), (&__pyx_v_self->_bitgen), __pyx_v_size, __pyx_t_1, 2, __pyx_v_loc, __pyx_n_u_loc, __pyx_e_5numpy_6random_6common_CONS_NONE, __pyx_v_scale, __pyx_n_u_scale, __pyx_e_5numpy_6random_6common_CONS_NON_NEGATIVE, __pyx_float_0_0, __pyx_kp_u__12, __pyx_e_5numpy_6random_6common_CONS_NONE, Py_None); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 2541, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_r = __pyx_t_2; __pyx_t_2 = 0; goto __pyx_L0; /* "numpy/random/mtrand.pyx":2428 * 0.0, '', CONS_NONE, None) * * def gumbel(self, loc=0.0, scale=1.0, size=None): # <<<<<<<<<<<<<< * """ * gumbel(loc=0.0, scale=1.0, size=None) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_AddTraceback("numpy.random.mtrand.RandomState.gumbel", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "numpy/random/mtrand.pyx":2546 * 0.0, '', CONS_NONE, None) * * def logistic(self, loc=0.0, scale=1.0, size=None): # <<<<<<<<<<<<<< * """ * logistic(loc=0.0, scale=1.0, size=None) */ /* Python wrapper */ static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_77logistic(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static char __pyx_doc_5numpy_6random_6mtrand_11RandomState_76logistic[] = "\n logistic(loc=0.0, scale=1.0, size=None)\n\n Draw samples from a logistic distribution.\n\n Samples are drawn from a logistic distribution with specified\n parameters, loc (location or mean, also median), and scale (>0).\n\n Parameters\n ----------\n loc : float or array_like of floats, optional\n Parameter of the distribution. Default is 0.\n scale : float or array_like of floats, optional\n Parameter of the distribution. Must be non-negative.\n Default is 1.\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. If size is ``None`` (default),\n a single value is returned if ``loc`` and ``scale`` are both scalars.\n Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.\n\n Returns\n -------\n out : ndarray or scalar\n Drawn samples from the parameterized logistic distribution.\n\n See Also\n --------\n scipy.stats.logistic : probability density function, distribution or\n cumulative density function, etc.\n\n Notes\n -----\n The probability density for the Logistic distribution is\n\n .. math:: P(x) = P(x) = \\frac{e^{-(x-\\mu)/s}}{s(1+e^{-(x-\\mu)/s})^2},\n\n where :math:`\\mu` = location and :math:`s` = scale.\n\n The Logistic distribution is used in Extreme Value problems where it\n can act as a mixture of Gumbel distributions, in Epidemiology, and by\n the World Chess Federation (FIDE) where it is used in the Elo ranking\n system, assuming the performance of each player is a logistically\n distributed random variable.\n\n References\n ----------\n .. [1] Reiss, R.-D. and Thomas M. (2001), \"Statistical Analysis of\n Extreme Values, from Insurance, Finance, Hydr""ology and Other\n Fields,\" Birkhauser Verlag, Basel, pp 132-133.\n .. [2] Weisstein, Eric W. \"Logistic Distribution.\" From\n MathWorld--A Wolfram Web Resource.\n http://mathworld.wolfram.com/LogisticDistribution.html\n .. [3] Wikipedia, \"Logistic-distribution\",\n https://en.wikipedia.org/wiki/Logistic_distribution\n\n Examples\n --------\n Draw samples from the distribution:\n\n >>> loc, scale = 10, 1\n >>> s = np.random.logistic(loc, scale, 10000)\n >>> import matplotlib.pyplot as plt\n >>> count, bins, ignored = plt.hist(s, bins=50)\n\n # plot against distribution\n\n >>> def logist(x, loc, scale):\n ... return np.exp((loc-x)/scale)/(scale*(1+np.exp((loc-x)/scale))**2)\n >>> lgst_val = logist(bins, loc, scale)\n >>> plt.plot(bins, lgst_val * count.max() / lgst_val.max())\n >>> plt.show()\n\n "; static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_77logistic(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_loc = 0; PyObject *__pyx_v_scale = 0; PyObject *__pyx_v_size = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("logistic (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_loc,&__pyx_n_s_scale,&__pyx_n_s_size,0}; PyObject* values[3] = {0,0,0}; values[0] = ((PyObject *)__pyx_float_0_0); values[1] = ((PyObject *)__pyx_float_1_0); values[2] = ((PyObject *)Py_None); if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); CYTHON_FALLTHROUGH; case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); CYTHON_FALLTHROUGH; case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); CYTHON_FALLTHROUGH; case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_loc); if (value) { values[0] = value; kw_args--; } } CYTHON_FALLTHROUGH; case 1: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_scale); if (value) { values[1] = value; kw_args--; } } CYTHON_FALLTHROUGH; case 2: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_size); if (value) { values[2] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "logistic") < 0)) __PYX_ERR(0, 2546, __pyx_L3_error) } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); CYTHON_FALLTHROUGH; case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); CYTHON_FALLTHROUGH; case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); CYTHON_FALLTHROUGH; case 0: break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_loc = values[0]; __pyx_v_scale = values[1]; __pyx_v_size = values[2]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("logistic", 0, 0, 3, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(0, 2546, __pyx_L3_error) __pyx_L3_error:; __Pyx_AddTraceback("numpy.random.mtrand.RandomState.logistic", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_5numpy_6random_6mtrand_11RandomState_76logistic(((struct __pyx_obj_5numpy_6random_6mtrand_RandomState *)__pyx_v_self), __pyx_v_loc, __pyx_v_scale, __pyx_v_size); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_76logistic(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_loc, PyObject *__pyx_v_scale, PyObject *__pyx_v_size) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; __Pyx_RefNannySetupContext("logistic", 0); /* "numpy/random/mtrand.pyx":2621 * * """ * return cont(&random_logistic, &self._bitgen, size, self.lock, 2, # <<<<<<<<<<<<<< * loc, 'loc', CONS_NONE, * scale, 'scale', CONS_NON_NEGATIVE, */ __Pyx_XDECREF(__pyx_r); __pyx_t_1 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_1); /* "numpy/random/mtrand.pyx":2624 * loc, 'loc', CONS_NONE, * scale, 'scale', CONS_NON_NEGATIVE, * 0.0, '', CONS_NONE, None) # <<<<<<<<<<<<<< * * def lognormal(self, mean=0.0, sigma=1.0, size=None): */ __pyx_t_2 = __pyx_f_5numpy_6random_6common_cont((&random_logistic), (&__pyx_v_self->_bitgen), __pyx_v_size, __pyx_t_1, 2, __pyx_v_loc, __pyx_n_u_loc, __pyx_e_5numpy_6random_6common_CONS_NONE, __pyx_v_scale, __pyx_n_u_scale, __pyx_e_5numpy_6random_6common_CONS_NON_NEGATIVE, __pyx_float_0_0, __pyx_kp_u__12, __pyx_e_5numpy_6random_6common_CONS_NONE, Py_None); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 2621, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_r = __pyx_t_2; __pyx_t_2 = 0; goto __pyx_L0; /* "numpy/random/mtrand.pyx":2546 * 0.0, '', CONS_NONE, None) * * def logistic(self, loc=0.0, scale=1.0, size=None): # <<<<<<<<<<<<<< * """ * logistic(loc=0.0, scale=1.0, size=None) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_AddTraceback("numpy.random.mtrand.RandomState.logistic", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "numpy/random/mtrand.pyx":2626 * 0.0, '', CONS_NONE, None) * * def lognormal(self, mean=0.0, sigma=1.0, size=None): # <<<<<<<<<<<<<< * """ * lognormal(mean=0.0, sigma=1.0, size=None) */ /* Python wrapper */ static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_79lognormal(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static char __pyx_doc_5numpy_6random_6mtrand_11RandomState_78lognormal[] = "\n lognormal(mean=0.0, sigma=1.0, size=None)\n\n Draw samples from a log-normal distribution.\n\n Draw samples from a log-normal distribution with specified mean,\n standard deviation, and array shape. Note that the mean and standard\n deviation are not the values for the distribution itself, but of the\n underlying normal distribution it is derived from.\n\n Parameters\n ----------\n mean : float or array_like of floats, optional\n Mean value of the underlying normal distribution. Default is 0.\n sigma : float or array_like of floats, optional\n Standard deviation of the underlying normal distribution. Must be\n non-negative. Default is 1.\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. If size is ``None`` (default),\n a single value is returned if ``mean`` and ``sigma`` are both scalars.\n Otherwise, ``np.broadcast(mean, sigma).size`` samples are drawn.\n\n Returns\n -------\n out : ndarray or scalar\n Drawn samples from the parameterized log-normal distribution.\n\n See Also\n --------\n scipy.stats.lognorm : probability density function, distribution,\n cumulative density function, etc.\n\n Notes\n -----\n A variable `x` has a log-normal distribution if `log(x)` is normally\n distributed. The probability density function for the log-normal\n distribution is:\n\n .. math:: p(x) = \\frac{1}{\\sigma x \\sqrt{2\\pi}}\n e^{(-\\frac{(ln(x)-\\mu)^2}{2\\sigma^2})}\n\n where :math:`\\mu` is the mean and :math:`\\sigma` is the standard\n deviation of the normally distributed logarithm of the variable.\n A log-normal distribution results if a random variable is the *product*\n "" of a large number of independent, identically-distributed variables in\n the same way that a normal distribution results if the variable is the\n *sum* of a large number of independent, identically-distributed\n variables.\n\n References\n ----------\n .. [1] Limpert, E., Stahel, W. A., and Abbt, M., \"Log-normal\n Distributions across the Sciences: Keys and Clues,\"\n BioScience, Vol. 51, No. 5, May, 2001.\n https://stat.ethz.ch/~stahel/lognormal/bioscience.pdf\n .. [2] Reiss, R.D. and Thomas, M., \"Statistical Analysis of Extreme\n Values,\" Basel: Birkhauser Verlag, 2001, pp. 31-32.\n\n Examples\n --------\n Draw samples from the distribution:\n\n >>> mu, sigma = 3., 1. # mean and standard deviation\n >>> s = np.random.lognormal(mu, sigma, 1000)\n\n Display the histogram of the samples, along with\n the probability density function:\n\n >>> import matplotlib.pyplot as plt\n >>> count, bins, ignored = plt.hist(s, 100, density=True, align='mid')\n\n >>> x = np.linspace(min(bins), max(bins), 10000)\n >>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2))\n ... / (x * sigma * np.sqrt(2 * np.pi)))\n\n >>> plt.plot(x, pdf, linewidth=2, color='r')\n >>> plt.axis('tight')\n >>> plt.show()\n\n Demonstrate that taking the products of random samples from a uniform\n distribution can be fit well by a log-normal probability density\n function.\n\n >>> # Generate a thousand samples: each is the product of 100 random\n >>> # values, drawn from a normal distribution.\n >>> b = []\n >>> for i in range(1000):\n ... a = 10. + np.random.standard_normal(100)\n ... b.append(np.product(a))\n\n >>> b = np.array(b) / np.min(b) # scale values to be positive\n >>> count, bins, ignored = p""lt.hist(b, 100, density=True, align='mid')\n >>> sigma = np.std(np.log(b))\n >>> mu = np.mean(np.log(b))\n\n >>> x = np.linspace(min(bins), max(bins), 10000)\n >>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2))\n ... / (x * sigma * np.sqrt(2 * np.pi)))\n\n >>> plt.plot(x, pdf, color='r', linewidth=2)\n >>> plt.show()\n\n "; static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_79lognormal(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_mean = 0; PyObject *__pyx_v_sigma = 0; PyObject *__pyx_v_size = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("lognormal (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_mean,&__pyx_n_s_sigma,&__pyx_n_s_size,0}; PyObject* values[3] = {0,0,0}; values[0] = ((PyObject *)__pyx_float_0_0); values[1] = ((PyObject *)__pyx_float_1_0); values[2] = ((PyObject *)Py_None); if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); CYTHON_FALLTHROUGH; case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); CYTHON_FALLTHROUGH; case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); CYTHON_FALLTHROUGH; case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_mean); if (value) { values[0] = value; kw_args--; } } CYTHON_FALLTHROUGH; case 1: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_sigma); if (value) { values[1] = value; kw_args--; } } CYTHON_FALLTHROUGH; case 2: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_size); if (value) { values[2] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "lognormal") < 0)) __PYX_ERR(0, 2626, __pyx_L3_error) } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); CYTHON_FALLTHROUGH; case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); CYTHON_FALLTHROUGH; case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); CYTHON_FALLTHROUGH; case 0: break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_mean = values[0]; __pyx_v_sigma = values[1]; __pyx_v_size = values[2]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("lognormal", 0, 0, 3, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(0, 2626, __pyx_L3_error) __pyx_L3_error:; __Pyx_AddTraceback("numpy.random.mtrand.RandomState.lognormal", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_5numpy_6random_6mtrand_11RandomState_78lognormal(((struct __pyx_obj_5numpy_6random_6mtrand_RandomState *)__pyx_v_self), __pyx_v_mean, __pyx_v_sigma, __pyx_v_size); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_78lognormal(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_mean, PyObject *__pyx_v_sigma, PyObject *__pyx_v_size) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; __Pyx_RefNannySetupContext("lognormal", 0); /* "numpy/random/mtrand.pyx":2731 * * """ * return cont(&legacy_lognormal, &self._aug_state, size, self.lock, 2, # <<<<<<<<<<<<<< * mean, 'mean', CONS_NONE, * sigma, 'sigma', CONS_NON_NEGATIVE, */ __Pyx_XDECREF(__pyx_r); __pyx_t_1 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_1); /* "numpy/random/mtrand.pyx":2734 * mean, 'mean', CONS_NONE, * sigma, 'sigma', CONS_NON_NEGATIVE, * 0.0, '', CONS_NONE, None) # <<<<<<<<<<<<<< * * def rayleigh(self, scale=1.0, size=None): */ __pyx_t_2 = __pyx_f_5numpy_6random_6common_cont((&legacy_lognormal), (&__pyx_v_self->_aug_state), __pyx_v_size, __pyx_t_1, 2, __pyx_v_mean, __pyx_n_u_mean, __pyx_e_5numpy_6random_6common_CONS_NONE, __pyx_v_sigma, __pyx_n_u_sigma, __pyx_e_5numpy_6random_6common_CONS_NON_NEGATIVE, __pyx_float_0_0, __pyx_kp_u__12, __pyx_e_5numpy_6random_6common_CONS_NONE, Py_None); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 2731, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_r = __pyx_t_2; __pyx_t_2 = 0; goto __pyx_L0; /* "numpy/random/mtrand.pyx":2626 * 0.0, '', CONS_NONE, None) * * def lognormal(self, mean=0.0, sigma=1.0, size=None): # <<<<<<<<<<<<<< * """ * lognormal(mean=0.0, sigma=1.0, size=None) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_AddTraceback("numpy.random.mtrand.RandomState.lognormal", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "numpy/random/mtrand.pyx":2736 * 0.0, '', CONS_NONE, None) * * def rayleigh(self, scale=1.0, size=None): # <<<<<<<<<<<<<< * """ * rayleigh(scale=1.0, size=None) */ /* Python wrapper */ static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_81rayleigh(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static char __pyx_doc_5numpy_6random_6mtrand_11RandomState_80rayleigh[] = "\n rayleigh(scale=1.0, size=None)\n\n Draw samples from a Rayleigh distribution.\n\n The :math:`\\chi` and Weibull distributions are generalizations of the\n Rayleigh.\n\n Parameters\n ----------\n scale : float or array_like of floats, optional\n Scale, also equals the mode. Must be non-negative. Default is 1.\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. If size is ``None`` (default),\n a single value is returned if ``scale`` is a scalar. Otherwise,\n ``np.array(scale).size`` samples are drawn.\n\n Returns\n -------\n out : ndarray or scalar\n Drawn samples from the parameterized Rayleigh distribution.\n\n Notes\n -----\n The probability density function for the Rayleigh distribution is\n\n .. math:: P(x;scale) = \\frac{x}{scale^2}e^{\\frac{-x^2}{2 \\cdotp scale^2}}\n\n The Rayleigh distribution would arise, for example, if the East\n and North components of the wind velocity had identical zero-mean\n Gaussian distributions. Then the wind speed would have a Rayleigh\n distribution.\n\n References\n ----------\n .. [1] Brighton Webs Ltd., \"Rayleigh Distribution,\"\n https://web.archive.org/web/20090514091424/http://brighton-webs.co.uk:80/distributions/rayleigh.asp\n .. [2] Wikipedia, \"Rayleigh distribution\"\n https://en.wikipedia.org/wiki/Rayleigh_distribution\n\n Examples\n --------\n Draw values from the distribution and plot the histogram\n\n >>> from matplotlib.pyplot import hist\n >>> values = hist(np.random.rayleigh(3, 100000), bins=200, density=True)\n\n Wave heights tend to follow a Rayleigh distribution. If the mean wave\n height is 1 meter, what fraction of ""waves are likely to be larger than 3\n meters?\n\n >>> meanvalue = 1\n >>> modevalue = np.sqrt(2 / np.pi) * meanvalue\n >>> s = np.random.rayleigh(modevalue, 1000000)\n\n The percentage of waves larger than 3 meters is:\n\n >>> 100.*sum(s>3)/1000000.\n 0.087300000000000003 # random\n\n "; static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_81rayleigh(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_scale = 0; PyObject *__pyx_v_size = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("rayleigh (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_scale,&__pyx_n_s_size,0}; PyObject* values[2] = {0,0}; values[0] = ((PyObject *)__pyx_float_1_0); values[1] = ((PyObject *)Py_None); if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); CYTHON_FALLTHROUGH; case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); CYTHON_FALLTHROUGH; case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_scale); if (value) { values[0] = value; kw_args--; } } CYTHON_FALLTHROUGH; case 1: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_size); if (value) { values[1] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "rayleigh") < 0)) __PYX_ERR(0, 2736, __pyx_L3_error) } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); CYTHON_FALLTHROUGH; case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); CYTHON_FALLTHROUGH; case 0: break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_scale = values[0]; __pyx_v_size = values[1]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("rayleigh", 0, 0, 2, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(0, 2736, __pyx_L3_error) __pyx_L3_error:; __Pyx_AddTraceback("numpy.random.mtrand.RandomState.rayleigh", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_5numpy_6random_6mtrand_11RandomState_80rayleigh(((struct __pyx_obj_5numpy_6random_6mtrand_RandomState *)__pyx_v_self), __pyx_v_scale, __pyx_v_size); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_80rayleigh(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_scale, PyObject *__pyx_v_size) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; __Pyx_RefNannySetupContext("rayleigh", 0); /* "numpy/random/mtrand.pyx":2799 * * """ * return cont(&random_rayleigh, &self._bitgen, size, self.lock, 1, # <<<<<<<<<<<<<< * scale, 'scale', CONS_NON_NEGATIVE, * 0.0, '', CONS_NONE, */ __Pyx_XDECREF(__pyx_r); __pyx_t_1 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_1); /* "numpy/random/mtrand.pyx":2802 * scale, 'scale', CONS_NON_NEGATIVE, * 0.0, '', CONS_NONE, * 0.0, '', CONS_NONE, None) # <<<<<<<<<<<<<< * * def wald(self, mean, scale, size=None): */ __pyx_t_2 = __pyx_f_5numpy_6random_6common_cont((&random_rayleigh), (&__pyx_v_self->_bitgen), __pyx_v_size, __pyx_t_1, 1, __pyx_v_scale, __pyx_n_u_scale, __pyx_e_5numpy_6random_6common_CONS_NON_NEGATIVE, __pyx_float_0_0, __pyx_kp_u__12, __pyx_e_5numpy_6random_6common_CONS_NONE, __pyx_float_0_0, __pyx_kp_u__12, __pyx_e_5numpy_6random_6common_CONS_NONE, Py_None); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 2799, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_r = __pyx_t_2; __pyx_t_2 = 0; goto __pyx_L0; /* "numpy/random/mtrand.pyx":2736 * 0.0, '', CONS_NONE, None) * * def rayleigh(self, scale=1.0, size=None): # <<<<<<<<<<<<<< * """ * rayleigh(scale=1.0, size=None) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_AddTraceback("numpy.random.mtrand.RandomState.rayleigh", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "numpy/random/mtrand.pyx":2804 * 0.0, '', CONS_NONE, None) * * def wald(self, mean, scale, size=None): # <<<<<<<<<<<<<< * """ * wald(mean, scale, size=None) */ /* Python wrapper */ static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_83wald(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static char __pyx_doc_5numpy_6random_6mtrand_11RandomState_82wald[] = "\n wald(mean, scale, size=None)\n\n Draw samples from a Wald, or inverse Gaussian, distribution.\n\n As the scale approaches infinity, the distribution becomes more like a\n Gaussian. Some references claim that the Wald is an inverse Gaussian\n with mean equal to 1, but this is by no means universal.\n\n The inverse Gaussian distribution was first studied in relationship to\n Brownian motion. In 1956 M.C.K. Tweedie used the name inverse Gaussian\n because there is an inverse relationship between the time to cover a\n unit distance and distance covered in unit time.\n\n Parameters\n ----------\n mean : float or array_like of floats\n Distribution mean, must be > 0.\n scale : float or array_like of floats\n Scale parameter, must be > 0.\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. If size is ``None`` (default),\n a single value is returned if ``mean`` and ``scale`` are both scalars.\n Otherwise, ``np.broadcast(mean, scale).size`` samples are drawn.\n\n Returns\n -------\n out : ndarray or scalar\n Drawn samples from the parameterized Wald distribution.\n\n Notes\n -----\n The probability density function for the Wald distribution is\n\n .. math:: P(x;mean,scale) = \\sqrt{\\frac{scale}{2\\pi x^3}}e^\n \\frac{-scale(x-mean)^2}{2\\cdotp mean^2x}\n\n As noted above the inverse Gaussian distribution first arise\n from attempts to model Brownian motion. It is also a\n competitor to the Weibull for use in reliability modeling and\n modeling stock returns and interest rate processes.\n\n References\n ----------\n .. [1] Brighton Webs Ltd., Wald Distribution,\n http""s://web.archive.org/web/20090423014010/http://www.brighton-webs.co.uk:80/distributions/wald.asp\n .. [2] Chhikara, Raj S., and Folks, J. Leroy, \"The Inverse Gaussian\n Distribution: Theory : Methodology, and Applications\", CRC Press,\n 1988.\n .. [3] Wikipedia, \"Inverse Gaussian distribution\"\n https://en.wikipedia.org/wiki/Inverse_Gaussian_distribution\n\n Examples\n --------\n Draw values from the distribution and plot the histogram:\n\n >>> import matplotlib.pyplot as plt\n >>> h = plt.hist(np.random.wald(3, 2, 100000), bins=200, density=True)\n >>> plt.show()\n\n "; static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_83wald(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_mean = 0; PyObject *__pyx_v_scale = 0; PyObject *__pyx_v_size = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("wald (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_mean,&__pyx_n_s_scale,&__pyx_n_s_size,0}; PyObject* values[3] = {0,0,0}; values[2] = ((PyObject *)Py_None); if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); CYTHON_FALLTHROUGH; case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); CYTHON_FALLTHROUGH; case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); CYTHON_FALLTHROUGH; case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (likely((values[0] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_mean)) != 0)) kw_args--; else goto __pyx_L5_argtuple_error; CYTHON_FALLTHROUGH; case 1: if (likely((values[1] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_scale)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("wald", 0, 2, 3, 1); __PYX_ERR(0, 2804, __pyx_L3_error) } CYTHON_FALLTHROUGH; case 2: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_size); if (value) { values[2] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "wald") < 0)) __PYX_ERR(0, 2804, __pyx_L3_error) } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); CYTHON_FALLTHROUGH; case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); values[0] = PyTuple_GET_ITEM(__pyx_args, 0); break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_mean = values[0]; __pyx_v_scale = values[1]; __pyx_v_size = values[2]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("wald", 0, 2, 3, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(0, 2804, __pyx_L3_error) __pyx_L3_error:; __Pyx_AddTraceback("numpy.random.mtrand.RandomState.wald", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_5numpy_6random_6mtrand_11RandomState_82wald(((struct __pyx_obj_5numpy_6random_6mtrand_RandomState *)__pyx_v_self), __pyx_v_mean, __pyx_v_scale, __pyx_v_size); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_82wald(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_mean, PyObject *__pyx_v_scale, PyObject *__pyx_v_size) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; __Pyx_RefNannySetupContext("wald", 0); /* "numpy/random/mtrand.pyx":2867 * * """ * return cont(&legacy_wald, &self._aug_state, size, self.lock, 2, # <<<<<<<<<<<<<< * mean, 'mean', CONS_POSITIVE, * scale, 'scale', CONS_POSITIVE, */ __Pyx_XDECREF(__pyx_r); __pyx_t_1 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_1); /* "numpy/random/mtrand.pyx":2870 * mean, 'mean', CONS_POSITIVE, * scale, 'scale', CONS_POSITIVE, * 0.0, '', CONS_NONE, None) # <<<<<<<<<<<<<< * * def triangular(self, left, mode, right, size=None): */ __pyx_t_2 = __pyx_f_5numpy_6random_6common_cont((&legacy_wald), (&__pyx_v_self->_aug_state), __pyx_v_size, __pyx_t_1, 2, __pyx_v_mean, __pyx_n_u_mean, __pyx_e_5numpy_6random_6common_CONS_POSITIVE, __pyx_v_scale, __pyx_n_u_scale, __pyx_e_5numpy_6random_6common_CONS_POSITIVE, __pyx_float_0_0, __pyx_kp_u__12, __pyx_e_5numpy_6random_6common_CONS_NONE, Py_None); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 2867, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_r = __pyx_t_2; __pyx_t_2 = 0; goto __pyx_L0; /* "numpy/random/mtrand.pyx":2804 * 0.0, '', CONS_NONE, None) * * def wald(self, mean, scale, size=None): # <<<<<<<<<<<<<< * """ * wald(mean, scale, size=None) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_AddTraceback("numpy.random.mtrand.RandomState.wald", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "numpy/random/mtrand.pyx":2872 * 0.0, '', CONS_NONE, None) * * def triangular(self, left, mode, right, size=None): # <<<<<<<<<<<<<< * """ * triangular(left, mode, right, size=None) */ /* Python wrapper */ static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_85triangular(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static char __pyx_doc_5numpy_6random_6mtrand_11RandomState_84triangular[] = "\n triangular(left, mode, right, size=None)\n\n Draw samples from the triangular distribution over the\n interval ``[left, right]``.\n\n The triangular distribution is a continuous probability\n distribution with lower limit left, peak at mode, and upper\n limit right. Unlike the other distributions, these parameters\n directly define the shape of the pdf.\n\n Parameters\n ----------\n left : float or array_like of floats\n Lower limit.\n mode : float or array_like of floats\n The value where the peak of the distribution occurs.\n The value must fulfill the condition ``left <= mode <= right``.\n right : float or array_like of floats\n Upper limit, must be larger than `left`.\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. If size is ``None`` (default),\n a single value is returned if ``left``, ``mode``, and ``right``\n are all scalars. Otherwise, ``np.broadcast(left, mode, right).size``\n samples are drawn.\n\n Returns\n -------\n out : ndarray or scalar\n Drawn samples from the parameterized triangular distribution.\n\n Notes\n -----\n The probability density function for the triangular distribution is\n\n .. math:: P(x;l, m, r) = \\begin{cases}\n \\frac{2(x-l)}{(r-l)(m-l)}& \\text{for $l \\leq x \\leq m$},\\\\\n \\frac{2(r-x)}{(r-l)(r-m)}& \\text{for $m \\leq x \\leq r$},\\\\\n 0& \\text{otherwise}.\n \\end{cases}\n\n The triangular distribution is often used in ill-defined\n problems where the underlying distribution is not known, but\n some knowledge of the limits and mode exists. Often it is used\n in simulations.\n\n Ref""erences\n ----------\n .. [1] Wikipedia, \"Triangular distribution\"\n https://en.wikipedia.org/wiki/Triangular_distribution\n\n Examples\n --------\n Draw values from the distribution and plot the histogram:\n\n >>> import matplotlib.pyplot as plt\n >>> h = plt.hist(np.random.triangular(-3, 0, 8, 100000), bins=200,\n ... density=True)\n >>> plt.show()\n\n "; static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_85triangular(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_left = 0; PyObject *__pyx_v_mode = 0; PyObject *__pyx_v_right = 0; PyObject *__pyx_v_size = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("triangular (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_left,&__pyx_n_s_mode,&__pyx_n_s_right,&__pyx_n_s_size,0}; PyObject* values[4] = {0,0,0,0}; values[3] = ((PyObject *)Py_None); if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 4: values[3] = PyTuple_GET_ITEM(__pyx_args, 3); CYTHON_FALLTHROUGH; case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); CYTHON_FALLTHROUGH; case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); CYTHON_FALLTHROUGH; case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); CYTHON_FALLTHROUGH; case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (likely((values[0] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_left)) != 0)) kw_args--; else goto __pyx_L5_argtuple_error; CYTHON_FALLTHROUGH; case 1: if (likely((values[1] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_mode)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("triangular", 0, 3, 4, 1); __PYX_ERR(0, 2872, __pyx_L3_error) } CYTHON_FALLTHROUGH; case 2: if (likely((values[2] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_right)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("triangular", 0, 3, 4, 2); __PYX_ERR(0, 2872, __pyx_L3_error) } CYTHON_FALLTHROUGH; case 3: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_size); if (value) { values[3] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "triangular") < 0)) __PYX_ERR(0, 2872, __pyx_L3_error) } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 4: values[3] = PyTuple_GET_ITEM(__pyx_args, 3); CYTHON_FALLTHROUGH; case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); values[1] = PyTuple_GET_ITEM(__pyx_args, 1); values[0] = PyTuple_GET_ITEM(__pyx_args, 0); break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_left = values[0]; __pyx_v_mode = values[1]; __pyx_v_right = values[2]; __pyx_v_size = values[3]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("triangular", 0, 3, 4, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(0, 2872, __pyx_L3_error) __pyx_L3_error:; __Pyx_AddTraceback("numpy.random.mtrand.RandomState.triangular", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_5numpy_6random_6mtrand_11RandomState_84triangular(((struct __pyx_obj_5numpy_6random_6mtrand_RandomState *)__pyx_v_self), __pyx_v_left, __pyx_v_mode, __pyx_v_right, __pyx_v_size); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_84triangular(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_left, PyObject *__pyx_v_mode, PyObject *__pyx_v_right, PyObject *__pyx_v_size) { CYTHON_UNUSED int __pyx_v_is_scalar; double __pyx_v_fleft; double __pyx_v_fmode; double __pyx_v_fright; PyArrayObject *__pyx_v_oleft = 0; PyArrayObject *__pyx_v_omode = 0; PyArrayObject *__pyx_v_oright = 0; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; int __pyx_t_3; int __pyx_t_4; int __pyx_t_5; int __pyx_t_6; double __pyx_t_7; PyObject *__pyx_t_8 = NULL; PyObject *__pyx_t_9 = NULL; PyObject *__pyx_t_10 = NULL; PyObject *__pyx_t_11 = NULL; __Pyx_RefNannySetupContext("triangular", 0); /* "numpy/random/mtrand.pyx":2935 * * """ * cdef bint is_scalar = True # <<<<<<<<<<<<<< * cdef double fleft, fmode, fright * cdef np.ndarray oleft, omode, oright */ __pyx_v_is_scalar = 1; /* "numpy/random/mtrand.pyx":2939 * cdef np.ndarray oleft, omode, oright * * oleft = np.PyArray_FROM_OTF(left, np.NPY_DOUBLE, np.NPY_ALIGNED) # <<<<<<<<<<<<<< * omode = np.PyArray_FROM_OTF(mode, np.NPY_DOUBLE, np.NPY_ALIGNED) * oright = np.PyArray_FROM_OTF(right, np.NPY_DOUBLE, np.NPY_ALIGNED) */ __pyx_t_1 = PyArray_FROM_OTF(__pyx_v_left, NPY_DOUBLE, NPY_ALIGNED); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 2939, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = __pyx_t_1; __Pyx_INCREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_v_oleft = ((PyArrayObject *)__pyx_t_2); __pyx_t_2 = 0; /* "numpy/random/mtrand.pyx":2940 * * oleft = np.PyArray_FROM_OTF(left, np.NPY_DOUBLE, np.NPY_ALIGNED) * omode = np.PyArray_FROM_OTF(mode, np.NPY_DOUBLE, np.NPY_ALIGNED) # <<<<<<<<<<<<<< * oright = np.PyArray_FROM_OTF(right, np.NPY_DOUBLE, np.NPY_ALIGNED) * */ __pyx_t_2 = PyArray_FROM_OTF(__pyx_v_mode, NPY_DOUBLE, NPY_ALIGNED); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 2940, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_1 = __pyx_t_2; __Pyx_INCREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_v_omode = ((PyArrayObject *)__pyx_t_1); __pyx_t_1 = 0; /* "numpy/random/mtrand.pyx":2941 * oleft = np.PyArray_FROM_OTF(left, np.NPY_DOUBLE, np.NPY_ALIGNED) * omode = np.PyArray_FROM_OTF(mode, np.NPY_DOUBLE, np.NPY_ALIGNED) * oright = np.PyArray_FROM_OTF(right, np.NPY_DOUBLE, np.NPY_ALIGNED) # <<<<<<<<<<<<<< * * if np.PyArray_NDIM(oleft) == np.PyArray_NDIM(omode) == np.PyArray_NDIM(oright) == 0: */ __pyx_t_1 = PyArray_FROM_OTF(__pyx_v_right, NPY_DOUBLE, NPY_ALIGNED); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 2941, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = __pyx_t_1; __Pyx_INCREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_v_oright = ((PyArrayObject *)__pyx_t_2); __pyx_t_2 = 0; /* "numpy/random/mtrand.pyx":2943 * oright = np.PyArray_FROM_OTF(right, np.NPY_DOUBLE, np.NPY_ALIGNED) * * if np.PyArray_NDIM(oleft) == np.PyArray_NDIM(omode) == np.PyArray_NDIM(oright) == 0: # <<<<<<<<<<<<<< * fleft = PyFloat_AsDouble(left) * fright = PyFloat_AsDouble(right) */ __pyx_t_3 = PyArray_NDIM(__pyx_v_omode); __pyx_t_4 = (PyArray_NDIM(__pyx_v_oleft) == __pyx_t_3); if (__pyx_t_4) { __pyx_t_5 = PyArray_NDIM(__pyx_v_oright); __pyx_t_4 = (__pyx_t_3 == __pyx_t_5); if (__pyx_t_4) { __pyx_t_4 = (__pyx_t_5 == 0); } } __pyx_t_6 = (__pyx_t_4 != 0); if (__pyx_t_6) { /* "numpy/random/mtrand.pyx":2944 * * if np.PyArray_NDIM(oleft) == np.PyArray_NDIM(omode) == np.PyArray_NDIM(oright) == 0: * fleft = PyFloat_AsDouble(left) # <<<<<<<<<<<<<< * fright = PyFloat_AsDouble(right) * fmode = PyFloat_AsDouble(mode) */ __pyx_t_7 = PyFloat_AsDouble(__pyx_v_left); if (unlikely(__pyx_t_7 == ((double)-1.0) && PyErr_Occurred())) __PYX_ERR(0, 2944, __pyx_L1_error) __pyx_v_fleft = __pyx_t_7; /* "numpy/random/mtrand.pyx":2945 * if np.PyArray_NDIM(oleft) == np.PyArray_NDIM(omode) == np.PyArray_NDIM(oright) == 0: * fleft = PyFloat_AsDouble(left) * fright = PyFloat_AsDouble(right) # <<<<<<<<<<<<<< * fmode = PyFloat_AsDouble(mode) * */ __pyx_t_7 = PyFloat_AsDouble(__pyx_v_right); if (unlikely(__pyx_t_7 == ((double)-1.0) && PyErr_Occurred())) __PYX_ERR(0, 2945, __pyx_L1_error) __pyx_v_fright = __pyx_t_7; /* "numpy/random/mtrand.pyx":2946 * fleft = PyFloat_AsDouble(left) * fright = PyFloat_AsDouble(right) * fmode = PyFloat_AsDouble(mode) # <<<<<<<<<<<<<< * * if fleft > fmode: */ __pyx_t_7 = PyFloat_AsDouble(__pyx_v_mode); if (unlikely(__pyx_t_7 == ((double)-1.0) && PyErr_Occurred())) __PYX_ERR(0, 2946, __pyx_L1_error) __pyx_v_fmode = __pyx_t_7; /* "numpy/random/mtrand.pyx":2948 * fmode = PyFloat_AsDouble(mode) * * if fleft > fmode: # <<<<<<<<<<<<<< * raise ValueError("left > mode") * if fmode > fright: */ __pyx_t_6 = ((__pyx_v_fleft > __pyx_v_fmode) != 0); if (unlikely(__pyx_t_6)) { /* "numpy/random/mtrand.pyx":2949 * * if fleft > fmode: * raise ValueError("left > mode") # <<<<<<<<<<<<<< * if fmode > fright: * raise ValueError("mode > right") */ __pyx_t_2 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__31, NULL); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 2949, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_Raise(__pyx_t_2, 0, 0, 0); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __PYX_ERR(0, 2949, __pyx_L1_error) /* "numpy/random/mtrand.pyx":2948 * fmode = PyFloat_AsDouble(mode) * * if fleft > fmode: # <<<<<<<<<<<<<< * raise ValueError("left > mode") * if fmode > fright: */ } /* "numpy/random/mtrand.pyx":2950 * if fleft > fmode: * raise ValueError("left > mode") * if fmode > fright: # <<<<<<<<<<<<<< * raise ValueError("mode > right") * if fleft == fright: */ __pyx_t_6 = ((__pyx_v_fmode > __pyx_v_fright) != 0); if (unlikely(__pyx_t_6)) { /* "numpy/random/mtrand.pyx":2951 * raise ValueError("left > mode") * if fmode > fright: * raise ValueError("mode > right") # <<<<<<<<<<<<<< * if fleft == fright: * raise ValueError("left == right") */ __pyx_t_2 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__32, NULL); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 2951, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_Raise(__pyx_t_2, 0, 0, 0); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __PYX_ERR(0, 2951, __pyx_L1_error) /* "numpy/random/mtrand.pyx":2950 * if fleft > fmode: * raise ValueError("left > mode") * if fmode > fright: # <<<<<<<<<<<<<< * raise ValueError("mode > right") * if fleft == fright: */ } /* "numpy/random/mtrand.pyx":2952 * if fmode > fright: * raise ValueError("mode > right") * if fleft == fright: # <<<<<<<<<<<<<< * raise ValueError("left == right") * return cont(&random_triangular, &self._bitgen, size, self.lock, 3, */ __pyx_t_6 = ((__pyx_v_fleft == __pyx_v_fright) != 0); if (unlikely(__pyx_t_6)) { /* "numpy/random/mtrand.pyx":2953 * raise ValueError("mode > right") * if fleft == fright: * raise ValueError("left == right") # <<<<<<<<<<<<<< * return cont(&random_triangular, &self._bitgen, size, self.lock, 3, * fleft, '', CONS_NONE, */ __pyx_t_2 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__33, NULL); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 2953, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_Raise(__pyx_t_2, 0, 0, 0); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __PYX_ERR(0, 2953, __pyx_L1_error) /* "numpy/random/mtrand.pyx":2952 * if fmode > fright: * raise ValueError("mode > right") * if fleft == fright: # <<<<<<<<<<<<<< * raise ValueError("left == right") * return cont(&random_triangular, &self._bitgen, size, self.lock, 3, */ } /* "numpy/random/mtrand.pyx":2954 * if fleft == fright: * raise ValueError("left == right") * return cont(&random_triangular, &self._bitgen, size, self.lock, 3, # <<<<<<<<<<<<<< * fleft, '', CONS_NONE, * fmode, '', CONS_NONE, */ __Pyx_XDECREF(__pyx_r); __pyx_t_2 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_2); /* "numpy/random/mtrand.pyx":2955 * raise ValueError("left == right") * return cont(&random_triangular, &self._bitgen, size, self.lock, 3, * fleft, '', CONS_NONE, # <<<<<<<<<<<<<< * fmode, '', CONS_NONE, * fright, '', CONS_NONE, None) */ __pyx_t_1 = PyFloat_FromDouble(__pyx_v_fleft); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 2955, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); /* "numpy/random/mtrand.pyx":2956 * return cont(&random_triangular, &self._bitgen, size, self.lock, 3, * fleft, '', CONS_NONE, * fmode, '', CONS_NONE, # <<<<<<<<<<<<<< * fright, '', CONS_NONE, None) * */ __pyx_t_8 = PyFloat_FromDouble(__pyx_v_fmode); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 2956, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_8); /* "numpy/random/mtrand.pyx":2957 * fleft, '', CONS_NONE, * fmode, '', CONS_NONE, * fright, '', CONS_NONE, None) # <<<<<<<<<<<<<< * * if np.any(np.greater(oleft, omode)): */ __pyx_t_9 = PyFloat_FromDouble(__pyx_v_fright); if (unlikely(!__pyx_t_9)) __PYX_ERR(0, 2957, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_9); /* "numpy/random/mtrand.pyx":2954 * if fleft == fright: * raise ValueError("left == right") * return cont(&random_triangular, &self._bitgen, size, self.lock, 3, # <<<<<<<<<<<<<< * fleft, '', CONS_NONE, * fmode, '', CONS_NONE, */ __pyx_t_10 = __pyx_f_5numpy_6random_6common_cont((&random_triangular), (&__pyx_v_self->_bitgen), __pyx_v_size, __pyx_t_2, 3, __pyx_t_1, __pyx_kp_u__12, __pyx_e_5numpy_6random_6common_CONS_NONE, __pyx_t_8, __pyx_kp_u__12, __pyx_e_5numpy_6random_6common_CONS_NONE, __pyx_t_9, __pyx_kp_u__12, __pyx_e_5numpy_6random_6common_CONS_NONE, Py_None); if (unlikely(!__pyx_t_10)) __PYX_ERR(0, 2954, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_10); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; __pyx_r = __pyx_t_10; __pyx_t_10 = 0; goto __pyx_L0; /* "numpy/random/mtrand.pyx":2943 * oright = np.PyArray_FROM_OTF(right, np.NPY_DOUBLE, np.NPY_ALIGNED) * * if np.PyArray_NDIM(oleft) == np.PyArray_NDIM(omode) == np.PyArray_NDIM(oright) == 0: # <<<<<<<<<<<<<< * fleft = PyFloat_AsDouble(left) * fright = PyFloat_AsDouble(right) */ } /* "numpy/random/mtrand.pyx":2959 * fright, '', CONS_NONE, None) * * if np.any(np.greater(oleft, omode)): # <<<<<<<<<<<<<< * raise ValueError("left > mode") * if np.any(np.greater(omode, oright)): */ __Pyx_GetModuleGlobalName(__pyx_t_9, __pyx_n_s_np); if (unlikely(!__pyx_t_9)) __PYX_ERR(0, 2959, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_9); __pyx_t_8 = __Pyx_PyObject_GetAttrStr(__pyx_t_9, __pyx_n_s_any); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 2959, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_8); __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; __Pyx_GetModuleGlobalName(__pyx_t_1, __pyx_n_s_np); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 2959, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_greater); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 2959, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = NULL; __pyx_t_3 = 0; if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_2))) { __pyx_t_1 = PyMethod_GET_SELF(__pyx_t_2); if (likely(__pyx_t_1)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_2); __Pyx_INCREF(__pyx_t_1); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_2, function); __pyx_t_3 = 1; } } #if CYTHON_FAST_PYCALL if (PyFunction_Check(__pyx_t_2)) { PyObject *__pyx_temp[3] = {__pyx_t_1, ((PyObject *)__pyx_v_oleft), ((PyObject *)__pyx_v_omode)}; __pyx_t_9 = __Pyx_PyFunction_FastCall(__pyx_t_2, __pyx_temp+1-__pyx_t_3, 2+__pyx_t_3); if (unlikely(!__pyx_t_9)) __PYX_ERR(0, 2959, __pyx_L1_error) __Pyx_XDECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_GOTREF(__pyx_t_9); } else #endif #if CYTHON_FAST_PYCCALL if (__Pyx_PyFastCFunction_Check(__pyx_t_2)) { PyObject *__pyx_temp[3] = {__pyx_t_1, ((PyObject *)__pyx_v_oleft), ((PyObject *)__pyx_v_omode)}; __pyx_t_9 = __Pyx_PyCFunction_FastCall(__pyx_t_2, __pyx_temp+1-__pyx_t_3, 2+__pyx_t_3); if (unlikely(!__pyx_t_9)) __PYX_ERR(0, 2959, __pyx_L1_error) __Pyx_XDECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_GOTREF(__pyx_t_9); } else #endif { __pyx_t_11 = PyTuple_New(2+__pyx_t_3); if (unlikely(!__pyx_t_11)) __PYX_ERR(0, 2959, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_11); if (__pyx_t_1) { __Pyx_GIVEREF(__pyx_t_1); PyTuple_SET_ITEM(__pyx_t_11, 0, __pyx_t_1); __pyx_t_1 = NULL; } __Pyx_INCREF(((PyObject *)__pyx_v_oleft)); __Pyx_GIVEREF(((PyObject *)__pyx_v_oleft)); PyTuple_SET_ITEM(__pyx_t_11, 0+__pyx_t_3, ((PyObject *)__pyx_v_oleft)); __Pyx_INCREF(((PyObject *)__pyx_v_omode)); __Pyx_GIVEREF(((PyObject *)__pyx_v_omode)); PyTuple_SET_ITEM(__pyx_t_11, 1+__pyx_t_3, ((PyObject *)__pyx_v_omode)); __pyx_t_9 = __Pyx_PyObject_Call(__pyx_t_2, __pyx_t_11, NULL); if (unlikely(!__pyx_t_9)) __PYX_ERR(0, 2959, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_9); __Pyx_DECREF(__pyx_t_11); __pyx_t_11 = 0; } __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = NULL; if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_8))) { __pyx_t_2 = PyMethod_GET_SELF(__pyx_t_8); if (likely(__pyx_t_2)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_8); __Pyx_INCREF(__pyx_t_2); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_8, function); } } __pyx_t_10 = (__pyx_t_2) ? __Pyx_PyObject_Call2Args(__pyx_t_8, __pyx_t_2, __pyx_t_9) : __Pyx_PyObject_CallOneArg(__pyx_t_8, __pyx_t_9); __Pyx_XDECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; if (unlikely(!__pyx_t_10)) __PYX_ERR(0, 2959, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_10); __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_10); if (unlikely(__pyx_t_6 < 0)) __PYX_ERR(0, 2959, __pyx_L1_error) __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0; if (unlikely(__pyx_t_6)) { /* "numpy/random/mtrand.pyx":2960 * * if np.any(np.greater(oleft, omode)): * raise ValueError("left > mode") # <<<<<<<<<<<<<< * if np.any(np.greater(omode, oright)): * raise ValueError("mode > right") */ __pyx_t_10 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__31, NULL); if (unlikely(!__pyx_t_10)) __PYX_ERR(0, 2960, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_10); __Pyx_Raise(__pyx_t_10, 0, 0, 0); __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0; __PYX_ERR(0, 2960, __pyx_L1_error) /* "numpy/random/mtrand.pyx":2959 * fright, '', CONS_NONE, None) * * if np.any(np.greater(oleft, omode)): # <<<<<<<<<<<<<< * raise ValueError("left > mode") * if np.any(np.greater(omode, oright)): */ } /* "numpy/random/mtrand.pyx":2961 * if np.any(np.greater(oleft, omode)): * raise ValueError("left > mode") * if np.any(np.greater(omode, oright)): # <<<<<<<<<<<<<< * raise ValueError("mode > right") * if np.any(np.equal(oleft, oright)): */ __Pyx_GetModuleGlobalName(__pyx_t_8, __pyx_n_s_np); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 2961, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_8); __pyx_t_9 = __Pyx_PyObject_GetAttrStr(__pyx_t_8, __pyx_n_s_any); if (unlikely(!__pyx_t_9)) __PYX_ERR(0, 2961, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_9); __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; __Pyx_GetModuleGlobalName(__pyx_t_2, __pyx_n_s_np); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 2961, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_11 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_greater); if (unlikely(!__pyx_t_11)) __PYX_ERR(0, 2961, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_11); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = NULL; __pyx_t_3 = 0; if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_11))) { __pyx_t_2 = PyMethod_GET_SELF(__pyx_t_11); if (likely(__pyx_t_2)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_11); __Pyx_INCREF(__pyx_t_2); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_11, function); __pyx_t_3 = 1; } } #if CYTHON_FAST_PYCALL if (PyFunction_Check(__pyx_t_11)) { PyObject *__pyx_temp[3] = {__pyx_t_2, ((PyObject *)__pyx_v_omode), ((PyObject *)__pyx_v_oright)}; __pyx_t_8 = __Pyx_PyFunction_FastCall(__pyx_t_11, __pyx_temp+1-__pyx_t_3, 2+__pyx_t_3); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 2961, __pyx_L1_error) __Pyx_XDECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_GOTREF(__pyx_t_8); } else #endif #if CYTHON_FAST_PYCCALL if (__Pyx_PyFastCFunction_Check(__pyx_t_11)) { PyObject *__pyx_temp[3] = {__pyx_t_2, ((PyObject *)__pyx_v_omode), ((PyObject *)__pyx_v_oright)}; __pyx_t_8 = __Pyx_PyCFunction_FastCall(__pyx_t_11, __pyx_temp+1-__pyx_t_3, 2+__pyx_t_3); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 2961, __pyx_L1_error) __Pyx_XDECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_GOTREF(__pyx_t_8); } else #endif { __pyx_t_1 = PyTuple_New(2+__pyx_t_3); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 2961, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); if (__pyx_t_2) { __Pyx_GIVEREF(__pyx_t_2); PyTuple_SET_ITEM(__pyx_t_1, 0, __pyx_t_2); __pyx_t_2 = NULL; } __Pyx_INCREF(((PyObject *)__pyx_v_omode)); __Pyx_GIVEREF(((PyObject *)__pyx_v_omode)); PyTuple_SET_ITEM(__pyx_t_1, 0+__pyx_t_3, ((PyObject *)__pyx_v_omode)); __Pyx_INCREF(((PyObject *)__pyx_v_oright)); __Pyx_GIVEREF(((PyObject *)__pyx_v_oright)); PyTuple_SET_ITEM(__pyx_t_1, 1+__pyx_t_3, ((PyObject *)__pyx_v_oright)); __pyx_t_8 = __Pyx_PyObject_Call(__pyx_t_11, __pyx_t_1, NULL); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 2961, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_8); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; } __Pyx_DECREF(__pyx_t_11); __pyx_t_11 = 0; __pyx_t_11 = NULL; if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_9))) { __pyx_t_11 = PyMethod_GET_SELF(__pyx_t_9); if (likely(__pyx_t_11)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_9); __Pyx_INCREF(__pyx_t_11); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_9, function); } } __pyx_t_10 = (__pyx_t_11) ? __Pyx_PyObject_Call2Args(__pyx_t_9, __pyx_t_11, __pyx_t_8) : __Pyx_PyObject_CallOneArg(__pyx_t_9, __pyx_t_8); __Pyx_XDECREF(__pyx_t_11); __pyx_t_11 = 0; __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; if (unlikely(!__pyx_t_10)) __PYX_ERR(0, 2961, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_10); __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_10); if (unlikely(__pyx_t_6 < 0)) __PYX_ERR(0, 2961, __pyx_L1_error) __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0; if (unlikely(__pyx_t_6)) { /* "numpy/random/mtrand.pyx":2962 * raise ValueError("left > mode") * if np.any(np.greater(omode, oright)): * raise ValueError("mode > right") # <<<<<<<<<<<<<< * if np.any(np.equal(oleft, oright)): * raise ValueError("left == right") */ __pyx_t_10 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__32, NULL); if (unlikely(!__pyx_t_10)) __PYX_ERR(0, 2962, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_10); __Pyx_Raise(__pyx_t_10, 0, 0, 0); __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0; __PYX_ERR(0, 2962, __pyx_L1_error) /* "numpy/random/mtrand.pyx":2961 * if np.any(np.greater(oleft, omode)): * raise ValueError("left > mode") * if np.any(np.greater(omode, oright)): # <<<<<<<<<<<<<< * raise ValueError("mode > right") * if np.any(np.equal(oleft, oright)): */ } /* "numpy/random/mtrand.pyx":2963 * if np.any(np.greater(omode, oright)): * raise ValueError("mode > right") * if np.any(np.equal(oleft, oright)): # <<<<<<<<<<<<<< * raise ValueError("left == right") * */ __Pyx_GetModuleGlobalName(__pyx_t_9, __pyx_n_s_np); if (unlikely(!__pyx_t_9)) __PYX_ERR(0, 2963, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_9); __pyx_t_8 = __Pyx_PyObject_GetAttrStr(__pyx_t_9, __pyx_n_s_any); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 2963, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_8); __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; __Pyx_GetModuleGlobalName(__pyx_t_11, __pyx_n_s_np); if (unlikely(!__pyx_t_11)) __PYX_ERR(0, 2963, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_11); __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_11, __pyx_n_s_equal); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 2963, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_11); __pyx_t_11 = 0; __pyx_t_11 = NULL; __pyx_t_3 = 0; if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_1))) { __pyx_t_11 = PyMethod_GET_SELF(__pyx_t_1); if (likely(__pyx_t_11)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_1); __Pyx_INCREF(__pyx_t_11); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_1, function); __pyx_t_3 = 1; } } #if CYTHON_FAST_PYCALL if (PyFunction_Check(__pyx_t_1)) { PyObject *__pyx_temp[3] = {__pyx_t_11, ((PyObject *)__pyx_v_oleft), ((PyObject *)__pyx_v_oright)}; __pyx_t_9 = __Pyx_PyFunction_FastCall(__pyx_t_1, __pyx_temp+1-__pyx_t_3, 2+__pyx_t_3); if (unlikely(!__pyx_t_9)) __PYX_ERR(0, 2963, __pyx_L1_error) __Pyx_XDECREF(__pyx_t_11); __pyx_t_11 = 0; __Pyx_GOTREF(__pyx_t_9); } else #endif #if CYTHON_FAST_PYCCALL if (__Pyx_PyFastCFunction_Check(__pyx_t_1)) { PyObject *__pyx_temp[3] = {__pyx_t_11, ((PyObject *)__pyx_v_oleft), ((PyObject *)__pyx_v_oright)}; __pyx_t_9 = __Pyx_PyCFunction_FastCall(__pyx_t_1, __pyx_temp+1-__pyx_t_3, 2+__pyx_t_3); if (unlikely(!__pyx_t_9)) __PYX_ERR(0, 2963, __pyx_L1_error) __Pyx_XDECREF(__pyx_t_11); __pyx_t_11 = 0; __Pyx_GOTREF(__pyx_t_9); } else #endif { __pyx_t_2 = PyTuple_New(2+__pyx_t_3); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 2963, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); if (__pyx_t_11) { __Pyx_GIVEREF(__pyx_t_11); PyTuple_SET_ITEM(__pyx_t_2, 0, __pyx_t_11); __pyx_t_11 = NULL; } __Pyx_INCREF(((PyObject *)__pyx_v_oleft)); __Pyx_GIVEREF(((PyObject *)__pyx_v_oleft)); PyTuple_SET_ITEM(__pyx_t_2, 0+__pyx_t_3, ((PyObject *)__pyx_v_oleft)); __Pyx_INCREF(((PyObject *)__pyx_v_oright)); __Pyx_GIVEREF(((PyObject *)__pyx_v_oright)); PyTuple_SET_ITEM(__pyx_t_2, 1+__pyx_t_3, ((PyObject *)__pyx_v_oright)); __pyx_t_9 = __Pyx_PyObject_Call(__pyx_t_1, __pyx_t_2, NULL); if (unlikely(!__pyx_t_9)) __PYX_ERR(0, 2963, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_9); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; } __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = NULL; if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_8))) { __pyx_t_1 = PyMethod_GET_SELF(__pyx_t_8); if (likely(__pyx_t_1)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_8); __Pyx_INCREF(__pyx_t_1); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_8, function); } } __pyx_t_10 = (__pyx_t_1) ? __Pyx_PyObject_Call2Args(__pyx_t_8, __pyx_t_1, __pyx_t_9) : __Pyx_PyObject_CallOneArg(__pyx_t_8, __pyx_t_9); __Pyx_XDECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; if (unlikely(!__pyx_t_10)) __PYX_ERR(0, 2963, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_10); __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_10); if (unlikely(__pyx_t_6 < 0)) __PYX_ERR(0, 2963, __pyx_L1_error) __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0; if (unlikely(__pyx_t_6)) { /* "numpy/random/mtrand.pyx":2964 * raise ValueError("mode > right") * if np.any(np.equal(oleft, oright)): * raise ValueError("left == right") # <<<<<<<<<<<<<< * * return cont_broadcast_3(&random_triangular, &self._bitgen, size, self.lock, */ __pyx_t_10 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__33, NULL); if (unlikely(!__pyx_t_10)) __PYX_ERR(0, 2964, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_10); __Pyx_Raise(__pyx_t_10, 0, 0, 0); __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0; __PYX_ERR(0, 2964, __pyx_L1_error) /* "numpy/random/mtrand.pyx":2963 * if np.any(np.greater(omode, oright)): * raise ValueError("mode > right") * if np.any(np.equal(oleft, oright)): # <<<<<<<<<<<<<< * raise ValueError("left == right") * */ } /* "numpy/random/mtrand.pyx":2966 * raise ValueError("left == right") * * return cont_broadcast_3(&random_triangular, &self._bitgen, size, self.lock, # <<<<<<<<<<<<<< * oleft, '', CONS_NONE, * omode, '', CONS_NONE, */ __Pyx_XDECREF(__pyx_r); __pyx_t_10 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_10); /* "numpy/random/mtrand.pyx":2969 * oleft, '', CONS_NONE, * omode, '', CONS_NONE, * oright, '', CONS_NONE) # <<<<<<<<<<<<<< * * # Complicated, discrete distributions: */ __pyx_t_8 = __pyx_f_5numpy_6random_6common_cont_broadcast_3((&random_triangular), (&__pyx_v_self->_bitgen), __pyx_v_size, __pyx_t_10, __pyx_v_oleft, __pyx_kp_u__12, __pyx_e_5numpy_6random_6common_CONS_NONE, __pyx_v_omode, __pyx_kp_u__12, __pyx_e_5numpy_6random_6common_CONS_NONE, __pyx_v_oright, __pyx_kp_u__12, __pyx_e_5numpy_6random_6common_CONS_NONE); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 2966, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_8); __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0; __pyx_r = __pyx_t_8; __pyx_t_8 = 0; goto __pyx_L0; /* "numpy/random/mtrand.pyx":2872 * 0.0, '', CONS_NONE, None) * * def triangular(self, left, mode, right, size=None): # <<<<<<<<<<<<<< * """ * triangular(left, mode, right, size=None) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_8); __Pyx_XDECREF(__pyx_t_9); __Pyx_XDECREF(__pyx_t_10); __Pyx_XDECREF(__pyx_t_11); __Pyx_AddTraceback("numpy.random.mtrand.RandomState.triangular", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XDECREF((PyObject *)__pyx_v_oleft); __Pyx_XDECREF((PyObject *)__pyx_v_omode); __Pyx_XDECREF((PyObject *)__pyx_v_oright); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "numpy/random/mtrand.pyx":2972 * * # Complicated, discrete distributions: * def binomial(self, n, p, size=None): # <<<<<<<<<<<<<< * """ * binomial(n, p, size=None) */ /* Python wrapper */ static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_87binomial(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static char __pyx_doc_5numpy_6random_6mtrand_11RandomState_86binomial[] = "\n binomial(n, p, size=None)\n\n Draw samples from a binomial distribution.\n\n Samples are drawn from a binomial distribution with specified\n parameters, n trials and p probability of success where\n n an integer >= 0 and p is in the interval [0,1]. (n may be\n input as a float, but it is truncated to an integer in use)\n\n Parameters\n ----------\n n : int or array_like of ints\n Parameter of the distribution, >= 0. Floats are also accepted,\n but they will be truncated to integers.\n p : float or array_like of floats\n Parameter of the distribution, >= 0 and <=1.\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. If size is ``None`` (default),\n a single value is returned if ``n`` and ``p`` are both scalars.\n Otherwise, ``np.broadcast(n, p).size`` samples are drawn.\n\n Returns\n -------\n out : ndarray or scalar\n Drawn samples from the parameterized binomial distribution, where\n each sample is equal to the number of successes over the n trials.\n\n See Also\n --------\n scipy.stats.binom : probability density function, distribution or\n cumulative density function, etc.\n\n Notes\n -----\n The probability density for the binomial distribution is\n\n .. math:: P(N) = \\binom{n}{N}p^N(1-p)^{n-N},\n\n where :math:`n` is the number of trials, :math:`p` is the probability\n of success, and :math:`N` is the number of successes.\n\n When estimating the standard error of a proportion in a population by\n using a random sample, the normal distribution works well unless the\n product p*n <=5, where p = population proportion estimate, and n =\n number of samples, in which case the binom""ial distribution is used\n instead. For example, a sample of 15 people shows 4 who are left\n handed, and 11 who are right handed. Then p = 4/15 = 27%. 0.27*15 = 4,\n so the binomial distribution should be used in this case.\n\n References\n ----------\n .. [1] Dalgaard, Peter, \"Introductory Statistics with R\",\n Springer-Verlag, 2002.\n .. [2] Glantz, Stanton A. \"Primer of Biostatistics.\", McGraw-Hill,\n Fifth Edition, 2002.\n .. [3] Lentner, Marvin, \"Elementary Applied Statistics\", Bogden\n and Quigley, 1972.\n .. [4] Weisstein, Eric W. \"Binomial Distribution.\" From MathWorld--A\n Wolfram Web Resource.\n http://mathworld.wolfram.com/BinomialDistribution.html\n .. [5] Wikipedia, \"Binomial distribution\",\n https://en.wikipedia.org/wiki/Binomial_distribution\n\n Examples\n --------\n Draw samples from the distribution:\n\n >>> n, p = 10, .5 # number of trials, probability of each trial\n >>> s = np.random.binomial(n, p, 1000)\n # result of flipping a coin 10 times, tested 1000 times.\n\n A real world example. A company drills 9 wild-cat oil exploration\n wells, each with an estimated probability of success of 0.1. All nine\n wells fail. What is the probability of that happening?\n\n Let's do 20,000 trials of the model, and count the number that\n generate zero positive results.\n\n >>> sum(np.random.binomial(9, 0.1, 20000) == 0)/20000.\n # answer = 0.38885, or 38%.\n\n "; static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_87binomial(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_n = 0; PyObject *__pyx_v_p = 0; PyObject *__pyx_v_size = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("binomial (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_n,&__pyx_n_s_p,&__pyx_n_s_size,0}; PyObject* values[3] = {0,0,0}; values[2] = ((PyObject *)Py_None); if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); CYTHON_FALLTHROUGH; case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); CYTHON_FALLTHROUGH; case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); CYTHON_FALLTHROUGH; case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (likely((values[0] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_n)) != 0)) kw_args--; else goto __pyx_L5_argtuple_error; CYTHON_FALLTHROUGH; case 1: if (likely((values[1] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_p)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("binomial", 0, 2, 3, 1); __PYX_ERR(0, 2972, __pyx_L3_error) } CYTHON_FALLTHROUGH; case 2: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_size); if (value) { values[2] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "binomial") < 0)) __PYX_ERR(0, 2972, __pyx_L3_error) } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); CYTHON_FALLTHROUGH; case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); values[0] = PyTuple_GET_ITEM(__pyx_args, 0); break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_n = values[0]; __pyx_v_p = values[1]; __pyx_v_size = values[2]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("binomial", 0, 2, 3, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(0, 2972, __pyx_L3_error) __pyx_L3_error:; __Pyx_AddTraceback("numpy.random.mtrand.RandomState.binomial", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_5numpy_6random_6mtrand_11RandomState_86binomial(((struct __pyx_obj_5numpy_6random_6mtrand_RandomState *)__pyx_v_self), __pyx_v_n, __pyx_v_p, __pyx_v_size); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_86binomial(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_n, PyObject *__pyx_v_p, PyObject *__pyx_v_size) { double __pyx_v__dp; long __pyx_v__in; int __pyx_v_is_scalar; npy_intp __pyx_v_i; npy_intp __pyx_v_cnt; PyArrayObject *__pyx_v_randoms = 0; long *__pyx_v_randoms_data; PyArrayMultiIterObject *__pyx_v_it = 0; PyArrayObject *__pyx_v_p_arr = NULL; PyArrayObject *__pyx_v_n_arr = NULL; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; int __pyx_t_3; int __pyx_t_4; int __pyx_t_5; PyObject *__pyx_t_6 = NULL; PyObject *__pyx_t_7 = NULL; PyObject *__pyx_t_8 = NULL; PyObject *__pyx_t_9 = NULL; PyObject *__pyx_t_10 = NULL; PyObject *__pyx_t_11 = NULL; PyObject *__pyx_t_12 = NULL; npy_intp __pyx_t_13; npy_intp __pyx_t_14; npy_intp __pyx_t_15; double __pyx_t_16; long __pyx_t_17; PyObject *__pyx_t_18 = NULL; __Pyx_RefNannySetupContext("binomial", 0); /* "numpy/random/mtrand.pyx":3059 * * # Uses a custom implementation since self._binomial is required * cdef double _dp = 0 # <<<<<<<<<<<<<< * cdef long _in = 0 * cdef bint is_scalar = True */ __pyx_v__dp = 0.0; /* "numpy/random/mtrand.pyx":3060 * # Uses a custom implementation since self._binomial is required * cdef double _dp = 0 * cdef long _in = 0 # <<<<<<<<<<<<<< * cdef bint is_scalar = True * cdef np.npy_intp i, cnt */ __pyx_v__in = 0; /* "numpy/random/mtrand.pyx":3061 * cdef double _dp = 0 * cdef long _in = 0 * cdef bint is_scalar = True # <<<<<<<<<<<<<< * cdef np.npy_intp i, cnt * cdef np.ndarray randoms */ __pyx_v_is_scalar = 1; /* "numpy/random/mtrand.pyx":3067 * cdef np.broadcast it * * p_arr = np.PyArray_FROM_OTF(p, np.NPY_DOUBLE, np.NPY_ALIGNED) # <<<<<<<<<<<<<< * is_scalar = is_scalar and np.PyArray_NDIM(p_arr) == 0 * n_arr = np.PyArray_FROM_OTF(n, np.NPY_LONG, np.NPY_ALIGNED) */ __pyx_t_1 = PyArray_FROM_OTF(__pyx_v_p, NPY_DOUBLE, NPY_ALIGNED); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 3067, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = __pyx_t_1; __Pyx_INCREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_v_p_arr = ((PyArrayObject *)__pyx_t_2); __pyx_t_2 = 0; /* "numpy/random/mtrand.pyx":3068 * * p_arr = np.PyArray_FROM_OTF(p, np.NPY_DOUBLE, np.NPY_ALIGNED) * is_scalar = is_scalar and np.PyArray_NDIM(p_arr) == 0 # <<<<<<<<<<<<<< * n_arr = np.PyArray_FROM_OTF(n, np.NPY_LONG, np.NPY_ALIGNED) * is_scalar = is_scalar and np.PyArray_NDIM(n_arr) == 0 */ __pyx_t_4 = (__pyx_v_is_scalar != 0); if (__pyx_t_4) { } else { __pyx_t_3 = __pyx_t_4; goto __pyx_L3_bool_binop_done; } __pyx_t_4 = ((PyArray_NDIM(__pyx_v_p_arr) == 0) != 0); __pyx_t_3 = __pyx_t_4; __pyx_L3_bool_binop_done:; __pyx_v_is_scalar = __pyx_t_3; /* "numpy/random/mtrand.pyx":3069 * p_arr = np.PyArray_FROM_OTF(p, np.NPY_DOUBLE, np.NPY_ALIGNED) * is_scalar = is_scalar and np.PyArray_NDIM(p_arr) == 0 * n_arr = np.PyArray_FROM_OTF(n, np.NPY_LONG, np.NPY_ALIGNED) # <<<<<<<<<<<<<< * is_scalar = is_scalar and np.PyArray_NDIM(n_arr) == 0 * */ __pyx_t_2 = PyArray_FROM_OTF(__pyx_v_n, NPY_LONG, NPY_ALIGNED); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 3069, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_1 = __pyx_t_2; __Pyx_INCREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_v_n_arr = ((PyArrayObject *)__pyx_t_1); __pyx_t_1 = 0; /* "numpy/random/mtrand.pyx":3070 * is_scalar = is_scalar and np.PyArray_NDIM(p_arr) == 0 * n_arr = np.PyArray_FROM_OTF(n, np.NPY_LONG, np.NPY_ALIGNED) * is_scalar = is_scalar and np.PyArray_NDIM(n_arr) == 0 # <<<<<<<<<<<<<< * * if not is_scalar: */ __pyx_t_4 = (__pyx_v_is_scalar != 0); if (__pyx_t_4) { } else { __pyx_t_3 = __pyx_t_4; goto __pyx_L5_bool_binop_done; } __pyx_t_4 = ((PyArray_NDIM(__pyx_v_n_arr) == 0) != 0); __pyx_t_3 = __pyx_t_4; __pyx_L5_bool_binop_done:; __pyx_v_is_scalar = __pyx_t_3; /* "numpy/random/mtrand.pyx":3072 * is_scalar = is_scalar and np.PyArray_NDIM(n_arr) == 0 * * if not is_scalar: # <<<<<<<<<<<<<< * check_array_constraint(p_arr, 'p', CONS_BOUNDED_0_1) * check_array_constraint(n_arr, 'n', CONS_NON_NEGATIVE) */ __pyx_t_3 = ((!(__pyx_v_is_scalar != 0)) != 0); if (__pyx_t_3) { /* "numpy/random/mtrand.pyx":3073 * * if not is_scalar: * check_array_constraint(p_arr, 'p', CONS_BOUNDED_0_1) # <<<<<<<<<<<<<< * check_array_constraint(n_arr, 'n', CONS_NON_NEGATIVE) * if size is not None: */ __pyx_t_5 = __pyx_f_5numpy_6random_6common_check_array_constraint(__pyx_v_p_arr, __pyx_n_u_p, __pyx_e_5numpy_6random_6common_CONS_BOUNDED_0_1); if (unlikely(__pyx_t_5 == ((int)-1))) __PYX_ERR(0, 3073, __pyx_L1_error) /* "numpy/random/mtrand.pyx":3074 * if not is_scalar: * check_array_constraint(p_arr, 'p', CONS_BOUNDED_0_1) * check_array_constraint(n_arr, 'n', CONS_NON_NEGATIVE) # <<<<<<<<<<<<<< * if size is not None: * randoms = np.empty(size, int) */ __pyx_t_5 = __pyx_f_5numpy_6random_6common_check_array_constraint(__pyx_v_n_arr, __pyx_n_u_n, __pyx_e_5numpy_6random_6common_CONS_NON_NEGATIVE); if (unlikely(__pyx_t_5 == ((int)-1))) __PYX_ERR(0, 3074, __pyx_L1_error) /* "numpy/random/mtrand.pyx":3075 * check_array_constraint(p_arr, 'p', CONS_BOUNDED_0_1) * check_array_constraint(n_arr, 'n', CONS_NON_NEGATIVE) * if size is not None: # <<<<<<<<<<<<<< * randoms = np.empty(size, int) * else: */ __pyx_t_3 = (__pyx_v_size != Py_None); __pyx_t_4 = (__pyx_t_3 != 0); if (__pyx_t_4) { /* "numpy/random/mtrand.pyx":3076 * check_array_constraint(n_arr, 'n', CONS_NON_NEGATIVE) * if size is not None: * randoms = np.empty(size, int) # <<<<<<<<<<<<<< * else: * it = np.PyArray_MultiIterNew2(p_arr, n_arr) */ __Pyx_GetModuleGlobalName(__pyx_t_2, __pyx_n_s_np); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 3076, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_6 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_empty); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 3076, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = NULL; __pyx_t_5 = 0; if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_6))) { __pyx_t_2 = PyMethod_GET_SELF(__pyx_t_6); if (likely(__pyx_t_2)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_6); __Pyx_INCREF(__pyx_t_2); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_6, function); __pyx_t_5 = 1; } } #if CYTHON_FAST_PYCALL if (PyFunction_Check(__pyx_t_6)) { PyObject *__pyx_temp[3] = {__pyx_t_2, __pyx_v_size, ((PyObject *)(&PyInt_Type))}; __pyx_t_1 = __Pyx_PyFunction_FastCall(__pyx_t_6, __pyx_temp+1-__pyx_t_5, 2+__pyx_t_5); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 3076, __pyx_L1_error) __Pyx_XDECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_GOTREF(__pyx_t_1); } else #endif #if CYTHON_FAST_PYCCALL if (__Pyx_PyFastCFunction_Check(__pyx_t_6)) { PyObject *__pyx_temp[3] = {__pyx_t_2, __pyx_v_size, ((PyObject *)(&PyInt_Type))}; __pyx_t_1 = __Pyx_PyCFunction_FastCall(__pyx_t_6, __pyx_temp+1-__pyx_t_5, 2+__pyx_t_5); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 3076, __pyx_L1_error) __Pyx_XDECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_GOTREF(__pyx_t_1); } else #endif { __pyx_t_7 = PyTuple_New(2+__pyx_t_5); if (unlikely(!__pyx_t_7)) __PYX_ERR(0, 3076, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_7); if (__pyx_t_2) { __Pyx_GIVEREF(__pyx_t_2); PyTuple_SET_ITEM(__pyx_t_7, 0, __pyx_t_2); __pyx_t_2 = NULL; } __Pyx_INCREF(__pyx_v_size); __Pyx_GIVEREF(__pyx_v_size); PyTuple_SET_ITEM(__pyx_t_7, 0+__pyx_t_5, __pyx_v_size); __Pyx_INCREF(((PyObject *)(&PyInt_Type))); __Pyx_GIVEREF(((PyObject *)(&PyInt_Type))); PyTuple_SET_ITEM(__pyx_t_7, 1+__pyx_t_5, ((PyObject *)(&PyInt_Type))); __pyx_t_1 = __Pyx_PyObject_Call(__pyx_t_6, __pyx_t_7, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 3076, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; } __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __pyx_t_6 = __pyx_t_1; __Pyx_INCREF(__pyx_t_6); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_v_randoms = ((PyArrayObject *)__pyx_t_6); __pyx_t_6 = 0; /* "numpy/random/mtrand.pyx":3075 * check_array_constraint(p_arr, 'p', CONS_BOUNDED_0_1) * check_array_constraint(n_arr, 'n', CONS_NON_NEGATIVE) * if size is not None: # <<<<<<<<<<<<<< * randoms = np.empty(size, int) * else: */ goto __pyx_L8; } /* "numpy/random/mtrand.pyx":3078 * randoms = np.empty(size, int) * else: * it = np.PyArray_MultiIterNew2(p_arr, n_arr) # <<<<<<<<<<<<<< * randoms = np.empty(it.shape, int) * */ /*else*/ { __pyx_t_6 = __pyx_f_5numpy_PyArray_MultiIterNew2(((PyObject *)__pyx_v_p_arr), ((PyObject *)__pyx_v_n_arr)); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 3078, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); if (!(likely(((__pyx_t_6) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_6, __pyx_ptype_5numpy_broadcast))))) __PYX_ERR(0, 3078, __pyx_L1_error) __pyx_v_it = ((PyArrayMultiIterObject *)__pyx_t_6); __pyx_t_6 = 0; /* "numpy/random/mtrand.pyx":3079 * else: * it = np.PyArray_MultiIterNew2(p_arr, n_arr) * randoms = np.empty(it.shape, int) # <<<<<<<<<<<<<< * * randoms_data = np.PyArray_DATA(randoms) */ __Pyx_GetModuleGlobalName(__pyx_t_1, __pyx_n_s_np); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 3079, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_7 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_empty); if (unlikely(!__pyx_t_7)) __PYX_ERR(0, 3079, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_7); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_it), __pyx_n_s_shape); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 3079, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = NULL; __pyx_t_5 = 0; if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_7))) { __pyx_t_2 = PyMethod_GET_SELF(__pyx_t_7); if (likely(__pyx_t_2)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_7); __Pyx_INCREF(__pyx_t_2); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_7, function); __pyx_t_5 = 1; } } #if CYTHON_FAST_PYCALL if (PyFunction_Check(__pyx_t_7)) { PyObject *__pyx_temp[3] = {__pyx_t_2, __pyx_t_1, ((PyObject *)(&PyInt_Type))}; __pyx_t_6 = __Pyx_PyFunction_FastCall(__pyx_t_7, __pyx_temp+1-__pyx_t_5, 2+__pyx_t_5); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 3079, __pyx_L1_error) __Pyx_XDECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_GOTREF(__pyx_t_6); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; } else #endif #if CYTHON_FAST_PYCCALL if (__Pyx_PyFastCFunction_Check(__pyx_t_7)) { PyObject *__pyx_temp[3] = {__pyx_t_2, __pyx_t_1, ((PyObject *)(&PyInt_Type))}; __pyx_t_6 = __Pyx_PyCFunction_FastCall(__pyx_t_7, __pyx_temp+1-__pyx_t_5, 2+__pyx_t_5); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 3079, __pyx_L1_error) __Pyx_XDECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_GOTREF(__pyx_t_6); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; } else #endif { __pyx_t_8 = PyTuple_New(2+__pyx_t_5); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 3079, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_8); if (__pyx_t_2) { __Pyx_GIVEREF(__pyx_t_2); PyTuple_SET_ITEM(__pyx_t_8, 0, __pyx_t_2); __pyx_t_2 = NULL; } __Pyx_GIVEREF(__pyx_t_1); PyTuple_SET_ITEM(__pyx_t_8, 0+__pyx_t_5, __pyx_t_1); __Pyx_INCREF(((PyObject *)(&PyInt_Type))); __Pyx_GIVEREF(((PyObject *)(&PyInt_Type))); PyTuple_SET_ITEM(__pyx_t_8, 1+__pyx_t_5, ((PyObject *)(&PyInt_Type))); __pyx_t_1 = 0; __pyx_t_6 = __Pyx_PyObject_Call(__pyx_t_7, __pyx_t_8, NULL); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 3079, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; } __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; __pyx_t_7 = __pyx_t_6; __Pyx_INCREF(__pyx_t_7); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __pyx_v_randoms = ((PyArrayObject *)__pyx_t_7); __pyx_t_7 = 0; } __pyx_L8:; /* "numpy/random/mtrand.pyx":3081 * randoms = np.empty(it.shape, int) * * randoms_data = np.PyArray_DATA(randoms) # <<<<<<<<<<<<<< * cnt = np.PyArray_SIZE(randoms) * */ __pyx_v_randoms_data = ((long *)PyArray_DATA(__pyx_v_randoms)); /* "numpy/random/mtrand.pyx":3082 * * randoms_data = np.PyArray_DATA(randoms) * cnt = np.PyArray_SIZE(randoms) # <<<<<<<<<<<<<< * * it = np.PyArray_MultiIterNew3(randoms, p_arr, n_arr) */ __pyx_v_cnt = PyArray_SIZE(__pyx_v_randoms); /* "numpy/random/mtrand.pyx":3084 * cnt = np.PyArray_SIZE(randoms) * * it = np.PyArray_MultiIterNew3(randoms, p_arr, n_arr) # <<<<<<<<<<<<<< * with self.lock, nogil: * for i in range(cnt): */ __pyx_t_7 = __pyx_f_5numpy_PyArray_MultiIterNew3(((PyObject *)__pyx_v_randoms), ((PyObject *)__pyx_v_p_arr), ((PyObject *)__pyx_v_n_arr)); if (unlikely(!__pyx_t_7)) __PYX_ERR(0, 3084, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_7); if (!(likely(((__pyx_t_7) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_7, __pyx_ptype_5numpy_broadcast))))) __PYX_ERR(0, 3084, __pyx_L1_error) __Pyx_XDECREF_SET(__pyx_v_it, ((PyArrayMultiIterObject *)__pyx_t_7)); __pyx_t_7 = 0; /* "numpy/random/mtrand.pyx":3085 * * it = np.PyArray_MultiIterNew3(randoms, p_arr, n_arr) * with self.lock, nogil: # <<<<<<<<<<<<<< * for i in range(cnt): * _dp = (np.PyArray_MultiIter_DATA(it, 1))[0] */ /*with:*/ { __pyx_t_9 = __Pyx_PyObject_LookupSpecial(__pyx_v_self->lock, __pyx_n_s_exit); if (unlikely(!__pyx_t_9)) __PYX_ERR(0, 3085, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_9); __pyx_t_6 = __Pyx_PyObject_LookupSpecial(__pyx_v_self->lock, __pyx_n_s_enter); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 3085, __pyx_L9_error) __Pyx_GOTREF(__pyx_t_6); __pyx_t_8 = NULL; if (CYTHON_UNPACK_METHODS && likely(PyMethod_Check(__pyx_t_6))) { __pyx_t_8 = PyMethod_GET_SELF(__pyx_t_6); if (likely(__pyx_t_8)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_6); __Pyx_INCREF(__pyx_t_8); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_6, function); } } __pyx_t_7 = (__pyx_t_8) ? __Pyx_PyObject_CallOneArg(__pyx_t_6, __pyx_t_8) : __Pyx_PyObject_CallNoArg(__pyx_t_6); __Pyx_XDECREF(__pyx_t_8); __pyx_t_8 = 0; if (unlikely(!__pyx_t_7)) __PYX_ERR(0, 3085, __pyx_L9_error) __Pyx_GOTREF(__pyx_t_7); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; /*try:*/ { { (void)__pyx_t_10; (void)__pyx_t_11; (void)__pyx_t_12; /* mark used */ /*try:*/ { { #ifdef WITH_THREAD PyThreadState *_save; Py_UNBLOCK_THREADS __Pyx_FastGIL_Remember(); #endif /*try:*/ { /* "numpy/random/mtrand.pyx":3086 * it = np.PyArray_MultiIterNew3(randoms, p_arr, n_arr) * with self.lock, nogil: * for i in range(cnt): # <<<<<<<<<<<<<< * _dp = (np.PyArray_MultiIter_DATA(it, 1))[0] * _in = (np.PyArray_MultiIter_DATA(it, 2))[0] */ __pyx_t_13 = __pyx_v_cnt; __pyx_t_14 = __pyx_t_13; for (__pyx_t_15 = 0; __pyx_t_15 < __pyx_t_14; __pyx_t_15+=1) { __pyx_v_i = __pyx_t_15; /* "numpy/random/mtrand.pyx":3087 * with self.lock, nogil: * for i in range(cnt): * _dp = (np.PyArray_MultiIter_DATA(it, 1))[0] # <<<<<<<<<<<<<< * _in = (np.PyArray_MultiIter_DATA(it, 2))[0] * (np.PyArray_MultiIter_DATA(it, 0))[0] = \ */ __pyx_v__dp = (((double *)PyArray_MultiIter_DATA(__pyx_v_it, 1))[0]); /* "numpy/random/mtrand.pyx":3088 * for i in range(cnt): * _dp = (np.PyArray_MultiIter_DATA(it, 1))[0] * _in = (np.PyArray_MultiIter_DATA(it, 2))[0] # <<<<<<<<<<<<<< * (np.PyArray_MultiIter_DATA(it, 0))[0] = \ * legacy_random_binomial(&self._bitgen, _dp, _in, */ __pyx_v__in = (((long *)PyArray_MultiIter_DATA(__pyx_v_it, 2))[0]); /* "numpy/random/mtrand.pyx":3089 * _dp = (np.PyArray_MultiIter_DATA(it, 1))[0] * _in = (np.PyArray_MultiIter_DATA(it, 2))[0] * (np.PyArray_MultiIter_DATA(it, 0))[0] = \ # <<<<<<<<<<<<<< * legacy_random_binomial(&self._bitgen, _dp, _in, * &self._binomial) */ (((long *)PyArray_MultiIter_DATA(__pyx_v_it, 0))[0]) = legacy_random_binomial((&__pyx_v_self->_bitgen), __pyx_v__dp, __pyx_v__in, (&__pyx_v_self->_binomial)); /* "numpy/random/mtrand.pyx":3093 * &self._binomial) * * np.PyArray_MultiIter_NEXT(it) # <<<<<<<<<<<<<< * * return randoms */ PyArray_MultiIter_NEXT(__pyx_v_it); } } /* "numpy/random/mtrand.pyx":3085 * * it = np.PyArray_MultiIterNew3(randoms, p_arr, n_arr) * with self.lock, nogil: # <<<<<<<<<<<<<< * for i in range(cnt): * _dp = (np.PyArray_MultiIter_DATA(it, 1))[0] */ /*finally:*/ { /*normal exit:*/{ #ifdef WITH_THREAD __Pyx_FastGIL_Forget(); Py_BLOCK_THREADS #endif goto __pyx_L21; } __pyx_L21:; } } } } } /*finally:*/ { /*normal exit:*/{ if (__pyx_t_9) { __pyx_t_12 = __Pyx_PyObject_Call(__pyx_t_9, __pyx_tuple__13, NULL); __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; if (unlikely(!__pyx_t_12)) __PYX_ERR(0, 3085, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_12); __Pyx_DECREF(__pyx_t_12); __pyx_t_12 = 0; } goto __pyx_L12; } __pyx_L12:; } goto __pyx_L24; __pyx_L9_error:; __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; goto __pyx_L1_error; __pyx_L24:; } /* "numpy/random/mtrand.pyx":3095 * np.PyArray_MultiIter_NEXT(it) * * return randoms # <<<<<<<<<<<<<< * * _dp = PyFloat_AsDouble(p) */ __Pyx_XDECREF(__pyx_r); __Pyx_INCREF(((PyObject *)__pyx_v_randoms)); __pyx_r = ((PyObject *)__pyx_v_randoms); goto __pyx_L0; /* "numpy/random/mtrand.pyx":3072 * is_scalar = is_scalar and np.PyArray_NDIM(n_arr) == 0 * * if not is_scalar: # <<<<<<<<<<<<<< * check_array_constraint(p_arr, 'p', CONS_BOUNDED_0_1) * check_array_constraint(n_arr, 'n', CONS_NON_NEGATIVE) */ } /* "numpy/random/mtrand.pyx":3097 * return randoms * * _dp = PyFloat_AsDouble(p) # <<<<<<<<<<<<<< * _in = n * check_constraint(_dp, 'p', CONS_BOUNDED_0_1) */ __pyx_t_16 = PyFloat_AsDouble(__pyx_v_p); if (unlikely(__pyx_t_16 == ((double)-1.0) && PyErr_Occurred())) __PYX_ERR(0, 3097, __pyx_L1_error) __pyx_v__dp = __pyx_t_16; /* "numpy/random/mtrand.pyx":3098 * * _dp = PyFloat_AsDouble(p) * _in = n # <<<<<<<<<<<<<< * check_constraint(_dp, 'p', CONS_BOUNDED_0_1) * check_constraint(_in, 'n', CONS_NON_NEGATIVE) */ __pyx_t_17 = __Pyx_PyInt_As_long(__pyx_v_n); if (unlikely((__pyx_t_17 == (long)-1) && PyErr_Occurred())) __PYX_ERR(0, 3098, __pyx_L1_error) __pyx_v__in = ((long)__pyx_t_17); /* "numpy/random/mtrand.pyx":3099 * _dp = PyFloat_AsDouble(p) * _in = n * check_constraint(_dp, 'p', CONS_BOUNDED_0_1) # <<<<<<<<<<<<<< * check_constraint(_in, 'n', CONS_NON_NEGATIVE) * */ __pyx_t_5 = __pyx_f_5numpy_6random_6common_check_constraint(__pyx_v__dp, __pyx_n_u_p, __pyx_e_5numpy_6random_6common_CONS_BOUNDED_0_1); if (unlikely(__pyx_t_5 == ((int)-1))) __PYX_ERR(0, 3099, __pyx_L1_error) /* "numpy/random/mtrand.pyx":3100 * _in = n * check_constraint(_dp, 'p', CONS_BOUNDED_0_1) * check_constraint(_in, 'n', CONS_NON_NEGATIVE) # <<<<<<<<<<<<<< * * if size is None: */ __pyx_t_5 = __pyx_f_5numpy_6random_6common_check_constraint(((double)__pyx_v__in), __pyx_n_u_n, __pyx_e_5numpy_6random_6common_CONS_NON_NEGATIVE); if (unlikely(__pyx_t_5 == ((int)-1))) __PYX_ERR(0, 3100, __pyx_L1_error) /* "numpy/random/mtrand.pyx":3102 * check_constraint(_in, 'n', CONS_NON_NEGATIVE) * * if size is None: # <<<<<<<<<<<<<< * with self.lock: * return legacy_random_binomial(&self._bitgen, _dp, _in, */ __pyx_t_4 = (__pyx_v_size == Py_None); __pyx_t_3 = (__pyx_t_4 != 0); if (__pyx_t_3) { /* "numpy/random/mtrand.pyx":3103 * * if size is None: * with self.lock: # <<<<<<<<<<<<<< * return legacy_random_binomial(&self._bitgen, _dp, _in, * &self._binomial) */ /*with:*/ { __pyx_t_9 = __Pyx_PyObject_LookupSpecial(__pyx_v_self->lock, __pyx_n_s_exit); if (unlikely(!__pyx_t_9)) __PYX_ERR(0, 3103, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_9); __pyx_t_6 = __Pyx_PyObject_LookupSpecial(__pyx_v_self->lock, __pyx_n_s_enter); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 3103, __pyx_L26_error) __Pyx_GOTREF(__pyx_t_6); __pyx_t_8 = NULL; if (CYTHON_UNPACK_METHODS && likely(PyMethod_Check(__pyx_t_6))) { __pyx_t_8 = PyMethod_GET_SELF(__pyx_t_6); if (likely(__pyx_t_8)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_6); __Pyx_INCREF(__pyx_t_8); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_6, function); } } __pyx_t_7 = (__pyx_t_8) ? __Pyx_PyObject_CallOneArg(__pyx_t_6, __pyx_t_8) : __Pyx_PyObject_CallNoArg(__pyx_t_6); __Pyx_XDECREF(__pyx_t_8); __pyx_t_8 = 0; if (unlikely(!__pyx_t_7)) __PYX_ERR(0, 3103, __pyx_L26_error) __Pyx_GOTREF(__pyx_t_7); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; /*try:*/ { { __Pyx_PyThreadState_declare __Pyx_PyThreadState_assign __Pyx_ExceptionSave(&__pyx_t_12, &__pyx_t_11, &__pyx_t_10); __Pyx_XGOTREF(__pyx_t_12); __Pyx_XGOTREF(__pyx_t_11); __Pyx_XGOTREF(__pyx_t_10); /*try:*/ { /* "numpy/random/mtrand.pyx":3104 * if size is None: * with self.lock: * return legacy_random_binomial(&self._bitgen, _dp, _in, # <<<<<<<<<<<<<< * &self._binomial) * */ __Pyx_XDECREF(__pyx_r); /* "numpy/random/mtrand.pyx":3105 * with self.lock: * return legacy_random_binomial(&self._bitgen, _dp, _in, * &self._binomial) # <<<<<<<<<<<<<< * * randoms = np.empty(size, int) */ __pyx_t_7 = __Pyx_PyInt_From_long(((long)legacy_random_binomial((&__pyx_v_self->_bitgen), __pyx_v__dp, __pyx_v__in, (&__pyx_v_self->_binomial)))); if (unlikely(!__pyx_t_7)) __PYX_ERR(0, 3104, __pyx_L30_error) __Pyx_GOTREF(__pyx_t_7); __pyx_r = __pyx_t_7; __pyx_t_7 = 0; goto __pyx_L34_try_return; /* "numpy/random/mtrand.pyx":3103 * * if size is None: * with self.lock: # <<<<<<<<<<<<<< * return legacy_random_binomial(&self._bitgen, _dp, _in, * &self._binomial) */ } __pyx_L30_error:; __Pyx_XDECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_XDECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_XDECREF(__pyx_t_6); __pyx_t_6 = 0; __Pyx_XDECREF(__pyx_t_7); __pyx_t_7 = 0; __Pyx_XDECREF(__pyx_t_8); __pyx_t_8 = 0; /*except:*/ { __Pyx_AddTraceback("numpy.random.mtrand.RandomState.binomial", __pyx_clineno, __pyx_lineno, __pyx_filename); if (__Pyx_GetException(&__pyx_t_7, &__pyx_t_6, &__pyx_t_8) < 0) __PYX_ERR(0, 3103, __pyx_L32_except_error) __Pyx_GOTREF(__pyx_t_7); __Pyx_GOTREF(__pyx_t_6); __Pyx_GOTREF(__pyx_t_8); __pyx_t_1 = PyTuple_Pack(3, __pyx_t_7, __pyx_t_6, __pyx_t_8); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 3103, __pyx_L32_except_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_18 = __Pyx_PyObject_Call(__pyx_t_9, __pyx_t_1, NULL); __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; if (unlikely(!__pyx_t_18)) __PYX_ERR(0, 3103, __pyx_L32_except_error) __Pyx_GOTREF(__pyx_t_18); __pyx_t_3 = __Pyx_PyObject_IsTrue(__pyx_t_18); __Pyx_DECREF(__pyx_t_18); __pyx_t_18 = 0; if (__pyx_t_3 < 0) __PYX_ERR(0, 3103, __pyx_L32_except_error) __pyx_t_4 = ((!(__pyx_t_3 != 0)) != 0); if (__pyx_t_4) { __Pyx_GIVEREF(__pyx_t_7); __Pyx_GIVEREF(__pyx_t_6); __Pyx_XGIVEREF(__pyx_t_8); __Pyx_ErrRestoreWithState(__pyx_t_7, __pyx_t_6, __pyx_t_8); __pyx_t_7 = 0; __pyx_t_6 = 0; __pyx_t_8 = 0; __PYX_ERR(0, 3103, __pyx_L32_except_error) } __Pyx_XDECREF(__pyx_t_7); __pyx_t_7 = 0; __Pyx_XDECREF(__pyx_t_6); __pyx_t_6 = 0; __Pyx_XDECREF(__pyx_t_8); __pyx_t_8 = 0; goto __pyx_L31_exception_handled; } __pyx_L32_except_error:; __Pyx_XGIVEREF(__pyx_t_12); __Pyx_XGIVEREF(__pyx_t_11); __Pyx_XGIVEREF(__pyx_t_10); __Pyx_ExceptionReset(__pyx_t_12, __pyx_t_11, __pyx_t_10); goto __pyx_L1_error; __pyx_L34_try_return:; __Pyx_XGIVEREF(__pyx_t_12); __Pyx_XGIVEREF(__pyx_t_11); __Pyx_XGIVEREF(__pyx_t_10); __Pyx_ExceptionReset(__pyx_t_12, __pyx_t_11, __pyx_t_10); goto __pyx_L27_return; __pyx_L31_exception_handled:; __Pyx_XGIVEREF(__pyx_t_12); __Pyx_XGIVEREF(__pyx_t_11); __Pyx_XGIVEREF(__pyx_t_10); __Pyx_ExceptionReset(__pyx_t_12, __pyx_t_11, __pyx_t_10); } } /*finally:*/ { /*normal exit:*/{ if (__pyx_t_9) { __pyx_t_10 = __Pyx_PyObject_Call(__pyx_t_9, __pyx_tuple__13, NULL); __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; if (unlikely(!__pyx_t_10)) __PYX_ERR(0, 3103, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_10); __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0; } goto __pyx_L29; } __pyx_L27_return: { __pyx_t_10 = __pyx_r; __pyx_r = 0; if (__pyx_t_9) { __pyx_t_11 = __Pyx_PyObject_Call(__pyx_t_9, __pyx_tuple__13, NULL); __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; if (unlikely(!__pyx_t_11)) __PYX_ERR(0, 3103, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_11); __Pyx_DECREF(__pyx_t_11); __pyx_t_11 = 0; } __pyx_r = __pyx_t_10; __pyx_t_10 = 0; goto __pyx_L0; } __pyx_L29:; } goto __pyx_L39; __pyx_L26_error:; __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; goto __pyx_L1_error; __pyx_L39:; } /* "numpy/random/mtrand.pyx":3102 * check_constraint(_in, 'n', CONS_NON_NEGATIVE) * * if size is None: # <<<<<<<<<<<<<< * with self.lock: * return legacy_random_binomial(&self._bitgen, _dp, _in, */ } /* "numpy/random/mtrand.pyx":3107 * &self._binomial) * * randoms = np.empty(size, int) # <<<<<<<<<<<<<< * cnt = np.PyArray_SIZE(randoms) * randoms_data = np.PyArray_DATA(randoms) */ __Pyx_GetModuleGlobalName(__pyx_t_6, __pyx_n_s_np); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 3107, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __pyx_t_7 = __Pyx_PyObject_GetAttrStr(__pyx_t_6, __pyx_n_s_empty); if (unlikely(!__pyx_t_7)) __PYX_ERR(0, 3107, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_7); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __pyx_t_6 = NULL; __pyx_t_5 = 0; if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_7))) { __pyx_t_6 = PyMethod_GET_SELF(__pyx_t_7); if (likely(__pyx_t_6)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_7); __Pyx_INCREF(__pyx_t_6); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_7, function); __pyx_t_5 = 1; } } #if CYTHON_FAST_PYCALL if (PyFunction_Check(__pyx_t_7)) { PyObject *__pyx_temp[3] = {__pyx_t_6, __pyx_v_size, ((PyObject *)(&PyInt_Type))}; __pyx_t_8 = __Pyx_PyFunction_FastCall(__pyx_t_7, __pyx_temp+1-__pyx_t_5, 2+__pyx_t_5); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 3107, __pyx_L1_error) __Pyx_XDECREF(__pyx_t_6); __pyx_t_6 = 0; __Pyx_GOTREF(__pyx_t_8); } else #endif #if CYTHON_FAST_PYCCALL if (__Pyx_PyFastCFunction_Check(__pyx_t_7)) { PyObject *__pyx_temp[3] = {__pyx_t_6, __pyx_v_size, ((PyObject *)(&PyInt_Type))}; __pyx_t_8 = __Pyx_PyCFunction_FastCall(__pyx_t_7, __pyx_temp+1-__pyx_t_5, 2+__pyx_t_5); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 3107, __pyx_L1_error) __Pyx_XDECREF(__pyx_t_6); __pyx_t_6 = 0; __Pyx_GOTREF(__pyx_t_8); } else #endif { __pyx_t_1 = PyTuple_New(2+__pyx_t_5); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 3107, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); if (__pyx_t_6) { __Pyx_GIVEREF(__pyx_t_6); PyTuple_SET_ITEM(__pyx_t_1, 0, __pyx_t_6); __pyx_t_6 = NULL; } __Pyx_INCREF(__pyx_v_size); __Pyx_GIVEREF(__pyx_v_size); PyTuple_SET_ITEM(__pyx_t_1, 0+__pyx_t_5, __pyx_v_size); __Pyx_INCREF(((PyObject *)(&PyInt_Type))); __Pyx_GIVEREF(((PyObject *)(&PyInt_Type))); PyTuple_SET_ITEM(__pyx_t_1, 1+__pyx_t_5, ((PyObject *)(&PyInt_Type))); __pyx_t_8 = __Pyx_PyObject_Call(__pyx_t_7, __pyx_t_1, NULL); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 3107, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_8); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; } __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; __pyx_t_7 = __pyx_t_8; __Pyx_INCREF(__pyx_t_7); __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; __pyx_v_randoms = ((PyArrayObject *)__pyx_t_7); __pyx_t_7 = 0; /* "numpy/random/mtrand.pyx":3108 * * randoms = np.empty(size, int) * cnt = np.PyArray_SIZE(randoms) # <<<<<<<<<<<<<< * randoms_data = np.PyArray_DATA(randoms) * */ __pyx_v_cnt = PyArray_SIZE(__pyx_v_randoms); /* "numpy/random/mtrand.pyx":3109 * randoms = np.empty(size, int) * cnt = np.PyArray_SIZE(randoms) * randoms_data = np.PyArray_DATA(randoms) # <<<<<<<<<<<<<< * * with self.lock, nogil: */ __pyx_v_randoms_data = ((long *)PyArray_DATA(__pyx_v_randoms)); /* "numpy/random/mtrand.pyx":3111 * randoms_data = np.PyArray_DATA(randoms) * * with self.lock, nogil: # <<<<<<<<<<<<<< * for i in range(cnt): * randoms_data[i] = legacy_random_binomial(&self._bitgen, _dp, _in, */ /*with:*/ { __pyx_t_9 = __Pyx_PyObject_LookupSpecial(__pyx_v_self->lock, __pyx_n_s_exit); if (unlikely(!__pyx_t_9)) __PYX_ERR(0, 3111, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_9); __pyx_t_8 = __Pyx_PyObject_LookupSpecial(__pyx_v_self->lock, __pyx_n_s_enter); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 3111, __pyx_L40_error) __Pyx_GOTREF(__pyx_t_8); __pyx_t_1 = NULL; if (CYTHON_UNPACK_METHODS && likely(PyMethod_Check(__pyx_t_8))) { __pyx_t_1 = PyMethod_GET_SELF(__pyx_t_8); if (likely(__pyx_t_1)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_8); __Pyx_INCREF(__pyx_t_1); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_8, function); } } __pyx_t_7 = (__pyx_t_1) ? __Pyx_PyObject_CallOneArg(__pyx_t_8, __pyx_t_1) : __Pyx_PyObject_CallNoArg(__pyx_t_8); __Pyx_XDECREF(__pyx_t_1); __pyx_t_1 = 0; if (unlikely(!__pyx_t_7)) __PYX_ERR(0, 3111, __pyx_L40_error) __Pyx_GOTREF(__pyx_t_7); __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0; /*try:*/ { { (void)__pyx_t_10; (void)__pyx_t_11; (void)__pyx_t_12; /* mark used */ /*try:*/ { { #ifdef WITH_THREAD PyThreadState *_save; Py_UNBLOCK_THREADS __Pyx_FastGIL_Remember(); #endif /*try:*/ { /* "numpy/random/mtrand.pyx":3112 * * with self.lock, nogil: * for i in range(cnt): # <<<<<<<<<<<<<< * randoms_data[i] = legacy_random_binomial(&self._bitgen, _dp, _in, * &self._binomial) */ __pyx_t_13 = __pyx_v_cnt; __pyx_t_14 = __pyx_t_13; for (__pyx_t_15 = 0; __pyx_t_15 < __pyx_t_14; __pyx_t_15+=1) { __pyx_v_i = __pyx_t_15; /* "numpy/random/mtrand.pyx":3113 * with self.lock, nogil: * for i in range(cnt): * randoms_data[i] = legacy_random_binomial(&self._bitgen, _dp, _in, # <<<<<<<<<<<<<< * &self._binomial) * */ (__pyx_v_randoms_data[__pyx_v_i]) = legacy_random_binomial((&__pyx_v_self->_bitgen), __pyx_v__dp, __pyx_v__in, (&__pyx_v_self->_binomial)); } } /* "numpy/random/mtrand.pyx":3111 * randoms_data = np.PyArray_DATA(randoms) * * with self.lock, nogil: # <<<<<<<<<<<<<< * for i in range(cnt): * randoms_data[i] = legacy_random_binomial(&self._bitgen, _dp, _in, */ /*finally:*/ { /*normal exit:*/{ #ifdef WITH_THREAD __Pyx_FastGIL_Forget(); Py_BLOCK_THREADS #endif goto __pyx_L52; } __pyx_L52:; } } } } } /*finally:*/ { /*normal exit:*/{ if (__pyx_t_9) { __pyx_t_12 = __Pyx_PyObject_Call(__pyx_t_9, __pyx_tuple__13, NULL); __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; if (unlikely(!__pyx_t_12)) __PYX_ERR(0, 3111, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_12); __Pyx_DECREF(__pyx_t_12); __pyx_t_12 = 0; } goto __pyx_L43; } __pyx_L43:; } goto __pyx_L55; __pyx_L40_error:; __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; goto __pyx_L1_error; __pyx_L55:; } /* "numpy/random/mtrand.pyx":3116 * &self._binomial) * * return randoms # <<<<<<<<<<<<<< * * def negative_binomial(self, n, p, size=None): */ __Pyx_XDECREF(__pyx_r); __Pyx_INCREF(((PyObject *)__pyx_v_randoms)); __pyx_r = ((PyObject *)__pyx_v_randoms); goto __pyx_L0; /* "numpy/random/mtrand.pyx":2972 * * # Complicated, discrete distributions: * def binomial(self, n, p, size=None): # <<<<<<<<<<<<<< * """ * binomial(n, p, size=None) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_6); __Pyx_XDECREF(__pyx_t_7); __Pyx_XDECREF(__pyx_t_8); __Pyx_AddTraceback("numpy.random.mtrand.RandomState.binomial", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XDECREF((PyObject *)__pyx_v_randoms); __Pyx_XDECREF((PyObject *)__pyx_v_it); __Pyx_XDECREF((PyObject *)__pyx_v_p_arr); __Pyx_XDECREF((PyObject *)__pyx_v_n_arr); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "numpy/random/mtrand.pyx":3118 * return randoms * * def negative_binomial(self, n, p, size=None): # <<<<<<<<<<<<<< * """ * negative_binomial(n, p, size=None) */ /* Python wrapper */ static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_89negative_binomial(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static char __pyx_doc_5numpy_6random_6mtrand_11RandomState_88negative_binomial[] = "\n negative_binomial(n, p, size=None)\n\n Draw samples from a negative binomial distribution.\n\n Samples are drawn from a negative binomial distribution with specified\n parameters, `n` successes and `p` probability of success where `n`\n is > 0 and `p` is in the interval [0, 1].\n\n Parameters\n ----------\n n : float or array_like of floats\n Parameter of the distribution, > 0.\n p : float or array_like of floats\n Parameter of the distribution, >= 0 and <=1.\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. If size is ``None`` (default),\n a single value is returned if ``n`` and ``p`` are both scalars.\n Otherwise, ``np.broadcast(n, p).size`` samples are drawn.\n\n Returns\n -------\n out : ndarray or scalar\n Drawn samples from the parameterized negative binomial distribution,\n where each sample is equal to N, the number of failures that\n occurred before a total of n successes was reached.\n\n Notes\n -----\n The probability mass function of the negative binomial distribution is\n\n .. math:: P(N;n,p) = \\frac{\\Gamma(N+n)}{N!\\Gamma(n)}p^{n}(1-p)^{N},\n\n where :math:`n` is the number of successes, :math:`p` is the\n probability of success, :math:`N+n` is the number of trials, and\n :math:`\\Gamma` is the gamma function. When :math:`n` is an integer,\n :math:`\\frac{\\Gamma(N+n)}{N!\\Gamma(n)} = \\binom{N+n-1}{N}`, which is\n the more common form of this term in the the pmf. The negative\n binomial distribution gives the probability of N failures given n\n successes, with a success on the last trial.\n\n If one throws a die repeatedly until the third time a \"1\" appears,\n then the probabili""ty distribution of the number of non-\"1\"s that\n appear before the third \"1\" is a negative binomial distribution.\n\n References\n ----------\n .. [1] Weisstein, Eric W. \"Negative Binomial Distribution.\" From\n MathWorld--A Wolfram Web Resource.\n http://mathworld.wolfram.com/NegativeBinomialDistribution.html\n .. [2] Wikipedia, \"Negative binomial distribution\",\n https://en.wikipedia.org/wiki/Negative_binomial_distribution\n\n Examples\n --------\n Draw samples from the distribution:\n\n A real world example. A company drills wild-cat oil\n exploration wells, each with an estimated probability of\n success of 0.1. What is the probability of having one success\n for each successive well, that is what is the probability of a\n single success after drilling 5 wells, after 6 wells, etc.?\n\n >>> s = np.random.negative_binomial(1, 0.1, 100000)\n >>> for i in range(1, 11): # doctest: +SKIP\n ... probability = sum(s 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_size); if (value) { values[2] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "negative_binomial") < 0)) __PYX_ERR(0, 3118, __pyx_L3_error) } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); CYTHON_FALLTHROUGH; case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); values[0] = PyTuple_GET_ITEM(__pyx_args, 0); break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_n = values[0]; __pyx_v_p = values[1]; __pyx_v_size = values[2]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("negative_binomial", 0, 2, 3, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(0, 3118, __pyx_L3_error) __pyx_L3_error:; __Pyx_AddTraceback("numpy.random.mtrand.RandomState.negative_binomial", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_5numpy_6random_6mtrand_11RandomState_88negative_binomial(((struct __pyx_obj_5numpy_6random_6mtrand_RandomState *)__pyx_v_self), __pyx_v_n, __pyx_v_p, __pyx_v_size); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_88negative_binomial(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_n, PyObject *__pyx_v_p, PyObject *__pyx_v_size) { PyObject *__pyx_v_out = NULL; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; __Pyx_RefNannySetupContext("negative_binomial", 0); /* "numpy/random/mtrand.pyx":3189 * * """ * out = disc(&legacy_negative_binomial, &self._aug_state, size, self.lock, 2, 0, # <<<<<<<<<<<<<< * n, 'n', CONS_POSITIVE, * p, 'p', CONS_BOUNDED_0_1, */ __pyx_t_1 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_1); /* "numpy/random/mtrand.pyx":3192 * n, 'n', CONS_POSITIVE, * p, 'p', CONS_BOUNDED_0_1, * 0.0, '', CONS_NONE) # <<<<<<<<<<<<<< * # Match historical output type * return int64_to_long(out) */ __pyx_t_2 = __pyx_f_5numpy_6random_6common_disc((&legacy_negative_binomial), (&__pyx_v_self->_aug_state), __pyx_v_size, __pyx_t_1, 2, 0, __pyx_v_n, __pyx_n_u_n, __pyx_e_5numpy_6random_6common_CONS_POSITIVE, __pyx_v_p, __pyx_n_u_p, __pyx_e_5numpy_6random_6common_CONS_BOUNDED_0_1, __pyx_float_0_0, __pyx_kp_u__12, __pyx_e_5numpy_6random_6common_CONS_NONE); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 3189, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_v_out = __pyx_t_2; __pyx_t_2 = 0; /* "numpy/random/mtrand.pyx":3194 * 0.0, '', CONS_NONE) * # Match historical output type * return int64_to_long(out) # <<<<<<<<<<<<<< * * def poisson(self, lam=1.0, size=None): */ __Pyx_XDECREF(__pyx_r); __pyx_t_2 = __pyx_f_5numpy_6random_6mtrand_int64_to_long(__pyx_v_out); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 3194, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_r = __pyx_t_2; __pyx_t_2 = 0; goto __pyx_L0; /* "numpy/random/mtrand.pyx":3118 * return randoms * * def negative_binomial(self, n, p, size=None): # <<<<<<<<<<<<<< * """ * negative_binomial(n, p, size=None) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_AddTraceback("numpy.random.mtrand.RandomState.negative_binomial", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XDECREF(__pyx_v_out); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "numpy/random/mtrand.pyx":3196 * return int64_to_long(out) * * def poisson(self, lam=1.0, size=None): # <<<<<<<<<<<<<< * """ * poisson(lam=1.0, size=None) */ /* Python wrapper */ static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_91poisson(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static char __pyx_doc_5numpy_6random_6mtrand_11RandomState_90poisson[] = "\n poisson(lam=1.0, size=None)\n\n Draw samples from a Poisson distribution.\n\n The Poisson distribution is the limit of the binomial distribution\n for large N.\n\n Parameters\n ----------\n lam : float or array_like of floats\n Expectation of interval, must be >= 0. A sequence of expectation\n intervals must be broadcastable over the requested size.\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. If size is ``None`` (default),\n a single value is returned if ``lam`` is a scalar. Otherwise,\n ``np.array(lam).size`` samples are drawn.\n\n Returns\n -------\n out : ndarray or scalar\n Drawn samples from the parameterized Poisson distribution.\n\n Notes\n -----\n The Poisson distribution\n\n .. math:: f(k; \\lambda)=\\frac{\\lambda^k e^{-\\lambda}}{k!}\n\n For events with an expected separation :math:`\\lambda` the Poisson\n distribution :math:`f(k; \\lambda)` describes the probability of\n :math:`k` events occurring within the observed\n interval :math:`\\lambda`.\n\n Because the output is limited to the range of the C int64 type, a\n ValueError is raised when `lam` is within 10 sigma of the maximum\n representable value.\n\n References\n ----------\n .. [1] Weisstein, Eric W. \"Poisson Distribution.\"\n From MathWorld--A Wolfram Web Resource.\n http://mathworld.wolfram.com/PoissonDistribution.html\n .. [2] Wikipedia, \"Poisson distribution\",\n https://en.wikipedia.org/wiki/Poisson_distribution\n\n Examples\n --------\n Draw samples from the distribution:\n\n >>> import numpy as np\n >>> s = np.random.poisson(5, 10000)\n\n Display histo""gram of the sample:\n\n >>> import matplotlib.pyplot as plt\n >>> count, bins, ignored = plt.hist(s, 14, density=True)\n >>> plt.show()\n\n Draw each 100 values for lambda 100 and 500:\n\n >>> s = np.random.poisson(lam=(100., 500.), size=(100, 2))\n\n "; static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_91poisson(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_lam = 0; PyObject *__pyx_v_size = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("poisson (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_lam,&__pyx_n_s_size,0}; PyObject* values[2] = {0,0}; values[0] = ((PyObject *)__pyx_float_1_0); values[1] = ((PyObject *)Py_None); if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); CYTHON_FALLTHROUGH; case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); CYTHON_FALLTHROUGH; case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_lam); if (value) { values[0] = value; kw_args--; } } CYTHON_FALLTHROUGH; case 1: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_size); if (value) { values[1] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "poisson") < 0)) __PYX_ERR(0, 3196, __pyx_L3_error) } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); CYTHON_FALLTHROUGH; case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); CYTHON_FALLTHROUGH; case 0: break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_lam = values[0]; __pyx_v_size = values[1]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("poisson", 0, 0, 2, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(0, 3196, __pyx_L3_error) __pyx_L3_error:; __Pyx_AddTraceback("numpy.random.mtrand.RandomState.poisson", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_5numpy_6random_6mtrand_11RandomState_90poisson(((struct __pyx_obj_5numpy_6random_6mtrand_RandomState *)__pyx_v_self), __pyx_v_lam, __pyx_v_size); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_90poisson(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_lam, PyObject *__pyx_v_size) { PyObject *__pyx_v_out = NULL; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; __Pyx_RefNannySetupContext("poisson", 0); /* "numpy/random/mtrand.pyx":3262 * * """ * out = disc(&legacy_random_poisson, &self._bitgen, size, self.lock, 1, 0, # <<<<<<<<<<<<<< * lam, 'lam', LEGACY_CONS_POISSON, * 0.0, '', CONS_NONE, */ __pyx_t_1 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_1); /* "numpy/random/mtrand.pyx":3265 * lam, 'lam', LEGACY_CONS_POISSON, * 0.0, '', CONS_NONE, * 0.0, '', CONS_NONE) # <<<<<<<<<<<<<< * # Match historical output type * return int64_to_long(out) */ __pyx_t_2 = __pyx_f_5numpy_6random_6common_disc((&legacy_random_poisson), (&__pyx_v_self->_bitgen), __pyx_v_size, __pyx_t_1, 1, 0, __pyx_v_lam, __pyx_n_u_lam, __pyx_e_5numpy_6random_6common_LEGACY_CONS_POISSON, __pyx_float_0_0, __pyx_kp_u__12, __pyx_e_5numpy_6random_6common_CONS_NONE, __pyx_float_0_0, __pyx_kp_u__12, __pyx_e_5numpy_6random_6common_CONS_NONE); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 3262, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_v_out = __pyx_t_2; __pyx_t_2 = 0; /* "numpy/random/mtrand.pyx":3267 * 0.0, '', CONS_NONE) * # Match historical output type * return int64_to_long(out) # <<<<<<<<<<<<<< * * def zipf(self, a, size=None): */ __Pyx_XDECREF(__pyx_r); __pyx_t_2 = __pyx_f_5numpy_6random_6mtrand_int64_to_long(__pyx_v_out); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 3267, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_r = __pyx_t_2; __pyx_t_2 = 0; goto __pyx_L0; /* "numpy/random/mtrand.pyx":3196 * return int64_to_long(out) * * def poisson(self, lam=1.0, size=None): # <<<<<<<<<<<<<< * """ * poisson(lam=1.0, size=None) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_AddTraceback("numpy.random.mtrand.RandomState.poisson", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XDECREF(__pyx_v_out); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "numpy/random/mtrand.pyx":3269 * return int64_to_long(out) * * def zipf(self, a, size=None): # <<<<<<<<<<<<<< * """ * zipf(a, size=None) */ /* Python wrapper */ static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_93zipf(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static char __pyx_doc_5numpy_6random_6mtrand_11RandomState_92zipf[] = "\n zipf(a, size=None)\n\n Draw samples from a Zipf distribution.\n\n Samples are drawn from a Zipf distribution with specified parameter\n `a` > 1.\n\n The Zipf distribution (also known as the zeta distribution) is a\n continuous probability distribution that satisfies Zipf's law: the\n frequency of an item is inversely proportional to its rank in a\n frequency table.\n\n Parameters\n ----------\n a : float or array_like of floats\n Distribution parameter. Must be greater than 1.\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. If size is ``None`` (default),\n a single value is returned if ``a`` is a scalar. Otherwise,\n ``np.array(a).size`` samples are drawn.\n\n Returns\n -------\n out : ndarray or scalar\n Drawn samples from the parameterized Zipf distribution.\n\n See Also\n --------\n scipy.stats.zipf : probability density function, distribution, or\n cumulative density function, etc.\n\n Notes\n -----\n The probability density for the Zipf distribution is\n\n .. math:: p(x) = \\frac{x^{-a}}{\\zeta(a)},\n\n where :math:`\\zeta` is the Riemann Zeta function.\n\n It is named for the American linguist George Kingsley Zipf, who noted\n that the frequency of any word in a sample of a language is inversely\n proportional to its rank in the frequency table.\n\n References\n ----------\n .. [1] Zipf, G. K., \"Selected Studies of the Principle of Relative\n Frequency in Language,\" Cambridge, MA: Harvard Univ. Press,\n 1932.\n\n Examples\n --------\n Draw samples from the distribution:\n\n >>> a = 2. # parameter\n >>> s = np.random.zipf(a, 10""00)\n\n Display the histogram of the samples, along with\n the probability density function:\n\n >>> import matplotlib.pyplot as plt\n >>> from scipy import special # doctest: +SKIP\n\n Truncate s values at 50 so plot is interesting:\n\n >>> count, bins, ignored = plt.hist(s[s<50], 50, density=True)\n >>> x = np.arange(1., 50.)\n >>> y = x**(-a) / special.zetac(a) # doctest: +SKIP\n >>> plt.plot(x, y/max(y), linewidth=2, color='r') # doctest: +SKIP\n >>> plt.show()\n\n "; static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_93zipf(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_a = 0; PyObject *__pyx_v_size = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("zipf (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_a,&__pyx_n_s_size,0}; PyObject* values[2] = {0,0}; values[1] = ((PyObject *)Py_None); if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); CYTHON_FALLTHROUGH; case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); CYTHON_FALLTHROUGH; case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (likely((values[0] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_a)) != 0)) kw_args--; else goto __pyx_L5_argtuple_error; CYTHON_FALLTHROUGH; case 1: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_size); if (value) { values[1] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "zipf") < 0)) __PYX_ERR(0, 3269, __pyx_L3_error) } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); CYTHON_FALLTHROUGH; case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_a = values[0]; __pyx_v_size = values[1]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("zipf", 0, 1, 2, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(0, 3269, __pyx_L3_error) __pyx_L3_error:; __Pyx_AddTraceback("numpy.random.mtrand.RandomState.zipf", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_5numpy_6random_6mtrand_11RandomState_92zipf(((struct __pyx_obj_5numpy_6random_6mtrand_RandomState *)__pyx_v_self), __pyx_v_a, __pyx_v_size); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_92zipf(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_a, PyObject *__pyx_v_size) { PyObject *__pyx_v_out = NULL; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; __Pyx_RefNannySetupContext("zipf", 0); /* "numpy/random/mtrand.pyx":3343 * * """ * out = disc(&legacy_random_zipf, &self._bitgen, size, self.lock, 1, 0, # <<<<<<<<<<<<<< * a, 'a', CONS_GT_1, * 0.0, '', CONS_NONE, */ __pyx_t_1 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_1); /* "numpy/random/mtrand.pyx":3346 * a, 'a', CONS_GT_1, * 0.0, '', CONS_NONE, * 0.0, '', CONS_NONE) # <<<<<<<<<<<<<< * # Match historical output type * return int64_to_long(out) */ __pyx_t_2 = __pyx_f_5numpy_6random_6common_disc((&legacy_random_zipf), (&__pyx_v_self->_bitgen), __pyx_v_size, __pyx_t_1, 1, 0, __pyx_v_a, __pyx_n_u_a, __pyx_e_5numpy_6random_6common_CONS_GT_1, __pyx_float_0_0, __pyx_kp_u__12, __pyx_e_5numpy_6random_6common_CONS_NONE, __pyx_float_0_0, __pyx_kp_u__12, __pyx_e_5numpy_6random_6common_CONS_NONE); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 3343, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_v_out = __pyx_t_2; __pyx_t_2 = 0; /* "numpy/random/mtrand.pyx":3348 * 0.0, '', CONS_NONE) * # Match historical output type * return int64_to_long(out) # <<<<<<<<<<<<<< * * def geometric(self, p, size=None): */ __Pyx_XDECREF(__pyx_r); __pyx_t_2 = __pyx_f_5numpy_6random_6mtrand_int64_to_long(__pyx_v_out); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 3348, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_r = __pyx_t_2; __pyx_t_2 = 0; goto __pyx_L0; /* "numpy/random/mtrand.pyx":3269 * return int64_to_long(out) * * def zipf(self, a, size=None): # <<<<<<<<<<<<<< * """ * zipf(a, size=None) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_AddTraceback("numpy.random.mtrand.RandomState.zipf", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XDECREF(__pyx_v_out); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "numpy/random/mtrand.pyx":3350 * return int64_to_long(out) * * def geometric(self, p, size=None): # <<<<<<<<<<<<<< * """ * geometric(p, size=None) */ /* Python wrapper */ static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_95geometric(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static char __pyx_doc_5numpy_6random_6mtrand_11RandomState_94geometric[] = "\n geometric(p, size=None)\n\n Draw samples from the geometric distribution.\n\n Bernoulli trials are experiments with one of two outcomes:\n success or failure (an example of such an experiment is flipping\n a coin). The geometric distribution models the number of trials\n that must be run in order to achieve success. It is therefore\n supported on the positive integers, ``k = 1, 2, ...``.\n\n The probability mass function of the geometric distribution is\n\n .. math:: f(k) = (1 - p)^{k - 1} p\n\n where `p` is the probability of success of an individual trial.\n\n Parameters\n ----------\n p : float or array_like of floats\n The probability of success of an individual trial.\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. If size is ``None`` (default),\n a single value is returned if ``p`` is a scalar. Otherwise,\n ``np.array(p).size`` samples are drawn.\n\n Returns\n -------\n out : ndarray or scalar\n Drawn samples from the parameterized geometric distribution.\n\n Examples\n --------\n Draw ten thousand values from the geometric distribution,\n with the probability of an individual success equal to 0.35:\n\n >>> z = np.random.geometric(p=0.35, size=10000)\n\n How many trials succeeded after a single run?\n\n >>> (z == 1).sum() / 10000.\n 0.34889999999999999 #random\n\n "; static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_95geometric(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_p = 0; PyObject *__pyx_v_size = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("geometric (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_p,&__pyx_n_s_size,0}; PyObject* values[2] = {0,0}; values[1] = ((PyObject *)Py_None); if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); CYTHON_FALLTHROUGH; case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); CYTHON_FALLTHROUGH; case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (likely((values[0] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_p)) != 0)) kw_args--; else goto __pyx_L5_argtuple_error; CYTHON_FALLTHROUGH; case 1: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_size); if (value) { values[1] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "geometric") < 0)) __PYX_ERR(0, 3350, __pyx_L3_error) } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); CYTHON_FALLTHROUGH; case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_p = values[0]; __pyx_v_size = values[1]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("geometric", 0, 1, 2, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(0, 3350, __pyx_L3_error) __pyx_L3_error:; __Pyx_AddTraceback("numpy.random.mtrand.RandomState.geometric", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_5numpy_6random_6mtrand_11RandomState_94geometric(((struct __pyx_obj_5numpy_6random_6mtrand_RandomState *)__pyx_v_self), __pyx_v_p, __pyx_v_size); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_94geometric(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_p, PyObject *__pyx_v_size) { PyObject *__pyx_v_out = NULL; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; __Pyx_RefNannySetupContext("geometric", 0); /* "numpy/random/mtrand.pyx":3396 * * """ * out = disc(&legacy_random_geometric, &self._bitgen, size, self.lock, 1, 0, # <<<<<<<<<<<<<< * p, 'p', CONS_BOUNDED_GT_0_1, * 0.0, '', CONS_NONE, */ __pyx_t_1 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_1); /* "numpy/random/mtrand.pyx":3399 * p, 'p', CONS_BOUNDED_GT_0_1, * 0.0, '', CONS_NONE, * 0.0, '', CONS_NONE) # <<<<<<<<<<<<<< * # Match historical output type * return int64_to_long(out) */ __pyx_t_2 = __pyx_f_5numpy_6random_6common_disc((&legacy_random_geometric), (&__pyx_v_self->_bitgen), __pyx_v_size, __pyx_t_1, 1, 0, __pyx_v_p, __pyx_n_u_p, __pyx_e_5numpy_6random_6common_CONS_BOUNDED_GT_0_1, __pyx_float_0_0, __pyx_kp_u__12, __pyx_e_5numpy_6random_6common_CONS_NONE, __pyx_float_0_0, __pyx_kp_u__12, __pyx_e_5numpy_6random_6common_CONS_NONE); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 3396, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_v_out = __pyx_t_2; __pyx_t_2 = 0; /* "numpy/random/mtrand.pyx":3401 * 0.0, '', CONS_NONE) * # Match historical output type * return int64_to_long(out) # <<<<<<<<<<<<<< * * def hypergeometric(self, ngood, nbad, nsample, size=None): */ __Pyx_XDECREF(__pyx_r); __pyx_t_2 = __pyx_f_5numpy_6random_6mtrand_int64_to_long(__pyx_v_out); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 3401, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_r = __pyx_t_2; __pyx_t_2 = 0; goto __pyx_L0; /* "numpy/random/mtrand.pyx":3350 * return int64_to_long(out) * * def geometric(self, p, size=None): # <<<<<<<<<<<<<< * """ * geometric(p, size=None) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_AddTraceback("numpy.random.mtrand.RandomState.geometric", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XDECREF(__pyx_v_out); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "numpy/random/mtrand.pyx":3403 * return int64_to_long(out) * * def hypergeometric(self, ngood, nbad, nsample, size=None): # <<<<<<<<<<<<<< * """ * hypergeometric(ngood, nbad, nsample, size=None) */ /* Python wrapper */ static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_97hypergeometric(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static char __pyx_doc_5numpy_6random_6mtrand_11RandomState_96hypergeometric[] = "\n hypergeometric(ngood, nbad, nsample, size=None)\n\n Draw samples from a Hypergeometric distribution.\n\n Samples are drawn from a hypergeometric distribution with specified\n parameters, `ngood` (ways to make a good selection), `nbad` (ways to make\n a bad selection), and `nsample` (number of items sampled, which is less\n than or equal to the sum ``ngood + nbad``).\n\n Parameters\n ----------\n ngood : int or array_like of ints\n Number of ways to make a good selection. Must be nonnegative.\n nbad : int or array_like of ints\n Number of ways to make a bad selection. Must be nonnegative.\n nsample : int or array_like of ints\n Number of items sampled. Must be at least 1 and at most\n ``ngood + nbad``.\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. If size is ``None`` (default),\n a single value is returned if `ngood`, `nbad`, and `nsample`\n are all scalars. Otherwise, ``np.broadcast(ngood, nbad, nsample).size``\n samples are drawn.\n\n Returns\n -------\n out : ndarray or scalar\n Drawn samples from the parameterized hypergeometric distribution. Each\n sample is the number of good items within a randomly selected subset of\n size `nsample` taken from a set of `ngood` good items and `nbad` bad items.\n\n See Also\n --------\n scipy.stats.hypergeom : probability density function, distribution or\n cumulative density function, etc.\n\n Notes\n -----\n The probability density for the Hypergeometric distribution is\n\n .. math:: P(x) = \\frac{\\binom{g}{x}\\binom{b}{n-x}}{\\binom{g+b}{n}},\n\n where :math:`0 \\le x \\le n` and :math:`n-b \\le x \\le g`\n\n for P(x)"" the probability of ``x`` good results in the drawn sample,\n g = `ngood`, b = `nbad`, and n = `nsample`.\n\n Consider an urn with black and white marbles in it, `ngood` of them\n are black and `nbad` are white. If you draw `nsample` balls without\n replacement, then the hypergeometric distribution describes the\n distribution of black balls in the drawn sample.\n\n Note that this distribution is very similar to the binomial\n distribution, except that in this case, samples are drawn without\n replacement, whereas in the Binomial case samples are drawn with\n replacement (or the sample space is infinite). As the sample space\n becomes large, this distribution approaches the binomial.\n\n References\n ----------\n .. [1] Lentner, Marvin, \"Elementary Applied Statistics\", Bogden\n and Quigley, 1972.\n .. [2] Weisstein, Eric W. \"Hypergeometric Distribution.\" From\n MathWorld--A Wolfram Web Resource.\n http://mathworld.wolfram.com/HypergeometricDistribution.html\n .. [3] Wikipedia, \"Hypergeometric distribution\",\n https://en.wikipedia.org/wiki/Hypergeometric_distribution\n\n Examples\n --------\n Draw samples from the distribution:\n\n >>> ngood, nbad, nsamp = 100, 2, 10\n # number of good, number of bad, and number of samples\n >>> s = np.random.hypergeometric(ngood, nbad, nsamp, 1000)\n >>> from matplotlib.pyplot import hist\n >>> hist(s)\n # note that it is very unlikely to grab both bad items\n\n Suppose you have an urn with 15 white and 15 black marbles.\n If you pull 15 marbles at random, how likely is it that\n 12 or more of them are one color?\n\n >>> s = np.random.hypergeometric(15, 15, 15, 100000)\n >>> sum(s>=12)/100000. + sum(s<=3)/100000.\n # answer = 0.003 ... pretty unlikely!\n\n "" "; static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_97hypergeometric(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_ngood = 0; PyObject *__pyx_v_nbad = 0; PyObject *__pyx_v_nsample = 0; PyObject *__pyx_v_size = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("hypergeometric (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_ngood,&__pyx_n_s_nbad,&__pyx_n_s_nsample,&__pyx_n_s_size,0}; PyObject* values[4] = {0,0,0,0}; values[3] = ((PyObject *)Py_None); if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 4: values[3] = PyTuple_GET_ITEM(__pyx_args, 3); CYTHON_FALLTHROUGH; case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); CYTHON_FALLTHROUGH; case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); CYTHON_FALLTHROUGH; case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); CYTHON_FALLTHROUGH; case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (likely((values[0] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_ngood)) != 0)) kw_args--; else goto __pyx_L5_argtuple_error; CYTHON_FALLTHROUGH; case 1: if (likely((values[1] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_nbad)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("hypergeometric", 0, 3, 4, 1); __PYX_ERR(0, 3403, __pyx_L3_error) } CYTHON_FALLTHROUGH; case 2: if (likely((values[2] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_nsample)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("hypergeometric", 0, 3, 4, 2); __PYX_ERR(0, 3403, __pyx_L3_error) } CYTHON_FALLTHROUGH; case 3: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_size); if (value) { values[3] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "hypergeometric") < 0)) __PYX_ERR(0, 3403, __pyx_L3_error) } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 4: values[3] = PyTuple_GET_ITEM(__pyx_args, 3); CYTHON_FALLTHROUGH; case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); values[1] = PyTuple_GET_ITEM(__pyx_args, 1); values[0] = PyTuple_GET_ITEM(__pyx_args, 0); break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_ngood = values[0]; __pyx_v_nbad = values[1]; __pyx_v_nsample = values[2]; __pyx_v_size = values[3]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("hypergeometric", 0, 3, 4, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(0, 3403, __pyx_L3_error) __pyx_L3_error:; __Pyx_AddTraceback("numpy.random.mtrand.RandomState.hypergeometric", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_5numpy_6random_6mtrand_11RandomState_96hypergeometric(((struct __pyx_obj_5numpy_6random_6mtrand_RandomState *)__pyx_v_self), __pyx_v_ngood, __pyx_v_nbad, __pyx_v_nsample, __pyx_v_size); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_96hypergeometric(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_ngood, PyObject *__pyx_v_nbad, PyObject *__pyx_v_nsample, PyObject *__pyx_v_size) { CYTHON_UNUSED int __pyx_v_is_scalar; PyArrayObject *__pyx_v_ongood = 0; PyArrayObject *__pyx_v_onbad = 0; PyArrayObject *__pyx_v_onsample = 0; int64_t __pyx_v_lngood; int64_t __pyx_v_lnbad; int64_t __pyx_v_lnsample; PyObject *__pyx_v_out = NULL; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; int __pyx_t_3; int __pyx_t_4; int __pyx_t_5; int __pyx_t_6; int64_t __pyx_t_7; PyObject *__pyx_t_8 = NULL; PyObject *__pyx_t_9 = NULL; PyObject *__pyx_t_10 = NULL; PyObject *__pyx_t_11 = NULL; PyObject *__pyx_t_12 = NULL; PyObject *__pyx_t_13 = NULL; __Pyx_RefNannySetupContext("hypergeometric", 0); /* "numpy/random/mtrand.pyx":3494 * * """ * cdef bint is_scalar = True # <<<<<<<<<<<<<< * cdef np.ndarray ongood, onbad, onsample * cdef int64_t lngood, lnbad, lnsample */ __pyx_v_is_scalar = 1; /* "numpy/random/mtrand.pyx":3499 * * # This cast to long is required to ensure that the values are inbounds * ongood = np.PyArray_FROM_OTF(ngood, np.NPY_LONG, np.NPY_ALIGNED) # <<<<<<<<<<<<<< * onbad = np.PyArray_FROM_OTF(nbad, np.NPY_LONG, np.NPY_ALIGNED) * onsample = np.PyArray_FROM_OTF(nsample, np.NPY_LONG, np.NPY_ALIGNED) */ __pyx_t_1 = PyArray_FROM_OTF(__pyx_v_ngood, NPY_LONG, NPY_ALIGNED); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 3499, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = __pyx_t_1; __Pyx_INCREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_v_ongood = ((PyArrayObject *)__pyx_t_2); __pyx_t_2 = 0; /* "numpy/random/mtrand.pyx":3500 * # This cast to long is required to ensure that the values are inbounds * ongood = np.PyArray_FROM_OTF(ngood, np.NPY_LONG, np.NPY_ALIGNED) * onbad = np.PyArray_FROM_OTF(nbad, np.NPY_LONG, np.NPY_ALIGNED) # <<<<<<<<<<<<<< * onsample = np.PyArray_FROM_OTF(nsample, np.NPY_LONG, np.NPY_ALIGNED) * */ __pyx_t_2 = PyArray_FROM_OTF(__pyx_v_nbad, NPY_LONG, NPY_ALIGNED); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 3500, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_1 = __pyx_t_2; __Pyx_INCREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_v_onbad = ((PyArrayObject *)__pyx_t_1); __pyx_t_1 = 0; /* "numpy/random/mtrand.pyx":3501 * ongood = np.PyArray_FROM_OTF(ngood, np.NPY_LONG, np.NPY_ALIGNED) * onbad = np.PyArray_FROM_OTF(nbad, np.NPY_LONG, np.NPY_ALIGNED) * onsample = np.PyArray_FROM_OTF(nsample, np.NPY_LONG, np.NPY_ALIGNED) # <<<<<<<<<<<<<< * * if np.PyArray_NDIM(ongood) == np.PyArray_NDIM(onbad) == np.PyArray_NDIM(onsample) == 0: */ __pyx_t_1 = PyArray_FROM_OTF(__pyx_v_nsample, NPY_LONG, NPY_ALIGNED); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 3501, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = __pyx_t_1; __Pyx_INCREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_v_onsample = ((PyArrayObject *)__pyx_t_2); __pyx_t_2 = 0; /* "numpy/random/mtrand.pyx":3503 * onsample = np.PyArray_FROM_OTF(nsample, np.NPY_LONG, np.NPY_ALIGNED) * * if np.PyArray_NDIM(ongood) == np.PyArray_NDIM(onbad) == np.PyArray_NDIM(onsample) == 0: # <<<<<<<<<<<<<< * * lngood = ngood */ __pyx_t_3 = PyArray_NDIM(__pyx_v_onbad); __pyx_t_4 = (PyArray_NDIM(__pyx_v_ongood) == __pyx_t_3); if (__pyx_t_4) { __pyx_t_5 = PyArray_NDIM(__pyx_v_onsample); __pyx_t_4 = (__pyx_t_3 == __pyx_t_5); if (__pyx_t_4) { __pyx_t_4 = (__pyx_t_5 == 0); } } __pyx_t_6 = (__pyx_t_4 != 0); if (__pyx_t_6) { /* "numpy/random/mtrand.pyx":3505 * if np.PyArray_NDIM(ongood) == np.PyArray_NDIM(onbad) == np.PyArray_NDIM(onsample) == 0: * * lngood = ngood # <<<<<<<<<<<<<< * lnbad = nbad * lnsample = nsample */ __pyx_t_7 = __Pyx_PyInt_As_int64_t(__pyx_v_ngood); if (unlikely((__pyx_t_7 == ((int64_t)-1)) && PyErr_Occurred())) __PYX_ERR(0, 3505, __pyx_L1_error) __pyx_v_lngood = ((int64_t)__pyx_t_7); /* "numpy/random/mtrand.pyx":3506 * * lngood = ngood * lnbad = nbad # <<<<<<<<<<<<<< * lnsample = nsample * */ __pyx_t_7 = __Pyx_PyInt_As_int64_t(__pyx_v_nbad); if (unlikely((__pyx_t_7 == ((int64_t)-1)) && PyErr_Occurred())) __PYX_ERR(0, 3506, __pyx_L1_error) __pyx_v_lnbad = ((int64_t)__pyx_t_7); /* "numpy/random/mtrand.pyx":3507 * lngood = ngood * lnbad = nbad * lnsample = nsample # <<<<<<<<<<<<<< * * if lngood + lnbad < lnsample: */ __pyx_t_7 = __Pyx_PyInt_As_int64_t(__pyx_v_nsample); if (unlikely((__pyx_t_7 == ((int64_t)-1)) && PyErr_Occurred())) __PYX_ERR(0, 3507, __pyx_L1_error) __pyx_v_lnsample = ((int64_t)__pyx_t_7); /* "numpy/random/mtrand.pyx":3509 * lnsample = nsample * * if lngood + lnbad < lnsample: # <<<<<<<<<<<<<< * raise ValueError("ngood + nbad < nsample") * out = disc(&legacy_random_hypergeometric, &self._bitgen, size, self.lock, 0, 3, */ __pyx_t_6 = (((__pyx_v_lngood + __pyx_v_lnbad) < __pyx_v_lnsample) != 0); if (unlikely(__pyx_t_6)) { /* "numpy/random/mtrand.pyx":3510 * * if lngood + lnbad < lnsample: * raise ValueError("ngood + nbad < nsample") # <<<<<<<<<<<<<< * out = disc(&legacy_random_hypergeometric, &self._bitgen, size, self.lock, 0, 3, * lngood, 'ngood', CONS_NON_NEGATIVE, */ __pyx_t_2 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__34, NULL); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 3510, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_Raise(__pyx_t_2, 0, 0, 0); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __PYX_ERR(0, 3510, __pyx_L1_error) /* "numpy/random/mtrand.pyx":3509 * lnsample = nsample * * if lngood + lnbad < lnsample: # <<<<<<<<<<<<<< * raise ValueError("ngood + nbad < nsample") * out = disc(&legacy_random_hypergeometric, &self._bitgen, size, self.lock, 0, 3, */ } /* "numpy/random/mtrand.pyx":3511 * if lngood + lnbad < lnsample: * raise ValueError("ngood + nbad < nsample") * out = disc(&legacy_random_hypergeometric, &self._bitgen, size, self.lock, 0, 3, # <<<<<<<<<<<<<< * lngood, 'ngood', CONS_NON_NEGATIVE, * lnbad, 'nbad', CONS_NON_NEGATIVE, */ __pyx_t_2 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_2); /* "numpy/random/mtrand.pyx":3512 * raise ValueError("ngood + nbad < nsample") * out = disc(&legacy_random_hypergeometric, &self._bitgen, size, self.lock, 0, 3, * lngood, 'ngood', CONS_NON_NEGATIVE, # <<<<<<<<<<<<<< * lnbad, 'nbad', CONS_NON_NEGATIVE, * lnsample, 'nsample', CONS_GTE_1) */ __pyx_t_1 = __Pyx_PyInt_From_int64_t(__pyx_v_lngood); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 3512, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); /* "numpy/random/mtrand.pyx":3513 * out = disc(&legacy_random_hypergeometric, &self._bitgen, size, self.lock, 0, 3, * lngood, 'ngood', CONS_NON_NEGATIVE, * lnbad, 'nbad', CONS_NON_NEGATIVE, # <<<<<<<<<<<<<< * lnsample, 'nsample', CONS_GTE_1) * # Match historical output type */ __pyx_t_8 = __Pyx_PyInt_From_int64_t(__pyx_v_lnbad); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 3513, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_8); /* "numpy/random/mtrand.pyx":3514 * lngood, 'ngood', CONS_NON_NEGATIVE, * lnbad, 'nbad', CONS_NON_NEGATIVE, * lnsample, 'nsample', CONS_GTE_1) # <<<<<<<<<<<<<< * # Match historical output type * return int64_to_long(out) */ __pyx_t_9 = __Pyx_PyInt_From_int64_t(__pyx_v_lnsample); if (unlikely(!__pyx_t_9)) __PYX_ERR(0, 3514, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_9); /* "numpy/random/mtrand.pyx":3511 * if lngood + lnbad < lnsample: * raise ValueError("ngood + nbad < nsample") * out = disc(&legacy_random_hypergeometric, &self._bitgen, size, self.lock, 0, 3, # <<<<<<<<<<<<<< * lngood, 'ngood', CONS_NON_NEGATIVE, * lnbad, 'nbad', CONS_NON_NEGATIVE, */ __pyx_t_10 = __pyx_f_5numpy_6random_6common_disc((&legacy_random_hypergeometric), (&__pyx_v_self->_bitgen), __pyx_v_size, __pyx_t_2, 0, 3, __pyx_t_1, __pyx_n_u_ngood, __pyx_e_5numpy_6random_6common_CONS_NON_NEGATIVE, __pyx_t_8, __pyx_n_u_nbad, __pyx_e_5numpy_6random_6common_CONS_NON_NEGATIVE, __pyx_t_9, __pyx_n_u_nsample, __pyx_e_5numpy_6random_6common_CONS_GTE_1); if (unlikely(!__pyx_t_10)) __PYX_ERR(0, 3511, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_10); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; __pyx_v_out = __pyx_t_10; __pyx_t_10 = 0; /* "numpy/random/mtrand.pyx":3516 * lnsample, 'nsample', CONS_GTE_1) * # Match historical output type * return int64_to_long(out) # <<<<<<<<<<<<<< * * if np.any(np.less(np.add(ongood, onbad), onsample)): */ __Pyx_XDECREF(__pyx_r); __pyx_t_10 = __pyx_f_5numpy_6random_6mtrand_int64_to_long(__pyx_v_out); if (unlikely(!__pyx_t_10)) __PYX_ERR(0, 3516, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_10); __pyx_r = __pyx_t_10; __pyx_t_10 = 0; goto __pyx_L0; /* "numpy/random/mtrand.pyx":3503 * onsample = np.PyArray_FROM_OTF(nsample, np.NPY_LONG, np.NPY_ALIGNED) * * if np.PyArray_NDIM(ongood) == np.PyArray_NDIM(onbad) == np.PyArray_NDIM(onsample) == 0: # <<<<<<<<<<<<<< * * lngood = ngood */ } /* "numpy/random/mtrand.pyx":3518 * return int64_to_long(out) * * if np.any(np.less(np.add(ongood, onbad), onsample)): # <<<<<<<<<<<<<< * raise ValueError("ngood + nbad < nsample") * # Convert to int64, if necessary, to use int64 infrastructure */ __Pyx_GetModuleGlobalName(__pyx_t_9, __pyx_n_s_np); if (unlikely(!__pyx_t_9)) __PYX_ERR(0, 3518, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_9); __pyx_t_8 = __Pyx_PyObject_GetAttrStr(__pyx_t_9, __pyx_n_s_any); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 3518, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_8); __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; __Pyx_GetModuleGlobalName(__pyx_t_1, __pyx_n_s_np); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 3518, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_less); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 3518, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_GetModuleGlobalName(__pyx_t_11, __pyx_n_s_np); if (unlikely(!__pyx_t_11)) __PYX_ERR(0, 3518, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_11); __pyx_t_12 = __Pyx_PyObject_GetAttrStr(__pyx_t_11, __pyx_n_s_add); if (unlikely(!__pyx_t_12)) __PYX_ERR(0, 3518, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_12); __Pyx_DECREF(__pyx_t_11); __pyx_t_11 = 0; __pyx_t_11 = NULL; __pyx_t_3 = 0; if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_12))) { __pyx_t_11 = PyMethod_GET_SELF(__pyx_t_12); if (likely(__pyx_t_11)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_12); __Pyx_INCREF(__pyx_t_11); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_12, function); __pyx_t_3 = 1; } } #if CYTHON_FAST_PYCALL if (PyFunction_Check(__pyx_t_12)) { PyObject *__pyx_temp[3] = {__pyx_t_11, ((PyObject *)__pyx_v_ongood), ((PyObject *)__pyx_v_onbad)}; __pyx_t_1 = __Pyx_PyFunction_FastCall(__pyx_t_12, __pyx_temp+1-__pyx_t_3, 2+__pyx_t_3); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 3518, __pyx_L1_error) __Pyx_XDECREF(__pyx_t_11); __pyx_t_11 = 0; __Pyx_GOTREF(__pyx_t_1); } else #endif #if CYTHON_FAST_PYCCALL if (__Pyx_PyFastCFunction_Check(__pyx_t_12)) { PyObject *__pyx_temp[3] = {__pyx_t_11, ((PyObject *)__pyx_v_ongood), ((PyObject *)__pyx_v_onbad)}; __pyx_t_1 = __Pyx_PyCFunction_FastCall(__pyx_t_12, __pyx_temp+1-__pyx_t_3, 2+__pyx_t_3); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 3518, __pyx_L1_error) __Pyx_XDECREF(__pyx_t_11); __pyx_t_11 = 0; __Pyx_GOTREF(__pyx_t_1); } else #endif { __pyx_t_13 = PyTuple_New(2+__pyx_t_3); if (unlikely(!__pyx_t_13)) __PYX_ERR(0, 3518, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_13); if (__pyx_t_11) { __Pyx_GIVEREF(__pyx_t_11); PyTuple_SET_ITEM(__pyx_t_13, 0, __pyx_t_11); __pyx_t_11 = NULL; } __Pyx_INCREF(((PyObject *)__pyx_v_ongood)); __Pyx_GIVEREF(((PyObject *)__pyx_v_ongood)); PyTuple_SET_ITEM(__pyx_t_13, 0+__pyx_t_3, ((PyObject *)__pyx_v_ongood)); __Pyx_INCREF(((PyObject *)__pyx_v_onbad)); __Pyx_GIVEREF(((PyObject *)__pyx_v_onbad)); PyTuple_SET_ITEM(__pyx_t_13, 1+__pyx_t_3, ((PyObject *)__pyx_v_onbad)); __pyx_t_1 = __Pyx_PyObject_Call(__pyx_t_12, __pyx_t_13, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 3518, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_13); __pyx_t_13 = 0; } __Pyx_DECREF(__pyx_t_12); __pyx_t_12 = 0; __pyx_t_12 = NULL; __pyx_t_3 = 0; if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_2))) { __pyx_t_12 = PyMethod_GET_SELF(__pyx_t_2); if (likely(__pyx_t_12)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_2); __Pyx_INCREF(__pyx_t_12); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_2, function); __pyx_t_3 = 1; } } #if CYTHON_FAST_PYCALL if (PyFunction_Check(__pyx_t_2)) { PyObject *__pyx_temp[3] = {__pyx_t_12, __pyx_t_1, ((PyObject *)__pyx_v_onsample)}; __pyx_t_9 = __Pyx_PyFunction_FastCall(__pyx_t_2, __pyx_temp+1-__pyx_t_3, 2+__pyx_t_3); if (unlikely(!__pyx_t_9)) __PYX_ERR(0, 3518, __pyx_L1_error) __Pyx_XDECREF(__pyx_t_12); __pyx_t_12 = 0; __Pyx_GOTREF(__pyx_t_9); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; } else #endif #if CYTHON_FAST_PYCCALL if (__Pyx_PyFastCFunction_Check(__pyx_t_2)) { PyObject *__pyx_temp[3] = {__pyx_t_12, __pyx_t_1, ((PyObject *)__pyx_v_onsample)}; __pyx_t_9 = __Pyx_PyCFunction_FastCall(__pyx_t_2, __pyx_temp+1-__pyx_t_3, 2+__pyx_t_3); if (unlikely(!__pyx_t_9)) __PYX_ERR(0, 3518, __pyx_L1_error) __Pyx_XDECREF(__pyx_t_12); __pyx_t_12 = 0; __Pyx_GOTREF(__pyx_t_9); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; } else #endif { __pyx_t_13 = PyTuple_New(2+__pyx_t_3); if (unlikely(!__pyx_t_13)) __PYX_ERR(0, 3518, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_13); if (__pyx_t_12) { __Pyx_GIVEREF(__pyx_t_12); PyTuple_SET_ITEM(__pyx_t_13, 0, __pyx_t_12); __pyx_t_12 = NULL; } __Pyx_GIVEREF(__pyx_t_1); PyTuple_SET_ITEM(__pyx_t_13, 0+__pyx_t_3, __pyx_t_1); __Pyx_INCREF(((PyObject *)__pyx_v_onsample)); __Pyx_GIVEREF(((PyObject *)__pyx_v_onsample)); PyTuple_SET_ITEM(__pyx_t_13, 1+__pyx_t_3, ((PyObject *)__pyx_v_onsample)); __pyx_t_1 = 0; __pyx_t_9 = __Pyx_PyObject_Call(__pyx_t_2, __pyx_t_13, NULL); if (unlikely(!__pyx_t_9)) __PYX_ERR(0, 3518, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_9); __Pyx_DECREF(__pyx_t_13); __pyx_t_13 = 0; } __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = NULL; if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_8))) { __pyx_t_2 = PyMethod_GET_SELF(__pyx_t_8); if (likely(__pyx_t_2)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_8); __Pyx_INCREF(__pyx_t_2); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_8, function); } } __pyx_t_10 = (__pyx_t_2) ? __Pyx_PyObject_Call2Args(__pyx_t_8, __pyx_t_2, __pyx_t_9) : __Pyx_PyObject_CallOneArg(__pyx_t_8, __pyx_t_9); __Pyx_XDECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; if (unlikely(!__pyx_t_10)) __PYX_ERR(0, 3518, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_10); __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_10); if (unlikely(__pyx_t_6 < 0)) __PYX_ERR(0, 3518, __pyx_L1_error) __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0; if (unlikely(__pyx_t_6)) { /* "numpy/random/mtrand.pyx":3519 * * if np.any(np.less(np.add(ongood, onbad), onsample)): * raise ValueError("ngood + nbad < nsample") # <<<<<<<<<<<<<< * # Convert to int64, if necessary, to use int64 infrastructure * ongood = ongood.astype(np.int64) */ __pyx_t_10 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__34, NULL); if (unlikely(!__pyx_t_10)) __PYX_ERR(0, 3519, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_10); __Pyx_Raise(__pyx_t_10, 0, 0, 0); __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0; __PYX_ERR(0, 3519, __pyx_L1_error) /* "numpy/random/mtrand.pyx":3518 * return int64_to_long(out) * * if np.any(np.less(np.add(ongood, onbad), onsample)): # <<<<<<<<<<<<<< * raise ValueError("ngood + nbad < nsample") * # Convert to int64, if necessary, to use int64 infrastructure */ } /* "numpy/random/mtrand.pyx":3521 * raise ValueError("ngood + nbad < nsample") * # Convert to int64, if necessary, to use int64 infrastructure * ongood = ongood.astype(np.int64) # <<<<<<<<<<<<<< * onbad = onbad.astype(np.int64) * onsample = onsample.astype(np.int64) */ __pyx_t_8 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_ongood), __pyx_n_s_astype); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 3521, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_8); __Pyx_GetModuleGlobalName(__pyx_t_9, __pyx_n_s_np); if (unlikely(!__pyx_t_9)) __PYX_ERR(0, 3521, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_9); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_9, __pyx_n_s_int64); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 3521, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; __pyx_t_9 = NULL; if (CYTHON_UNPACK_METHODS && likely(PyMethod_Check(__pyx_t_8))) { __pyx_t_9 = PyMethod_GET_SELF(__pyx_t_8); if (likely(__pyx_t_9)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_8); __Pyx_INCREF(__pyx_t_9); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_8, function); } } __pyx_t_10 = (__pyx_t_9) ? __Pyx_PyObject_Call2Args(__pyx_t_8, __pyx_t_9, __pyx_t_2) : __Pyx_PyObject_CallOneArg(__pyx_t_8, __pyx_t_2); __Pyx_XDECREF(__pyx_t_9); __pyx_t_9 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; if (unlikely(!__pyx_t_10)) __PYX_ERR(0, 3521, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_10); __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; if (!(likely(((__pyx_t_10) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_10, __pyx_ptype_5numpy_ndarray))))) __PYX_ERR(0, 3521, __pyx_L1_error) __Pyx_DECREF_SET(__pyx_v_ongood, ((PyArrayObject *)__pyx_t_10)); __pyx_t_10 = 0; /* "numpy/random/mtrand.pyx":3522 * # Convert to int64, if necessary, to use int64 infrastructure * ongood = ongood.astype(np.int64) * onbad = onbad.astype(np.int64) # <<<<<<<<<<<<<< * onsample = onsample.astype(np.int64) * out = discrete_broadcast_iii(&legacy_random_hypergeometric,&self._bitgen, size, self.lock, */ __pyx_t_8 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_onbad), __pyx_n_s_astype); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 3522, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_8); __Pyx_GetModuleGlobalName(__pyx_t_2, __pyx_n_s_np); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 3522, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_9 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_int64); if (unlikely(!__pyx_t_9)) __PYX_ERR(0, 3522, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_9); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = NULL; if (CYTHON_UNPACK_METHODS && likely(PyMethod_Check(__pyx_t_8))) { __pyx_t_2 = PyMethod_GET_SELF(__pyx_t_8); if (likely(__pyx_t_2)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_8); __Pyx_INCREF(__pyx_t_2); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_8, function); } } __pyx_t_10 = (__pyx_t_2) ? __Pyx_PyObject_Call2Args(__pyx_t_8, __pyx_t_2, __pyx_t_9) : __Pyx_PyObject_CallOneArg(__pyx_t_8, __pyx_t_9); __Pyx_XDECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; if (unlikely(!__pyx_t_10)) __PYX_ERR(0, 3522, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_10); __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; if (!(likely(((__pyx_t_10) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_10, __pyx_ptype_5numpy_ndarray))))) __PYX_ERR(0, 3522, __pyx_L1_error) __Pyx_DECREF_SET(__pyx_v_onbad, ((PyArrayObject *)__pyx_t_10)); __pyx_t_10 = 0; /* "numpy/random/mtrand.pyx":3523 * ongood = ongood.astype(np.int64) * onbad = onbad.astype(np.int64) * onsample = onsample.astype(np.int64) # <<<<<<<<<<<<<< * out = discrete_broadcast_iii(&legacy_random_hypergeometric,&self._bitgen, size, self.lock, * ongood, 'ngood', CONS_NON_NEGATIVE, */ __pyx_t_8 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_onsample), __pyx_n_s_astype); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 3523, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_8); __Pyx_GetModuleGlobalName(__pyx_t_9, __pyx_n_s_np); if (unlikely(!__pyx_t_9)) __PYX_ERR(0, 3523, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_9); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_9, __pyx_n_s_int64); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 3523, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; __pyx_t_9 = NULL; if (CYTHON_UNPACK_METHODS && likely(PyMethod_Check(__pyx_t_8))) { __pyx_t_9 = PyMethod_GET_SELF(__pyx_t_8); if (likely(__pyx_t_9)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_8); __Pyx_INCREF(__pyx_t_9); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_8, function); } } __pyx_t_10 = (__pyx_t_9) ? __Pyx_PyObject_Call2Args(__pyx_t_8, __pyx_t_9, __pyx_t_2) : __Pyx_PyObject_CallOneArg(__pyx_t_8, __pyx_t_2); __Pyx_XDECREF(__pyx_t_9); __pyx_t_9 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; if (unlikely(!__pyx_t_10)) __PYX_ERR(0, 3523, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_10); __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; if (!(likely(((__pyx_t_10) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_10, __pyx_ptype_5numpy_ndarray))))) __PYX_ERR(0, 3523, __pyx_L1_error) __Pyx_DECREF_SET(__pyx_v_onsample, ((PyArrayObject *)__pyx_t_10)); __pyx_t_10 = 0; /* "numpy/random/mtrand.pyx":3524 * onbad = onbad.astype(np.int64) * onsample = onsample.astype(np.int64) * out = discrete_broadcast_iii(&legacy_random_hypergeometric,&self._bitgen, size, self.lock, # <<<<<<<<<<<<<< * ongood, 'ngood', CONS_NON_NEGATIVE, * onbad, 'nbad', CONS_NON_NEGATIVE, */ __pyx_t_10 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_10); /* "numpy/random/mtrand.pyx":3527 * ongood, 'ngood', CONS_NON_NEGATIVE, * onbad, 'nbad', CONS_NON_NEGATIVE, * onsample, 'nsample', CONS_GTE_1) # <<<<<<<<<<<<<< * # Match historical output type * return int64_to_long(out) */ __pyx_t_8 = __pyx_f_5numpy_6random_6common_discrete_broadcast_iii((&legacy_random_hypergeometric), (&__pyx_v_self->_bitgen), __pyx_v_size, __pyx_t_10, __pyx_v_ongood, __pyx_n_u_ngood, __pyx_e_5numpy_6random_6common_CONS_NON_NEGATIVE, __pyx_v_onbad, __pyx_n_u_nbad, __pyx_e_5numpy_6random_6common_CONS_NON_NEGATIVE, __pyx_v_onsample, __pyx_n_u_nsample, __pyx_e_5numpy_6random_6common_CONS_GTE_1); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 3524, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_8); __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0; __pyx_v_out = __pyx_t_8; __pyx_t_8 = 0; /* "numpy/random/mtrand.pyx":3529 * onsample, 'nsample', CONS_GTE_1) * # Match historical output type * return int64_to_long(out) # <<<<<<<<<<<<<< * * def logseries(self, p, size=None): */ __Pyx_XDECREF(__pyx_r); __pyx_t_8 = __pyx_f_5numpy_6random_6mtrand_int64_to_long(__pyx_v_out); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 3529, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_8); __pyx_r = __pyx_t_8; __pyx_t_8 = 0; goto __pyx_L0; /* "numpy/random/mtrand.pyx":3403 * return int64_to_long(out) * * def hypergeometric(self, ngood, nbad, nsample, size=None): # <<<<<<<<<<<<<< * """ * hypergeometric(ngood, nbad, nsample, size=None) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_8); __Pyx_XDECREF(__pyx_t_9); __Pyx_XDECREF(__pyx_t_10); __Pyx_XDECREF(__pyx_t_11); __Pyx_XDECREF(__pyx_t_12); __Pyx_XDECREF(__pyx_t_13); __Pyx_AddTraceback("numpy.random.mtrand.RandomState.hypergeometric", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XDECREF((PyObject *)__pyx_v_ongood); __Pyx_XDECREF((PyObject *)__pyx_v_onbad); __Pyx_XDECREF((PyObject *)__pyx_v_onsample); __Pyx_XDECREF(__pyx_v_out); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "numpy/random/mtrand.pyx":3531 * return int64_to_long(out) * * def logseries(self, p, size=None): # <<<<<<<<<<<<<< * """ * logseries(p, size=None) */ /* Python wrapper */ static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_99logseries(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static char __pyx_doc_5numpy_6random_6mtrand_11RandomState_98logseries[] = "\n logseries(p, size=None)\n\n Draw samples from a logarithmic series distribution.\n\n Samples are drawn from a log series distribution with specified\n shape parameter, 0 < ``p`` < 1.\n\n Parameters\n ----------\n p : float or array_like of floats\n Shape parameter for the distribution. Must be in the range (0, 1).\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. If size is ``None`` (default),\n a single value is returned if ``p`` is a scalar. Otherwise,\n ``np.array(p).size`` samples are drawn.\n\n Returns\n -------\n out : ndarray or scalar\n Drawn samples from the parameterized logarithmic series distribution.\n\n See Also\n --------\n scipy.stats.logser : probability density function, distribution or\n cumulative density function, etc.\n\n Notes\n -----\n The probability density for the Log Series distribution is\n\n .. math:: P(k) = \\frac{-p^k}{k \\ln(1-p)},\n\n where p = probability.\n\n The log series distribution is frequently used to represent species\n richness and occurrence, first proposed by Fisher, Corbet, and\n Williams in 1943 [2]. It may also be used to model the numbers of\n occupants seen in cars [3].\n\n References\n ----------\n .. [1] Buzas, Martin A.; Culver, Stephen J., Understanding regional\n species diversity through the log series distribution of\n occurrences: BIODIVERSITY RESEARCH Diversity & Distributions,\n Volume 5, Number 5, September 1999 , pp. 187-195(9).\n .. [2] Fisher, R.A,, A.S. Corbet, and C.B. Williams. 1943. The\n relation between the number of species and the number of\n individuals in a random ""sample of an animal population.\n Journal of Animal Ecology, 12:42-58.\n .. [3] D. J. Hand, F. Daly, D. Lunn, E. Ostrowski, A Handbook of Small\n Data Sets, CRC Press, 1994.\n .. [4] Wikipedia, \"Logarithmic distribution\",\n https://en.wikipedia.org/wiki/Logarithmic_distribution\n\n Examples\n --------\n Draw samples from the distribution:\n\n >>> a = .6\n >>> s = np.random.logseries(a, 10000)\n >>> import matplotlib.pyplot as plt\n >>> count, bins, ignored = plt.hist(s)\n\n # plot against distribution\n\n >>> def logseries(k, p):\n ... return -p**k/(k*np.log(1-p))\n >>> plt.plot(bins, logseries(bins, a)*count.max()/\n ... logseries(bins, a).max(), 'r')\n >>> plt.show()\n\n "; static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_99logseries(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_p = 0; PyObject *__pyx_v_size = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("logseries (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_p,&__pyx_n_s_size,0}; PyObject* values[2] = {0,0}; values[1] = ((PyObject *)Py_None); if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); CYTHON_FALLTHROUGH; case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); CYTHON_FALLTHROUGH; case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (likely((values[0] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_p)) != 0)) kw_args--; else goto __pyx_L5_argtuple_error; CYTHON_FALLTHROUGH; case 1: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_size); if (value) { values[1] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "logseries") < 0)) __PYX_ERR(0, 3531, __pyx_L3_error) } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); CYTHON_FALLTHROUGH; case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_p = values[0]; __pyx_v_size = values[1]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("logseries", 0, 1, 2, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(0, 3531, __pyx_L3_error) __pyx_L3_error:; __Pyx_AddTraceback("numpy.random.mtrand.RandomState.logseries", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_5numpy_6random_6mtrand_11RandomState_98logseries(((struct __pyx_obj_5numpy_6random_6mtrand_RandomState *)__pyx_v_self), __pyx_v_p, __pyx_v_size); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_98logseries(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_p, PyObject *__pyx_v_size) { PyObject *__pyx_v_out = NULL; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; __Pyx_RefNannySetupContext("logseries", 0); /* "numpy/random/mtrand.pyx":3606 * * """ * out = disc(&legacy_random_logseries, &self._bitgen, size, self.lock, 1, 0, # <<<<<<<<<<<<<< * p, 'p', CONS_BOUNDED_0_1, * 0.0, '', CONS_NONE, */ __pyx_t_1 = __pyx_v_self->lock; __Pyx_INCREF(__pyx_t_1); /* "numpy/random/mtrand.pyx":3609 * p, 'p', CONS_BOUNDED_0_1, * 0.0, '', CONS_NONE, * 0.0, '', CONS_NONE) # <<<<<<<<<<<<<< * # Match historical output type * return int64_to_long(out) */ __pyx_t_2 = __pyx_f_5numpy_6random_6common_disc((&legacy_random_logseries), (&__pyx_v_self->_bitgen), __pyx_v_size, __pyx_t_1, 1, 0, __pyx_v_p, __pyx_n_u_p, __pyx_e_5numpy_6random_6common_CONS_BOUNDED_0_1, __pyx_float_0_0, __pyx_kp_u__12, __pyx_e_5numpy_6random_6common_CONS_NONE, __pyx_float_0_0, __pyx_kp_u__12, __pyx_e_5numpy_6random_6common_CONS_NONE); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 3606, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_v_out = __pyx_t_2; __pyx_t_2 = 0; /* "numpy/random/mtrand.pyx":3611 * 0.0, '', CONS_NONE) * # Match historical output type * return int64_to_long(out) # <<<<<<<<<<<<<< * * # Multivariate distributions: */ __Pyx_XDECREF(__pyx_r); __pyx_t_2 = __pyx_f_5numpy_6random_6mtrand_int64_to_long(__pyx_v_out); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 3611, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_r = __pyx_t_2; __pyx_t_2 = 0; goto __pyx_L0; /* "numpy/random/mtrand.pyx":3531 * return int64_to_long(out) * * def logseries(self, p, size=None): # <<<<<<<<<<<<<< * """ * logseries(p, size=None) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_AddTraceback("numpy.random.mtrand.RandomState.logseries", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XDECREF(__pyx_v_out); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "numpy/random/mtrand.pyx":3614 * * # Multivariate distributions: * def multivariate_normal(self, mean, cov, size=None, check_valid='warn', # <<<<<<<<<<<<<< * tol=1e-8): * """ */ /* Python wrapper */ static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_101multivariate_normal(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static char __pyx_doc_5numpy_6random_6mtrand_11RandomState_100multivariate_normal[] = "\n multivariate_normal(mean, cov, size=None, check_valid='warn', tol=1e-8)\n\n Draw random samples from a multivariate normal distribution.\n\n The multivariate normal, multinormal or Gaussian distribution is a\n generalization of the one-dimensional normal distribution to higher\n dimensions. Such a distribution is specified by its mean and\n covariance matrix. These parameters are analogous to the mean\n (average or \"center\") and variance (standard deviation, or \"width,\"\n squared) of the one-dimensional normal distribution.\n\n Parameters\n ----------\n mean : 1-D array_like, of length N\n Mean of the N-dimensional distribution.\n cov : 2-D array_like, of shape (N, N)\n Covariance matrix of the distribution. It must be symmetric and\n positive-semidefinite for proper sampling.\n size : int or tuple of ints, optional\n Given a shape of, for example, ``(m,n,k)``, ``m*n*k`` samples are\n generated, and packed in an `m`-by-`n`-by-`k` arrangement. Because\n each sample is `N`-dimensional, the output shape is ``(m,n,k,N)``.\n If no shape is specified, a single (`N`-D) sample is returned.\n check_valid : { 'warn', 'raise', 'ignore' }, optional\n Behavior when the covariance matrix is not positive semidefinite.\n tol : float, optional\n Tolerance when checking the singular values in covariance matrix.\n cov is cast to double before the check.\n\n Returns\n -------\n out : ndarray\n The drawn samples, of shape *size*, if that was provided. If not,\n the shape is ``(N,)``.\n\n In other words, each entry ``out[i,j,...,:]`` is an N-dimensional\n value drawn from the distribution.\n\n Notes\n -----\n The mean is a coordinate in N-dimensional space, which represents the""\n location where samples are most likely to be generated. This is\n analogous to the peak of the bell curve for the one-dimensional or\n univariate normal distribution.\n\n Covariance indicates the level to which two variables vary together.\n From the multivariate normal distribution, we draw N-dimensional\n samples, :math:`X = [x_1, x_2, ... x_N]`. The covariance matrix\n element :math:`C_{ij}` is the covariance of :math:`x_i` and :math:`x_j`.\n The element :math:`C_{ii}` is the variance of :math:`x_i` (i.e. its\n \"spread\").\n\n Instead of specifying the full covariance matrix, popular\n approximations include:\n\n - Spherical covariance (`cov` is a multiple of the identity matrix)\n - Diagonal covariance (`cov` has non-negative elements, and only on\n the diagonal)\n\n This geometrical property can be seen in two dimensions by plotting\n generated data-points:\n\n >>> mean = [0, 0]\n >>> cov = [[1, 0], [0, 100]] # diagonal covariance\n\n Diagonal covariance means that points are oriented along x or y-axis:\n\n >>> import matplotlib.pyplot as plt\n >>> x, y = np.random.multivariate_normal(mean, cov, 5000).T\n >>> plt.plot(x, y, 'x')\n >>> plt.axis('equal')\n >>> plt.show()\n\n Note that the covariance matrix must be positive semidefinite (a.k.a.\n nonnegative-definite). Otherwise, the behavior of this method is\n undefined and backwards compatibility is not guaranteed.\n\n References\n ----------\n .. [1] Papoulis, A., \"Probability, Random Variables, and Stochastic\n Processes,\" 3rd ed., New York: McGraw-Hill, 1991.\n .. [2] Duda, R. O., Hart, P. E., and Stork, D. G., \"Pattern\n Classification,\" 2nd ed., New York: Wiley, 2001.\n\n Examples\n --------\n >>> mean = (1, 2)\n >>> co""v = [[1, 0], [0, 1]]\n >>> x = np.random.multivariate_normal(mean, cov, (3, 3))\n >>> x.shape\n (3, 3, 2)\n\n The following is probably true, given that 0.6 is roughly twice the\n standard deviation:\n\n >>> list((x[0,0,:] - mean) < 0.6)\n [True, True] # random\n\n "; static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_101multivariate_normal(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_mean = 0; PyObject *__pyx_v_cov = 0; PyObject *__pyx_v_size = 0; PyObject *__pyx_v_check_valid = 0; PyObject *__pyx_v_tol = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("multivariate_normal (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_mean,&__pyx_n_s_cov,&__pyx_n_s_size,&__pyx_n_s_check_valid,&__pyx_n_s_tol,0}; PyObject* values[5] = {0,0,0,0,0}; values[2] = ((PyObject *)Py_None); values[3] = ((PyObject *)__pyx_n_u_warn); values[4] = ((PyObject *)__pyx_float_1eneg_8); if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 5: values[4] = PyTuple_GET_ITEM(__pyx_args, 4); CYTHON_FALLTHROUGH; case 4: values[3] = PyTuple_GET_ITEM(__pyx_args, 3); CYTHON_FALLTHROUGH; case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); CYTHON_FALLTHROUGH; case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); CYTHON_FALLTHROUGH; case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); CYTHON_FALLTHROUGH; case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (likely((values[0] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_mean)) != 0)) kw_args--; else goto __pyx_L5_argtuple_error; CYTHON_FALLTHROUGH; case 1: if (likely((values[1] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_cov)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("multivariate_normal", 0, 2, 5, 1); __PYX_ERR(0, 3614, __pyx_L3_error) } CYTHON_FALLTHROUGH; case 2: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_size); if (value) { values[2] = value; kw_args--; } } CYTHON_FALLTHROUGH; case 3: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_check_valid); if (value) { values[3] = value; kw_args--; } } CYTHON_FALLTHROUGH; case 4: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_tol); if (value) { values[4] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "multivariate_normal") < 0)) __PYX_ERR(0, 3614, __pyx_L3_error) } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 5: values[4] = PyTuple_GET_ITEM(__pyx_args, 4); CYTHON_FALLTHROUGH; case 4: values[3] = PyTuple_GET_ITEM(__pyx_args, 3); CYTHON_FALLTHROUGH; case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); CYTHON_FALLTHROUGH; case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); values[0] = PyTuple_GET_ITEM(__pyx_args, 0); break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_mean = values[0]; __pyx_v_cov = values[1]; __pyx_v_size = values[2]; __pyx_v_check_valid = values[3]; __pyx_v_tol = values[4]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("multivariate_normal", 0, 2, 5, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(0, 3614, __pyx_L3_error) __pyx_L3_error:; __Pyx_AddTraceback("numpy.random.mtrand.RandomState.multivariate_normal", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_5numpy_6random_6mtrand_11RandomState_100multivariate_normal(((struct __pyx_obj_5numpy_6random_6mtrand_RandomState *)__pyx_v_self), __pyx_v_mean, __pyx_v_cov, __pyx_v_size, __pyx_v_check_valid, __pyx_v_tol); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_100multivariate_normal(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_mean, PyObject *__pyx_v_cov, PyObject *__pyx_v_size, PyObject *__pyx_v_check_valid, PyObject *__pyx_v_tol) { PyObject *__pyx_v_svd = NULL; PyObject *__pyx_v_shape = NULL; PyObject *__pyx_v_final_shape = NULL; PyObject *__pyx_v_x = NULL; CYTHON_UNUSED PyObject *__pyx_v_u = NULL; PyObject *__pyx_v_s = NULL; PyObject *__pyx_v_v = NULL; PyObject *__pyx_v_psd = NULL; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; int __pyx_t_4; int __pyx_t_5; int __pyx_t_6; Py_ssize_t __pyx_t_7; int __pyx_t_8; PyObject *__pyx_t_9 = NULL; int __pyx_t_10; PyObject *__pyx_t_11 = NULL; PyObject *(*__pyx_t_12)(PyObject *); PyObject *__pyx_t_13 = NULL; __Pyx_RefNannySetupContext("multivariate_normal", 0); __Pyx_INCREF(__pyx_v_mean); __Pyx_INCREF(__pyx_v_cov); /* "numpy/random/mtrand.pyx":3716 * * """ * from numpy.dual import svd # <<<<<<<<<<<<<< * * # Check preconditions on arguments */ __pyx_t_1 = PyList_New(1); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 3716, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_INCREF(__pyx_n_s_svd); __Pyx_GIVEREF(__pyx_n_s_svd); PyList_SET_ITEM(__pyx_t_1, 0, __pyx_n_s_svd); __pyx_t_2 = __Pyx_Import(__pyx_n_s_numpy_dual, __pyx_t_1, 0); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 3716, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = __Pyx_ImportFrom(__pyx_t_2, __pyx_n_s_svd); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 3716, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_INCREF(__pyx_t_1); __pyx_v_svd = __pyx_t_1; __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; /* "numpy/random/mtrand.pyx":3719 * * # Check preconditions on arguments * mean = np.array(mean) # <<<<<<<<<<<<<< * cov = np.array(cov) * if size is None: */ __Pyx_GetModuleGlobalName(__pyx_t_1, __pyx_n_s_np); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 3719, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_array); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 3719, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = NULL; if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_3))) { __pyx_t_1 = PyMethod_GET_SELF(__pyx_t_3); if (likely(__pyx_t_1)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_3); __Pyx_INCREF(__pyx_t_1); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_3, function); } } __pyx_t_2 = (__pyx_t_1) ? __Pyx_PyObject_Call2Args(__pyx_t_3, __pyx_t_1, __pyx_v_mean) : __Pyx_PyObject_CallOneArg(__pyx_t_3, __pyx_v_mean); __Pyx_XDECREF(__pyx_t_1); __pyx_t_1 = 0; if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 3719, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF_SET(__pyx_v_mean, __pyx_t_2); __pyx_t_2 = 0; /* "numpy/random/mtrand.pyx":3720 * # Check preconditions on arguments * mean = np.array(mean) * cov = np.array(cov) # <<<<<<<<<<<<<< * if size is None: * shape = [] */ __Pyx_GetModuleGlobalName(__pyx_t_3, __pyx_n_s_np); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 3720, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_array); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 3720, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = NULL; if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_1))) { __pyx_t_3 = PyMethod_GET_SELF(__pyx_t_1); if (likely(__pyx_t_3)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_1); __Pyx_INCREF(__pyx_t_3); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_1, function); } } __pyx_t_2 = (__pyx_t_3) ? __Pyx_PyObject_Call2Args(__pyx_t_1, __pyx_t_3, __pyx_v_cov) : __Pyx_PyObject_CallOneArg(__pyx_t_1, __pyx_v_cov); __Pyx_XDECREF(__pyx_t_3); __pyx_t_3 = 0; if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 3720, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF_SET(__pyx_v_cov, __pyx_t_2); __pyx_t_2 = 0; /* "numpy/random/mtrand.pyx":3721 * mean = np.array(mean) * cov = np.array(cov) * if size is None: # <<<<<<<<<<<<<< * shape = [] * elif isinstance(size, (int, np.integer)): */ __pyx_t_4 = (__pyx_v_size == Py_None); __pyx_t_5 = (__pyx_t_4 != 0); if (__pyx_t_5) { /* "numpy/random/mtrand.pyx":3722 * cov = np.array(cov) * if size is None: * shape = [] # <<<<<<<<<<<<<< * elif isinstance(size, (int, np.integer)): * shape = [size] */ __pyx_t_2 = PyList_New(0); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 3722, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_v_shape = __pyx_t_2; __pyx_t_2 = 0; /* "numpy/random/mtrand.pyx":3721 * mean = np.array(mean) * cov = np.array(cov) * if size is None: # <<<<<<<<<<<<<< * shape = [] * elif isinstance(size, (int, np.integer)): */ goto __pyx_L3; } /* "numpy/random/mtrand.pyx":3723 * if size is None: * shape = [] * elif isinstance(size, (int, np.integer)): # <<<<<<<<<<<<<< * shape = [size] * else: */ __Pyx_GetModuleGlobalName(__pyx_t_2, __pyx_n_s_np); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 3723, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_integer); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 3723, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_4 = PyInt_Check(__pyx_v_size); __pyx_t_6 = (__pyx_t_4 != 0); if (!__pyx_t_6) { } else { __pyx_t_5 = __pyx_t_6; goto __pyx_L4_bool_binop_done; } __pyx_t_6 = PyObject_IsInstance(__pyx_v_size, __pyx_t_1); __pyx_t_4 = (__pyx_t_6 != 0); __pyx_t_5 = __pyx_t_4; __pyx_L4_bool_binop_done:; __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_4 = (__pyx_t_5 != 0); if (__pyx_t_4) { /* "numpy/random/mtrand.pyx":3724 * shape = [] * elif isinstance(size, (int, np.integer)): * shape = [size] # <<<<<<<<<<<<<< * else: * shape = size */ __pyx_t_1 = PyList_New(1); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 3724, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_INCREF(__pyx_v_size); __Pyx_GIVEREF(__pyx_v_size); PyList_SET_ITEM(__pyx_t_1, 0, __pyx_v_size); __pyx_v_shape = __pyx_t_1; __pyx_t_1 = 0; /* "numpy/random/mtrand.pyx":3723 * if size is None: * shape = [] * elif isinstance(size, (int, np.integer)): # <<<<<<<<<<<<<< * shape = [size] * else: */ goto __pyx_L3; } /* "numpy/random/mtrand.pyx":3726 * shape = [size] * else: * shape = size # <<<<<<<<<<<<<< * * if len(mean.shape) != 1: */ /*else*/ { __Pyx_INCREF(__pyx_v_size); __pyx_v_shape = __pyx_v_size; } __pyx_L3:; /* "numpy/random/mtrand.pyx":3728 * shape = size * * if len(mean.shape) != 1: # <<<<<<<<<<<<<< * raise ValueError("mean must be 1 dimensional") * if (len(cov.shape) != 2) or (cov.shape[0] != cov.shape[1]): */ __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_mean, __pyx_n_s_shape); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 3728, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_7 = PyObject_Length(__pyx_t_1); if (unlikely(__pyx_t_7 == ((Py_ssize_t)-1))) __PYX_ERR(0, 3728, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_4 = ((__pyx_t_7 != 1) != 0); if (unlikely(__pyx_t_4)) { /* "numpy/random/mtrand.pyx":3729 * * if len(mean.shape) != 1: * raise ValueError("mean must be 1 dimensional") # <<<<<<<<<<<<<< * if (len(cov.shape) != 2) or (cov.shape[0] != cov.shape[1]): * raise ValueError("cov must be 2 dimensional and square") */ __pyx_t_1 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__35, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 3729, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_Raise(__pyx_t_1, 0, 0, 0); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __PYX_ERR(0, 3729, __pyx_L1_error) /* "numpy/random/mtrand.pyx":3728 * shape = size * * if len(mean.shape) != 1: # <<<<<<<<<<<<<< * raise ValueError("mean must be 1 dimensional") * if (len(cov.shape) != 2) or (cov.shape[0] != cov.shape[1]): */ } /* "numpy/random/mtrand.pyx":3730 * if len(mean.shape) != 1: * raise ValueError("mean must be 1 dimensional") * if (len(cov.shape) != 2) or (cov.shape[0] != cov.shape[1]): # <<<<<<<<<<<<<< * raise ValueError("cov must be 2 dimensional and square") * if mean.shape[0] != cov.shape[0]: */ __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_cov, __pyx_n_s_shape); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 3730, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_7 = PyObject_Length(__pyx_t_1); if (unlikely(__pyx_t_7 == ((Py_ssize_t)-1))) __PYX_ERR(0, 3730, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_5 = ((__pyx_t_7 != 2) != 0); if (!__pyx_t_5) { } else { __pyx_t_4 = __pyx_t_5; goto __pyx_L8_bool_binop_done; } __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_cov, __pyx_n_s_shape); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 3730, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = __Pyx_GetItemInt(__pyx_t_1, 0, long, 1, __Pyx_PyInt_From_long, 0, 0, 0); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 3730, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_cov, __pyx_n_s_shape); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 3730, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_3 = __Pyx_GetItemInt(__pyx_t_1, 1, long, 1, __Pyx_PyInt_From_long, 0, 0, 0); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 3730, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = PyObject_RichCompare(__pyx_t_2, __pyx_t_3, Py_NE); __Pyx_XGOTREF(__pyx_t_1); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 3730, __pyx_L1_error) __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_5 = __Pyx_PyObject_IsTrue(__pyx_t_1); if (unlikely(__pyx_t_5 < 0)) __PYX_ERR(0, 3730, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_4 = __pyx_t_5; __pyx_L8_bool_binop_done:; if (unlikely(__pyx_t_4)) { /* "numpy/random/mtrand.pyx":3731 * raise ValueError("mean must be 1 dimensional") * if (len(cov.shape) != 2) or (cov.shape[0] != cov.shape[1]): * raise ValueError("cov must be 2 dimensional and square") # <<<<<<<<<<<<<< * if mean.shape[0] != cov.shape[0]: * raise ValueError("mean and cov must have same length") */ __pyx_t_1 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__36, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 3731, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_Raise(__pyx_t_1, 0, 0, 0); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __PYX_ERR(0, 3731, __pyx_L1_error) /* "numpy/random/mtrand.pyx":3730 * if len(mean.shape) != 1: * raise ValueError("mean must be 1 dimensional") * if (len(cov.shape) != 2) or (cov.shape[0] != cov.shape[1]): # <<<<<<<<<<<<<< * raise ValueError("cov must be 2 dimensional and square") * if mean.shape[0] != cov.shape[0]: */ } /* "numpy/random/mtrand.pyx":3732 * if (len(cov.shape) != 2) or (cov.shape[0] != cov.shape[1]): * raise ValueError("cov must be 2 dimensional and square") * if mean.shape[0] != cov.shape[0]: # <<<<<<<<<<<<<< * raise ValueError("mean and cov must have same length") * */ __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_mean, __pyx_n_s_shape); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 3732, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_3 = __Pyx_GetItemInt(__pyx_t_1, 0, long, 1, __Pyx_PyInt_From_long, 0, 0, 0); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 3732, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_cov, __pyx_n_s_shape); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 3732, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = __Pyx_GetItemInt(__pyx_t_1, 0, long, 1, __Pyx_PyInt_From_long, 0, 0, 0); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 3732, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = PyObject_RichCompare(__pyx_t_3, __pyx_t_2, Py_NE); __Pyx_XGOTREF(__pyx_t_1); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 3732, __pyx_L1_error) __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_4 = __Pyx_PyObject_IsTrue(__pyx_t_1); if (unlikely(__pyx_t_4 < 0)) __PYX_ERR(0, 3732, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; if (unlikely(__pyx_t_4)) { /* "numpy/random/mtrand.pyx":3733 * raise ValueError("cov must be 2 dimensional and square") * if mean.shape[0] != cov.shape[0]: * raise ValueError("mean and cov must have same length") # <<<<<<<<<<<<<< * * # Compute shape of output and create a matrix of independent */ __pyx_t_1 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__37, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 3733, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_Raise(__pyx_t_1, 0, 0, 0); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __PYX_ERR(0, 3733, __pyx_L1_error) /* "numpy/random/mtrand.pyx":3732 * if (len(cov.shape) != 2) or (cov.shape[0] != cov.shape[1]): * raise ValueError("cov must be 2 dimensional and square") * if mean.shape[0] != cov.shape[0]: # <<<<<<<<<<<<<< * raise ValueError("mean and cov must have same length") * */ } /* "numpy/random/mtrand.pyx":3739 * # with the same length as mean and as many rows are necessary to * # form a matrix of shape final_shape. * final_shape = list(shape[:]) # <<<<<<<<<<<<<< * final_shape.append(mean.shape[0]) * x = self.standard_normal(final_shape).reshape(-1, mean.shape[0]) */ __pyx_t_1 = __Pyx_PyObject_GetSlice(__pyx_v_shape, 0, 0, NULL, NULL, &__pyx_slice__38, 0, 0, 0); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 3739, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = PySequence_List(__pyx_t_1); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 3739, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_v_final_shape = ((PyObject*)__pyx_t_2); __pyx_t_2 = 0; /* "numpy/random/mtrand.pyx":3740 * # form a matrix of shape final_shape. * final_shape = list(shape[:]) * final_shape.append(mean.shape[0]) # <<<<<<<<<<<<<< * x = self.standard_normal(final_shape).reshape(-1, mean.shape[0]) * */ __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_v_mean, __pyx_n_s_shape); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 3740, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_1 = __Pyx_GetItemInt(__pyx_t_2, 0, long, 1, __Pyx_PyInt_From_long, 0, 0, 0); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 3740, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_8 = __Pyx_PyList_Append(__pyx_v_final_shape, __pyx_t_1); if (unlikely(__pyx_t_8 == ((int)-1))) __PYX_ERR(0, 3740, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "numpy/random/mtrand.pyx":3741 * final_shape = list(shape[:]) * final_shape.append(mean.shape[0]) * x = self.standard_normal(final_shape).reshape(-1, mean.shape[0]) # <<<<<<<<<<<<<< * * # Transform matrix of standard normals into matrix where each row */ __pyx_t_3 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_self), __pyx_n_s_standard_normal); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 3741, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_9 = NULL; if (CYTHON_UNPACK_METHODS && likely(PyMethod_Check(__pyx_t_3))) { __pyx_t_9 = PyMethod_GET_SELF(__pyx_t_3); if (likely(__pyx_t_9)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_3); __Pyx_INCREF(__pyx_t_9); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_3, function); } } __pyx_t_2 = (__pyx_t_9) ? __Pyx_PyObject_Call2Args(__pyx_t_3, __pyx_t_9, __pyx_v_final_shape) : __Pyx_PyObject_CallOneArg(__pyx_t_3, __pyx_v_final_shape); __Pyx_XDECREF(__pyx_t_9); __pyx_t_9 = 0; if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 3741, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_reshape); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 3741, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_v_mean, __pyx_n_s_shape); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 3741, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_9 = __Pyx_GetItemInt(__pyx_t_2, 0, long, 1, __Pyx_PyInt_From_long, 0, 0, 0); if (unlikely(!__pyx_t_9)) __PYX_ERR(0, 3741, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_9); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = NULL; __pyx_t_10 = 0; if (CYTHON_UNPACK_METHODS && likely(PyMethod_Check(__pyx_t_3))) { __pyx_t_2 = PyMethod_GET_SELF(__pyx_t_3); if (likely(__pyx_t_2)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_3); __Pyx_INCREF(__pyx_t_2); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_3, function); __pyx_t_10 = 1; } } #if CYTHON_FAST_PYCALL if (PyFunction_Check(__pyx_t_3)) { PyObject *__pyx_temp[3] = {__pyx_t_2, __pyx_int_neg_1, __pyx_t_9}; __pyx_t_1 = __Pyx_PyFunction_FastCall(__pyx_t_3, __pyx_temp+1-__pyx_t_10, 2+__pyx_t_10); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 3741, __pyx_L1_error) __Pyx_XDECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; } else #endif #if CYTHON_FAST_PYCCALL if (__Pyx_PyFastCFunction_Check(__pyx_t_3)) { PyObject *__pyx_temp[3] = {__pyx_t_2, __pyx_int_neg_1, __pyx_t_9}; __pyx_t_1 = __Pyx_PyCFunction_FastCall(__pyx_t_3, __pyx_temp+1-__pyx_t_10, 2+__pyx_t_10); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 3741, __pyx_L1_error) __Pyx_XDECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; } else #endif { __pyx_t_11 = PyTuple_New(2+__pyx_t_10); if (unlikely(!__pyx_t_11)) __PYX_ERR(0, 3741, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_11); if (__pyx_t_2) { __Pyx_GIVEREF(__pyx_t_2); PyTuple_SET_ITEM(__pyx_t_11, 0, __pyx_t_2); __pyx_t_2 = NULL; } __Pyx_INCREF(__pyx_int_neg_1); __Pyx_GIVEREF(__pyx_int_neg_1); PyTuple_SET_ITEM(__pyx_t_11, 0+__pyx_t_10, __pyx_int_neg_1); __Pyx_GIVEREF(__pyx_t_9); PyTuple_SET_ITEM(__pyx_t_11, 1+__pyx_t_10, __pyx_t_9); __pyx_t_9 = 0; __pyx_t_1 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_t_11, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 3741, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_11); __pyx_t_11 = 0; } __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_v_x = __pyx_t_1; __pyx_t_1 = 0; /* "numpy/random/mtrand.pyx":3758 * * # GH10839, ensure double to make tol meaningful * cov = cov.astype(np.double) # <<<<<<<<<<<<<< * (u, s, v) = svd(cov) * */ __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_v_cov, __pyx_n_s_astype); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 3758, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_GetModuleGlobalName(__pyx_t_11, __pyx_n_s_np); if (unlikely(!__pyx_t_11)) __PYX_ERR(0, 3758, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_11); __pyx_t_9 = __Pyx_PyObject_GetAttrStr(__pyx_t_11, __pyx_n_s_double); if (unlikely(!__pyx_t_9)) __PYX_ERR(0, 3758, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_9); __Pyx_DECREF(__pyx_t_11); __pyx_t_11 = 0; __pyx_t_11 = NULL; if (CYTHON_UNPACK_METHODS && likely(PyMethod_Check(__pyx_t_3))) { __pyx_t_11 = PyMethod_GET_SELF(__pyx_t_3); if (likely(__pyx_t_11)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_3); __Pyx_INCREF(__pyx_t_11); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_3, function); } } __pyx_t_1 = (__pyx_t_11) ? __Pyx_PyObject_Call2Args(__pyx_t_3, __pyx_t_11, __pyx_t_9) : __Pyx_PyObject_CallOneArg(__pyx_t_3, __pyx_t_9); __Pyx_XDECREF(__pyx_t_11); __pyx_t_11 = 0; __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 3758, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF_SET(__pyx_v_cov, __pyx_t_1); __pyx_t_1 = 0; /* "numpy/random/mtrand.pyx":3759 * # GH10839, ensure double to make tol meaningful * cov = cov.astype(np.double) * (u, s, v) = svd(cov) # <<<<<<<<<<<<<< * * if check_valid != 'ignore': */ __Pyx_INCREF(__pyx_v_svd); __pyx_t_3 = __pyx_v_svd; __pyx_t_9 = NULL; if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_3))) { __pyx_t_9 = PyMethod_GET_SELF(__pyx_t_3); if (likely(__pyx_t_9)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_3); __Pyx_INCREF(__pyx_t_9); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_3, function); } } __pyx_t_1 = (__pyx_t_9) ? __Pyx_PyObject_Call2Args(__pyx_t_3, __pyx_t_9, __pyx_v_cov) : __Pyx_PyObject_CallOneArg(__pyx_t_3, __pyx_v_cov); __Pyx_XDECREF(__pyx_t_9); __pyx_t_9 = 0; if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 3759, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; if ((likely(PyTuple_CheckExact(__pyx_t_1))) || (PyList_CheckExact(__pyx_t_1))) { PyObject* sequence = __pyx_t_1; Py_ssize_t size = __Pyx_PySequence_SIZE(sequence); if (unlikely(size != 3)) { if (size > 3) __Pyx_RaiseTooManyValuesError(3); else if (size >= 0) __Pyx_RaiseNeedMoreValuesError(size); __PYX_ERR(0, 3759, __pyx_L1_error) } #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS if (likely(PyTuple_CheckExact(sequence))) { __pyx_t_3 = PyTuple_GET_ITEM(sequence, 0); __pyx_t_9 = PyTuple_GET_ITEM(sequence, 1); __pyx_t_11 = PyTuple_GET_ITEM(sequence, 2); } else { __pyx_t_3 = PyList_GET_ITEM(sequence, 0); __pyx_t_9 = PyList_GET_ITEM(sequence, 1); __pyx_t_11 = PyList_GET_ITEM(sequence, 2); } __Pyx_INCREF(__pyx_t_3); __Pyx_INCREF(__pyx_t_9); __Pyx_INCREF(__pyx_t_11); #else __pyx_t_3 = PySequence_ITEM(sequence, 0); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 3759, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_9 = PySequence_ITEM(sequence, 1); if (unlikely(!__pyx_t_9)) __PYX_ERR(0, 3759, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_9); __pyx_t_11 = PySequence_ITEM(sequence, 2); if (unlikely(!__pyx_t_11)) __PYX_ERR(0, 3759, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_11); #endif __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; } else { Py_ssize_t index = -1; __pyx_t_2 = PyObject_GetIter(__pyx_t_1); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 3759, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_12 = Py_TYPE(__pyx_t_2)->tp_iternext; index = 0; __pyx_t_3 = __pyx_t_12(__pyx_t_2); if (unlikely(!__pyx_t_3)) goto __pyx_L11_unpacking_failed; __Pyx_GOTREF(__pyx_t_3); index = 1; __pyx_t_9 = __pyx_t_12(__pyx_t_2); if (unlikely(!__pyx_t_9)) goto __pyx_L11_unpacking_failed; __Pyx_GOTREF(__pyx_t_9); index = 2; __pyx_t_11 = __pyx_t_12(__pyx_t_2); if (unlikely(!__pyx_t_11)) goto __pyx_L11_unpacking_failed; __Pyx_GOTREF(__pyx_t_11); if (__Pyx_IternextUnpackEndCheck(__pyx_t_12(__pyx_t_2), 3) < 0) __PYX_ERR(0, 3759, __pyx_L1_error) __pyx_t_12 = NULL; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; goto __pyx_L12_unpacking_done; __pyx_L11_unpacking_failed:; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_12 = NULL; if (__Pyx_IterFinish() == 0) __Pyx_RaiseNeedMoreValuesError(index); __PYX_ERR(0, 3759, __pyx_L1_error) __pyx_L12_unpacking_done:; } __pyx_v_u = __pyx_t_3; __pyx_t_3 = 0; __pyx_v_s = __pyx_t_9; __pyx_t_9 = 0; __pyx_v_v = __pyx_t_11; __pyx_t_11 = 0; /* "numpy/random/mtrand.pyx":3761 * (u, s, v) = svd(cov) * * if check_valid != 'ignore': # <<<<<<<<<<<<<< * if check_valid != 'warn' and check_valid != 'raise': * raise ValueError( */ __pyx_t_4 = (__Pyx_PyUnicode_Equals(__pyx_v_check_valid, __pyx_n_u_ignore, Py_NE)); if (unlikely(__pyx_t_4 < 0)) __PYX_ERR(0, 3761, __pyx_L1_error) if (__pyx_t_4) { /* "numpy/random/mtrand.pyx":3762 * * if check_valid != 'ignore': * if check_valid != 'warn' and check_valid != 'raise': # <<<<<<<<<<<<<< * raise ValueError( * "check_valid must equal 'warn', 'raise', or 'ignore'") */ __pyx_t_5 = (__Pyx_PyUnicode_Equals(__pyx_v_check_valid, __pyx_n_u_warn, Py_NE)); if (unlikely(__pyx_t_5 < 0)) __PYX_ERR(0, 3762, __pyx_L1_error) if (__pyx_t_5) { } else { __pyx_t_4 = __pyx_t_5; goto __pyx_L15_bool_binop_done; } __pyx_t_5 = (__Pyx_PyUnicode_Equals(__pyx_v_check_valid, __pyx_n_u_raise, Py_NE)); if (unlikely(__pyx_t_5 < 0)) __PYX_ERR(0, 3762, __pyx_L1_error) __pyx_t_4 = __pyx_t_5; __pyx_L15_bool_binop_done:; if (unlikely(__pyx_t_4)) { /* "numpy/random/mtrand.pyx":3763 * if check_valid != 'ignore': * if check_valid != 'warn' and check_valid != 'raise': * raise ValueError( # <<<<<<<<<<<<<< * "check_valid must equal 'warn', 'raise', or 'ignore'") * */ __pyx_t_1 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__39, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 3763, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_Raise(__pyx_t_1, 0, 0, 0); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __PYX_ERR(0, 3763, __pyx_L1_error) /* "numpy/random/mtrand.pyx":3762 * * if check_valid != 'ignore': * if check_valid != 'warn' and check_valid != 'raise': # <<<<<<<<<<<<<< * raise ValueError( * "check_valid must equal 'warn', 'raise', or 'ignore'") */ } /* "numpy/random/mtrand.pyx":3766 * "check_valid must equal 'warn', 'raise', or 'ignore'") * * psd = np.allclose(np.dot(v.T * s, v), cov, rtol=tol, atol=tol) # <<<<<<<<<<<<<< * if not psd: * if check_valid == 'warn': */ __Pyx_GetModuleGlobalName(__pyx_t_1, __pyx_n_s_np); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 3766, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_11 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_allclose); if (unlikely(!__pyx_t_11)) __PYX_ERR(0, 3766, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_11); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_GetModuleGlobalName(__pyx_t_9, __pyx_n_s_np); if (unlikely(!__pyx_t_9)) __PYX_ERR(0, 3766, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_9); __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_9, __pyx_n_s_dot); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 3766, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; __pyx_t_9 = __Pyx_PyObject_GetAttrStr(__pyx_v_v, __pyx_n_s_T); if (unlikely(!__pyx_t_9)) __PYX_ERR(0, 3766, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_9); __pyx_t_2 = PyNumber_Multiply(__pyx_t_9, __pyx_v_s); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 3766, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; __pyx_t_9 = NULL; __pyx_t_10 = 0; if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_3))) { __pyx_t_9 = PyMethod_GET_SELF(__pyx_t_3); if (likely(__pyx_t_9)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_3); __Pyx_INCREF(__pyx_t_9); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_3, function); __pyx_t_10 = 1; } } #if CYTHON_FAST_PYCALL if (PyFunction_Check(__pyx_t_3)) { PyObject *__pyx_temp[3] = {__pyx_t_9, __pyx_t_2, __pyx_v_v}; __pyx_t_1 = __Pyx_PyFunction_FastCall(__pyx_t_3, __pyx_temp+1-__pyx_t_10, 2+__pyx_t_10); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 3766, __pyx_L1_error) __Pyx_XDECREF(__pyx_t_9); __pyx_t_9 = 0; __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; } else #endif #if CYTHON_FAST_PYCCALL if (__Pyx_PyFastCFunction_Check(__pyx_t_3)) { PyObject *__pyx_temp[3] = {__pyx_t_9, __pyx_t_2, __pyx_v_v}; __pyx_t_1 = __Pyx_PyCFunction_FastCall(__pyx_t_3, __pyx_temp+1-__pyx_t_10, 2+__pyx_t_10); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 3766, __pyx_L1_error) __Pyx_XDECREF(__pyx_t_9); __pyx_t_9 = 0; __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; } else #endif { __pyx_t_13 = PyTuple_New(2+__pyx_t_10); if (unlikely(!__pyx_t_13)) __PYX_ERR(0, 3766, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_13); if (__pyx_t_9) { __Pyx_GIVEREF(__pyx_t_9); PyTuple_SET_ITEM(__pyx_t_13, 0, __pyx_t_9); __pyx_t_9 = NULL; } __Pyx_GIVEREF(__pyx_t_2); PyTuple_SET_ITEM(__pyx_t_13, 0+__pyx_t_10, __pyx_t_2); __Pyx_INCREF(__pyx_v_v); __Pyx_GIVEREF(__pyx_v_v); PyTuple_SET_ITEM(__pyx_t_13, 1+__pyx_t_10, __pyx_v_v); __pyx_t_2 = 0; __pyx_t_1 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_t_13, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 3766, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_13); __pyx_t_13 = 0; } __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = PyTuple_New(2); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 3766, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_GIVEREF(__pyx_t_1); PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_t_1); __Pyx_INCREF(__pyx_v_cov); __Pyx_GIVEREF(__pyx_v_cov); PyTuple_SET_ITEM(__pyx_t_3, 1, __pyx_v_cov); __pyx_t_1 = 0; __pyx_t_1 = __Pyx_PyDict_NewPresized(2); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 3766, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); if (PyDict_SetItem(__pyx_t_1, __pyx_n_s_rtol, __pyx_v_tol) < 0) __PYX_ERR(0, 3766, __pyx_L1_error) if (PyDict_SetItem(__pyx_t_1, __pyx_n_s_atol, __pyx_v_tol) < 0) __PYX_ERR(0, 3766, __pyx_L1_error) __pyx_t_13 = __Pyx_PyObject_Call(__pyx_t_11, __pyx_t_3, __pyx_t_1); if (unlikely(!__pyx_t_13)) __PYX_ERR(0, 3766, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_13); __Pyx_DECREF(__pyx_t_11); __pyx_t_11 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_v_psd = __pyx_t_13; __pyx_t_13 = 0; /* "numpy/random/mtrand.pyx":3767 * * psd = np.allclose(np.dot(v.T * s, v), cov, rtol=tol, atol=tol) * if not psd: # <<<<<<<<<<<<<< * if check_valid == 'warn': * warnings.warn("covariance is not positive-semidefinite.", */ __pyx_t_4 = __Pyx_PyObject_IsTrue(__pyx_v_psd); if (unlikely(__pyx_t_4 < 0)) __PYX_ERR(0, 3767, __pyx_L1_error) __pyx_t_5 = ((!__pyx_t_4) != 0); if (__pyx_t_5) { /* "numpy/random/mtrand.pyx":3768 * psd = np.allclose(np.dot(v.T * s, v), cov, rtol=tol, atol=tol) * if not psd: * if check_valid == 'warn': # <<<<<<<<<<<<<< * warnings.warn("covariance is not positive-semidefinite.", * RuntimeWarning) */ __pyx_t_5 = (__Pyx_PyUnicode_Equals(__pyx_v_check_valid, __pyx_n_u_warn, Py_EQ)); if (unlikely(__pyx_t_5 < 0)) __PYX_ERR(0, 3768, __pyx_L1_error) if (likely(__pyx_t_5)) { /* "numpy/random/mtrand.pyx":3769 * if not psd: * if check_valid == 'warn': * warnings.warn("covariance is not positive-semidefinite.", # <<<<<<<<<<<<<< * RuntimeWarning) * else: */ __Pyx_GetModuleGlobalName(__pyx_t_13, __pyx_n_s_warnings); if (unlikely(!__pyx_t_13)) __PYX_ERR(0, 3769, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_13); __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_13, __pyx_n_s_warn); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 3769, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_13); __pyx_t_13 = 0; /* "numpy/random/mtrand.pyx":3770 * if check_valid == 'warn': * warnings.warn("covariance is not positive-semidefinite.", * RuntimeWarning) # <<<<<<<<<<<<<< * else: * raise ValueError( */ __pyx_t_13 = __Pyx_PyObject_Call(__pyx_t_1, __pyx_tuple__40, NULL); if (unlikely(!__pyx_t_13)) __PYX_ERR(0, 3769, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_13); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF(__pyx_t_13); __pyx_t_13 = 0; /* "numpy/random/mtrand.pyx":3768 * psd = np.allclose(np.dot(v.T * s, v), cov, rtol=tol, atol=tol) * if not psd: * if check_valid == 'warn': # <<<<<<<<<<<<<< * warnings.warn("covariance is not positive-semidefinite.", * RuntimeWarning) */ goto __pyx_L18; } /* "numpy/random/mtrand.pyx":3772 * RuntimeWarning) * else: * raise ValueError( # <<<<<<<<<<<<<< * "covariance is not positive-semidefinite.") * */ /*else*/ { __pyx_t_13 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__41, NULL); if (unlikely(!__pyx_t_13)) __PYX_ERR(0, 3772, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_13); __Pyx_Raise(__pyx_t_13, 0, 0, 0); __Pyx_DECREF(__pyx_t_13); __pyx_t_13 = 0; __PYX_ERR(0, 3772, __pyx_L1_error) } __pyx_L18:; /* "numpy/random/mtrand.pyx":3767 * * psd = np.allclose(np.dot(v.T * s, v), cov, rtol=tol, atol=tol) * if not psd: # <<<<<<<<<<<<<< * if check_valid == 'warn': * warnings.warn("covariance is not positive-semidefinite.", */ } /* "numpy/random/mtrand.pyx":3761 * (u, s, v) = svd(cov) * * if check_valid != 'ignore': # <<<<<<<<<<<<<< * if check_valid != 'warn' and check_valid != 'raise': * raise ValueError( */ } /* "numpy/random/mtrand.pyx":3775 * "covariance is not positive-semidefinite.") * * x = np.dot(x, np.sqrt(s)[:, None] * v) # <<<<<<<<<<<<<< * x += mean * x.shape = tuple(final_shape) */ __Pyx_GetModuleGlobalName(__pyx_t_1, __pyx_n_s_np); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 3775, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_dot); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 3775, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_GetModuleGlobalName(__pyx_t_11, __pyx_n_s_np); if (unlikely(!__pyx_t_11)) __PYX_ERR(0, 3775, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_11); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_11, __pyx_n_s_sqrt); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 3775, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_11); __pyx_t_11 = 0; __pyx_t_11 = NULL; if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_2))) { __pyx_t_11 = PyMethod_GET_SELF(__pyx_t_2); if (likely(__pyx_t_11)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_2); __Pyx_INCREF(__pyx_t_11); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_2, function); } } __pyx_t_1 = (__pyx_t_11) ? __Pyx_PyObject_Call2Args(__pyx_t_2, __pyx_t_11, __pyx_v_s) : __Pyx_PyObject_CallOneArg(__pyx_t_2, __pyx_v_s); __Pyx_XDECREF(__pyx_t_11); __pyx_t_11 = 0; if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 3775, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = __Pyx_PyObject_GetItem(__pyx_t_1, __pyx_tuple__42); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 3775, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = PyNumber_Multiply(__pyx_t_2, __pyx_v_v); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 3775, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = NULL; __pyx_t_10 = 0; if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_3))) { __pyx_t_2 = PyMethod_GET_SELF(__pyx_t_3); if (likely(__pyx_t_2)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_3); __Pyx_INCREF(__pyx_t_2); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_3, function); __pyx_t_10 = 1; } } #if CYTHON_FAST_PYCALL if (PyFunction_Check(__pyx_t_3)) { PyObject *__pyx_temp[3] = {__pyx_t_2, __pyx_v_x, __pyx_t_1}; __pyx_t_13 = __Pyx_PyFunction_FastCall(__pyx_t_3, __pyx_temp+1-__pyx_t_10, 2+__pyx_t_10); if (unlikely(!__pyx_t_13)) __PYX_ERR(0, 3775, __pyx_L1_error) __Pyx_XDECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_GOTREF(__pyx_t_13); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; } else #endif #if CYTHON_FAST_PYCCALL if (__Pyx_PyFastCFunction_Check(__pyx_t_3)) { PyObject *__pyx_temp[3] = {__pyx_t_2, __pyx_v_x, __pyx_t_1}; __pyx_t_13 = __Pyx_PyCFunction_FastCall(__pyx_t_3, __pyx_temp+1-__pyx_t_10, 2+__pyx_t_10); if (unlikely(!__pyx_t_13)) __PYX_ERR(0, 3775, __pyx_L1_error) __Pyx_XDECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_GOTREF(__pyx_t_13); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; } else #endif { __pyx_t_11 = PyTuple_New(2+__pyx_t_10); if (unlikely(!__pyx_t_11)) __PYX_ERR(0, 3775, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_11); if (__pyx_t_2) { __Pyx_GIVEREF(__pyx_t_2); PyTuple_SET_ITEM(__pyx_t_11, 0, __pyx_t_2); __pyx_t_2 = NULL; } __Pyx_INCREF(__pyx_v_x); __Pyx_GIVEREF(__pyx_v_x); PyTuple_SET_ITEM(__pyx_t_11, 0+__pyx_t_10, __pyx_v_x); __Pyx_GIVEREF(__pyx_t_1); PyTuple_SET_ITEM(__pyx_t_11, 1+__pyx_t_10, __pyx_t_1); __pyx_t_1 = 0; __pyx_t_13 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_t_11, NULL); if (unlikely(!__pyx_t_13)) __PYX_ERR(0, 3775, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_13); __Pyx_DECREF(__pyx_t_11); __pyx_t_11 = 0; } __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF_SET(__pyx_v_x, __pyx_t_13); __pyx_t_13 = 0; /* "numpy/random/mtrand.pyx":3776 * * x = np.dot(x, np.sqrt(s)[:, None] * v) * x += mean # <<<<<<<<<<<<<< * x.shape = tuple(final_shape) * return x */ __pyx_t_13 = PyNumber_InPlaceAdd(__pyx_v_x, __pyx_v_mean); if (unlikely(!__pyx_t_13)) __PYX_ERR(0, 3776, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_13); __Pyx_DECREF_SET(__pyx_v_x, __pyx_t_13); __pyx_t_13 = 0; /* "numpy/random/mtrand.pyx":3777 * x = np.dot(x, np.sqrt(s)[:, None] * v) * x += mean * x.shape = tuple(final_shape) # <<<<<<<<<<<<<< * return x * */ __pyx_t_13 = PyList_AsTuple(__pyx_v_final_shape); if (unlikely(!__pyx_t_13)) __PYX_ERR(0, 3777, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_13); if (__Pyx_PyObject_SetAttrStr(__pyx_v_x, __pyx_n_s_shape, __pyx_t_13) < 0) __PYX_ERR(0, 3777, __pyx_L1_error) __Pyx_DECREF(__pyx_t_13); __pyx_t_13 = 0; /* "numpy/random/mtrand.pyx":3778 * x += mean * x.shape = tuple(final_shape) * return x # <<<<<<<<<<<<<< * * def multinomial(self, np.npy_intp n, object pvals, size=None): */ __Pyx_XDECREF(__pyx_r); __Pyx_INCREF(__pyx_v_x); __pyx_r = __pyx_v_x; goto __pyx_L0; /* "numpy/random/mtrand.pyx":3614 * * # Multivariate distributions: * def multivariate_normal(self, mean, cov, size=None, check_valid='warn', # <<<<<<<<<<<<<< * tol=1e-8): * """ */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_9); __Pyx_XDECREF(__pyx_t_11); __Pyx_XDECREF(__pyx_t_13); __Pyx_AddTraceback("numpy.random.mtrand.RandomState.multivariate_normal", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XDECREF(__pyx_v_svd); __Pyx_XDECREF(__pyx_v_shape); __Pyx_XDECREF(__pyx_v_final_shape); __Pyx_XDECREF(__pyx_v_x); __Pyx_XDECREF(__pyx_v_u); __Pyx_XDECREF(__pyx_v_s); __Pyx_XDECREF(__pyx_v_v); __Pyx_XDECREF(__pyx_v_psd); __Pyx_XDECREF(__pyx_v_mean); __Pyx_XDECREF(__pyx_v_cov); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "numpy/random/mtrand.pyx":3780 * return x * * def multinomial(self, np.npy_intp n, object pvals, size=None): # <<<<<<<<<<<<<< * """ * multinomial(n, pvals, size=None) */ /* Python wrapper */ static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_103multinomial(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static char __pyx_doc_5numpy_6random_6mtrand_11RandomState_102multinomial[] = "\n multinomial(n, pvals, size=None)\n\n Draw samples from a multinomial distribution.\n\n The multinomial distribution is a multivariate generalization of the\n binomial distribution. Take an experiment with one of ``p``\n possible outcomes. An example of such an experiment is throwing a dice,\n where the outcome can be 1 through 6. Each sample drawn from the\n distribution represents `n` such experiments. Its values,\n ``X_i = [X_0, X_1, ..., X_p]``, represent the number of times the\n outcome was ``i``.\n\n Parameters\n ----------\n n : int\n Number of experiments.\n pvals : sequence of floats, length p\n Probabilities of each of the ``p`` different outcomes. These\n must sum to 1 (however, the last element is always assumed to\n account for the remaining probability, as long as\n ``sum(pvals[:-1]) <= 1)``.\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. Default is None, in which case a\n single value is returned.\n\n Returns\n -------\n out : ndarray\n The drawn samples, of shape *size*, if that was provided. If not,\n the shape is ``(N,)``.\n\n In other words, each entry ``out[i,j,...,:]`` is an N-dimensional\n value drawn from the distribution.\n\n Examples\n --------\n Throw a dice 20 times:\n\n >>> np.random.multinomial(20, [1/6.]*6, size=1)\n array([[4, 1, 7, 5, 2, 1]]) # random\n\n It landed 4 times on 1, once on 2, etc.\n\n Now, throw the dice 20 times, and 20 times again:\n\n >>> np.random.multinomial(20, [1/6.]*6, size=2)\n array([[3, 4, 3, 3, 4, 3], # random\n [2, 4, 3, 4, 0, 7]])\n\n For the first run, we threw 3 times 1, 4 t""imes 2, etc. For the second,\n we threw 2 times 1, 4 times 2, etc.\n\n A loaded die is more likely to land on number 6:\n\n >>> np.random.multinomial(100, [1/7.]*5 + [2/7.])\n array([11, 16, 14, 17, 16, 26]) # random\n\n The probability inputs should be normalized. As an implementation\n detail, the value of the last entry is ignored and assumed to take\n up any leftover probability mass, but this should not be relied on.\n A biased coin which has twice as much weight on one side as on the\n other should be sampled like so:\n\n >>> np.random.multinomial(100, [1.0 / 3, 2.0 / 3]) # RIGHT\n array([38, 62]) # random\n\n not like:\n\n >>> np.random.multinomial(100, [1.0, 2.0]) # WRONG\n Traceback (most recent call last):\n ValueError: pvals < 0, pvals > 1 or pvals contains NaNs\n\n "; static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_103multinomial(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { npy_intp __pyx_v_n; PyObject *__pyx_v_pvals = 0; PyObject *__pyx_v_size = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("multinomial (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_n,&__pyx_n_s_pvals,&__pyx_n_s_size,0}; PyObject* values[3] = {0,0,0}; values[2] = ((PyObject *)Py_None); if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); CYTHON_FALLTHROUGH; case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); CYTHON_FALLTHROUGH; case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); CYTHON_FALLTHROUGH; case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (likely((values[0] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_n)) != 0)) kw_args--; else goto __pyx_L5_argtuple_error; CYTHON_FALLTHROUGH; case 1: if (likely((values[1] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_pvals)) != 0)) kw_args--; else { __Pyx_RaiseArgtupleInvalid("multinomial", 0, 2, 3, 1); __PYX_ERR(0, 3780, __pyx_L3_error) } CYTHON_FALLTHROUGH; case 2: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_size); if (value) { values[2] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "multinomial") < 0)) __PYX_ERR(0, 3780, __pyx_L3_error) } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2); CYTHON_FALLTHROUGH; case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); values[0] = PyTuple_GET_ITEM(__pyx_args, 0); break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_n = __Pyx_PyInt_As_Py_intptr_t(values[0]); if (unlikely((__pyx_v_n == ((npy_intp)-1)) && PyErr_Occurred())) __PYX_ERR(0, 3780, __pyx_L3_error) __pyx_v_pvals = values[1]; __pyx_v_size = values[2]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("multinomial", 0, 2, 3, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(0, 3780, __pyx_L3_error) __pyx_L3_error:; __Pyx_AddTraceback("numpy.random.mtrand.RandomState.multinomial", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_5numpy_6random_6mtrand_11RandomState_102multinomial(((struct __pyx_obj_5numpy_6random_6mtrand_RandomState *)__pyx_v_self), __pyx_v_n, __pyx_v_pvals, __pyx_v_size); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_102multinomial(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, npy_intp __pyx_v_n, PyObject *__pyx_v_pvals, PyObject *__pyx_v_size) { npy_intp __pyx_v_d; CYTHON_UNUSED npy_intp __pyx_v_i; npy_intp __pyx_v_sz; npy_intp __pyx_v_offset; PyArrayObject *__pyx_v_parr = 0; PyArrayObject *__pyx_v_mnarr = 0; double *__pyx_v_pix; long *__pyx_v_mnix; long __pyx_v_ni; PyObject *__pyx_v_shape = NULL; PyObject *__pyx_v_multin = NULL; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations Py_ssize_t __pyx_t_1; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; int __pyx_t_4; int __pyx_t_5; int __pyx_t_6; PyObject *__pyx_t_7 = NULL; PyObject *__pyx_t_8 = NULL; PyObject *__pyx_t_9 = NULL; PyObject *__pyx_t_10 = NULL; PyObject *__pyx_t_11 = NULL; PyObject *__pyx_t_12 = NULL; PyObject *__pyx_t_13 = NULL; PyObject *__pyx_t_14 = NULL; npy_intp __pyx_t_15; npy_intp __pyx_t_16; npy_intp __pyx_t_17; __Pyx_RefNannySetupContext("multinomial", 0); /* "numpy/random/mtrand.pyx":3862 * cdef long ni * * d = len(pvals) # <<<<<<<<<<<<<< * parr = np.PyArray_FROM_OTF( * pvals, np.NPY_DOUBLE, np.NPY_ALIGNED | np.NPY_ARRAY_C_CONTIGUOUS) */ __pyx_t_1 = PyObject_Length(__pyx_v_pvals); if (unlikely(__pyx_t_1 == ((Py_ssize_t)-1))) __PYX_ERR(0, 3862, __pyx_L1_error) __pyx_v_d = __pyx_t_1; /* "numpy/random/mtrand.pyx":3863 * * d = len(pvals) * parr = np.PyArray_FROM_OTF( # <<<<<<<<<<<<<< * pvals, np.NPY_DOUBLE, np.NPY_ALIGNED | np.NPY_ARRAY_C_CONTIGUOUS) * pix = np.PyArray_DATA(parr) */ __pyx_t_2 = PyArray_FROM_OTF(__pyx_v_pvals, NPY_DOUBLE, (NPY_ALIGNED | NPY_ARRAY_C_CONTIGUOUS)); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 3863, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = __pyx_t_2; __Pyx_INCREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_v_parr = ((PyArrayObject *)__pyx_t_3); __pyx_t_3 = 0; /* "numpy/random/mtrand.pyx":3865 * parr = np.PyArray_FROM_OTF( * pvals, np.NPY_DOUBLE, np.NPY_ALIGNED | np.NPY_ARRAY_C_CONTIGUOUS) * pix = np.PyArray_DATA(parr) # <<<<<<<<<<<<<< * check_array_constraint(parr, 'pvals', CONS_BOUNDED_0_1) * if kahan_sum(pix, d-1) > (1.0 + 1e-12): */ __pyx_v_pix = ((double *)PyArray_DATA(__pyx_v_parr)); /* "numpy/random/mtrand.pyx":3866 * pvals, np.NPY_DOUBLE, np.NPY_ALIGNED | np.NPY_ARRAY_C_CONTIGUOUS) * pix = np.PyArray_DATA(parr) * check_array_constraint(parr, 'pvals', CONS_BOUNDED_0_1) # <<<<<<<<<<<<<< * if kahan_sum(pix, d-1) > (1.0 + 1e-12): * raise ValueError("sum(pvals[:-1]) > 1.0") */ __pyx_t_4 = __pyx_f_5numpy_6random_6common_check_array_constraint(__pyx_v_parr, __pyx_n_u_pvals, __pyx_e_5numpy_6random_6common_CONS_BOUNDED_0_1); if (unlikely(__pyx_t_4 == ((int)-1))) __PYX_ERR(0, 3866, __pyx_L1_error) /* "numpy/random/mtrand.pyx":3867 * pix = np.PyArray_DATA(parr) * check_array_constraint(parr, 'pvals', CONS_BOUNDED_0_1) * if kahan_sum(pix, d-1) > (1.0 + 1e-12): # <<<<<<<<<<<<<< * raise ValueError("sum(pvals[:-1]) > 1.0") * */ __pyx_t_5 = ((__pyx_f_5numpy_6random_6common_kahan_sum(__pyx_v_pix, (__pyx_v_d - 1)) > (1.0 + 1e-12)) != 0); if (unlikely(__pyx_t_5)) { /* "numpy/random/mtrand.pyx":3868 * check_array_constraint(parr, 'pvals', CONS_BOUNDED_0_1) * if kahan_sum(pix, d-1) > (1.0 + 1e-12): * raise ValueError("sum(pvals[:-1]) > 1.0") # <<<<<<<<<<<<<< * * if size is None: */ __pyx_t_3 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__43, NULL); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 3868, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_Raise(__pyx_t_3, 0, 0, 0); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __PYX_ERR(0, 3868, __pyx_L1_error) /* "numpy/random/mtrand.pyx":3867 * pix = np.PyArray_DATA(parr) * check_array_constraint(parr, 'pvals', CONS_BOUNDED_0_1) * if kahan_sum(pix, d-1) > (1.0 + 1e-12): # <<<<<<<<<<<<<< * raise ValueError("sum(pvals[:-1]) > 1.0") * */ } /* "numpy/random/mtrand.pyx":3870 * raise ValueError("sum(pvals[:-1]) > 1.0") * * if size is None: # <<<<<<<<<<<<<< * shape = (d,) * else: */ __pyx_t_5 = (__pyx_v_size == Py_None); __pyx_t_6 = (__pyx_t_5 != 0); if (__pyx_t_6) { /* "numpy/random/mtrand.pyx":3871 * * if size is None: * shape = (d,) # <<<<<<<<<<<<<< * else: * try: */ __pyx_t_3 = __Pyx_PyInt_From_Py_intptr_t(__pyx_v_d); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 3871, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_2 = PyTuple_New(1); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 3871, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_GIVEREF(__pyx_t_3); PyTuple_SET_ITEM(__pyx_t_2, 0, __pyx_t_3); __pyx_t_3 = 0; __pyx_v_shape = __pyx_t_2; __pyx_t_2 = 0; /* "numpy/random/mtrand.pyx":3870 * raise ValueError("sum(pvals[:-1]) > 1.0") * * if size is None: # <<<<<<<<<<<<<< * shape = (d,) * else: */ goto __pyx_L4; } /* "numpy/random/mtrand.pyx":3873 * shape = (d,) * else: * try: # <<<<<<<<<<<<<< * shape = (operator.index(size), d) * except: */ /*else*/ { { __Pyx_PyThreadState_declare __Pyx_PyThreadState_assign __Pyx_ExceptionSave(&__pyx_t_7, &__pyx_t_8, &__pyx_t_9); __Pyx_XGOTREF(__pyx_t_7); __Pyx_XGOTREF(__pyx_t_8); __Pyx_XGOTREF(__pyx_t_9); /*try:*/ { /* "numpy/random/mtrand.pyx":3874 * else: * try: * shape = (operator.index(size), d) # <<<<<<<<<<<<<< * except: * shape = tuple(size) + (d,) */ __Pyx_GetModuleGlobalName(__pyx_t_3, __pyx_n_s_operator); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 3874, __pyx_L5_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_10 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_index); if (unlikely(!__pyx_t_10)) __PYX_ERR(0, 3874, __pyx_L5_error) __Pyx_GOTREF(__pyx_t_10); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = NULL; if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_10))) { __pyx_t_3 = PyMethod_GET_SELF(__pyx_t_10); if (likely(__pyx_t_3)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_10); __Pyx_INCREF(__pyx_t_3); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_10, function); } } __pyx_t_2 = (__pyx_t_3) ? __Pyx_PyObject_Call2Args(__pyx_t_10, __pyx_t_3, __pyx_v_size) : __Pyx_PyObject_CallOneArg(__pyx_t_10, __pyx_v_size); __Pyx_XDECREF(__pyx_t_3); __pyx_t_3 = 0; if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 3874, __pyx_L5_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0; __pyx_t_10 = __Pyx_PyInt_From_Py_intptr_t(__pyx_v_d); if (unlikely(!__pyx_t_10)) __PYX_ERR(0, 3874, __pyx_L5_error) __Pyx_GOTREF(__pyx_t_10); __pyx_t_3 = PyTuple_New(2); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 3874, __pyx_L5_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_GIVEREF(__pyx_t_2); PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_t_2); __Pyx_GIVEREF(__pyx_t_10); PyTuple_SET_ITEM(__pyx_t_3, 1, __pyx_t_10); __pyx_t_2 = 0; __pyx_t_10 = 0; __pyx_v_shape = __pyx_t_3; __pyx_t_3 = 0; /* "numpy/random/mtrand.pyx":3873 * shape = (d,) * else: * try: # <<<<<<<<<<<<<< * shape = (operator.index(size), d) * except: */ } __Pyx_XDECREF(__pyx_t_7); __pyx_t_7 = 0; __Pyx_XDECREF(__pyx_t_8); __pyx_t_8 = 0; __Pyx_XDECREF(__pyx_t_9); __pyx_t_9 = 0; goto __pyx_L10_try_end; __pyx_L5_error:; __Pyx_XDECREF(__pyx_t_10); __pyx_t_10 = 0; __Pyx_XDECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_XDECREF(__pyx_t_3); __pyx_t_3 = 0; /* "numpy/random/mtrand.pyx":3875 * try: * shape = (operator.index(size), d) * except: # <<<<<<<<<<<<<< * shape = tuple(size) + (d,) * */ /*except:*/ { __Pyx_AddTraceback("numpy.random.mtrand.RandomState.multinomial", __pyx_clineno, __pyx_lineno, __pyx_filename); if (__Pyx_GetException(&__pyx_t_3, &__pyx_t_10, &__pyx_t_2) < 0) __PYX_ERR(0, 3875, __pyx_L7_except_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_GOTREF(__pyx_t_10); __Pyx_GOTREF(__pyx_t_2); /* "numpy/random/mtrand.pyx":3876 * shape = (operator.index(size), d) * except: * shape = tuple(size) + (d,) # <<<<<<<<<<<<<< * * multin = np.zeros(shape, dtype=int) */ __pyx_t_11 = __Pyx_PySequence_Tuple(__pyx_v_size); if (unlikely(!__pyx_t_11)) __PYX_ERR(0, 3876, __pyx_L7_except_error) __Pyx_GOTREF(__pyx_t_11); __pyx_t_12 = __Pyx_PyInt_From_Py_intptr_t(__pyx_v_d); if (unlikely(!__pyx_t_12)) __PYX_ERR(0, 3876, __pyx_L7_except_error) __Pyx_GOTREF(__pyx_t_12); __pyx_t_13 = PyTuple_New(1); if (unlikely(!__pyx_t_13)) __PYX_ERR(0, 3876, __pyx_L7_except_error) __Pyx_GOTREF(__pyx_t_13); __Pyx_GIVEREF(__pyx_t_12); PyTuple_SET_ITEM(__pyx_t_13, 0, __pyx_t_12); __pyx_t_12 = 0; __pyx_t_12 = PyNumber_Add(__pyx_t_11, __pyx_t_13); if (unlikely(!__pyx_t_12)) __PYX_ERR(0, 3876, __pyx_L7_except_error) __Pyx_GOTREF(__pyx_t_12); __Pyx_DECREF(__pyx_t_11); __pyx_t_11 = 0; __Pyx_DECREF(__pyx_t_13); __pyx_t_13 = 0; __Pyx_XDECREF_SET(__pyx_v_shape, __pyx_t_12); __pyx_t_12 = 0; __Pyx_XDECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_XDECREF(__pyx_t_10); __pyx_t_10 = 0; __Pyx_XDECREF(__pyx_t_2); __pyx_t_2 = 0; goto __pyx_L6_exception_handled; } __pyx_L7_except_error:; /* "numpy/random/mtrand.pyx":3873 * shape = (d,) * else: * try: # <<<<<<<<<<<<<< * shape = (operator.index(size), d) * except: */ __Pyx_XGIVEREF(__pyx_t_7); __Pyx_XGIVEREF(__pyx_t_8); __Pyx_XGIVEREF(__pyx_t_9); __Pyx_ExceptionReset(__pyx_t_7, __pyx_t_8, __pyx_t_9); goto __pyx_L1_error; __pyx_L6_exception_handled:; __Pyx_XGIVEREF(__pyx_t_7); __Pyx_XGIVEREF(__pyx_t_8); __Pyx_XGIVEREF(__pyx_t_9); __Pyx_ExceptionReset(__pyx_t_7, __pyx_t_8, __pyx_t_9); __pyx_L10_try_end:; } } __pyx_L4:; /* "numpy/random/mtrand.pyx":3878 * shape = tuple(size) + (d,) * * multin = np.zeros(shape, dtype=int) # <<<<<<<<<<<<<< * mnarr = multin * mnix = np.PyArray_DATA(mnarr) */ __Pyx_GetModuleGlobalName(__pyx_t_2, __pyx_n_s_np); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 3878, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_10 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_zeros); if (unlikely(!__pyx_t_10)) __PYX_ERR(0, 3878, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_10); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = PyTuple_New(1); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 3878, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_INCREF(__pyx_v_shape); __Pyx_GIVEREF(__pyx_v_shape); PyTuple_SET_ITEM(__pyx_t_2, 0, __pyx_v_shape); __pyx_t_3 = __Pyx_PyDict_NewPresized(1); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 3878, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); if (PyDict_SetItem(__pyx_t_3, __pyx_n_s_dtype, ((PyObject *)(&PyInt_Type))) < 0) __PYX_ERR(0, 3878, __pyx_L1_error) __pyx_t_12 = __Pyx_PyObject_Call(__pyx_t_10, __pyx_t_2, __pyx_t_3); if (unlikely(!__pyx_t_12)) __PYX_ERR(0, 3878, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_12); __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_v_multin = __pyx_t_12; __pyx_t_12 = 0; /* "numpy/random/mtrand.pyx":3879 * * multin = np.zeros(shape, dtype=int) * mnarr = multin # <<<<<<<<<<<<<< * mnix = np.PyArray_DATA(mnarr) * sz = np.PyArray_SIZE(mnarr) */ __pyx_t_12 = __pyx_v_multin; __Pyx_INCREF(__pyx_t_12); __pyx_v_mnarr = ((PyArrayObject *)__pyx_t_12); __pyx_t_12 = 0; /* "numpy/random/mtrand.pyx":3880 * multin = np.zeros(shape, dtype=int) * mnarr = multin * mnix = np.PyArray_DATA(mnarr) # <<<<<<<<<<<<<< * sz = np.PyArray_SIZE(mnarr) * ni = n */ __pyx_v_mnix = ((long *)PyArray_DATA(__pyx_v_mnarr)); /* "numpy/random/mtrand.pyx":3881 * mnarr = multin * mnix = np.PyArray_DATA(mnarr) * sz = np.PyArray_SIZE(mnarr) # <<<<<<<<<<<<<< * ni = n * check_constraint(ni, 'n', CONS_NON_NEGATIVE) */ __pyx_v_sz = PyArray_SIZE(__pyx_v_mnarr); /* "numpy/random/mtrand.pyx":3882 * mnix = np.PyArray_DATA(mnarr) * sz = np.PyArray_SIZE(mnarr) * ni = n # <<<<<<<<<<<<<< * check_constraint(ni, 'n', CONS_NON_NEGATIVE) * offset = 0 */ __pyx_v_ni = __pyx_v_n; /* "numpy/random/mtrand.pyx":3883 * sz = np.PyArray_SIZE(mnarr) * ni = n * check_constraint(ni, 'n', CONS_NON_NEGATIVE) # <<<<<<<<<<<<<< * offset = 0 * with self.lock, nogil: */ __pyx_t_4 = __pyx_f_5numpy_6random_6common_check_constraint(__pyx_v_ni, __pyx_n_u_n, __pyx_e_5numpy_6random_6common_CONS_NON_NEGATIVE); if (unlikely(__pyx_t_4 == ((int)-1))) __PYX_ERR(0, 3883, __pyx_L1_error) /* "numpy/random/mtrand.pyx":3884 * ni = n * check_constraint(ni, 'n', CONS_NON_NEGATIVE) * offset = 0 # <<<<<<<<<<<<<< * with self.lock, nogil: * for i in range(sz // d): */ __pyx_v_offset = 0; /* "numpy/random/mtrand.pyx":3885 * check_constraint(ni, 'n', CONS_NON_NEGATIVE) * offset = 0 * with self.lock, nogil: # <<<<<<<<<<<<<< * for i in range(sz // d): * legacy_random_multinomial(&self._bitgen, ni, &mnix[offset], pix, d, &self._binomial) */ /*with:*/ { __pyx_t_9 = __Pyx_PyObject_LookupSpecial(__pyx_v_self->lock, __pyx_n_s_exit); if (unlikely(!__pyx_t_9)) __PYX_ERR(0, 3885, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_9); __pyx_t_3 = __Pyx_PyObject_LookupSpecial(__pyx_v_self->lock, __pyx_n_s_enter); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 3885, __pyx_L13_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_2 = NULL; if (CYTHON_UNPACK_METHODS && likely(PyMethod_Check(__pyx_t_3))) { __pyx_t_2 = PyMethod_GET_SELF(__pyx_t_3); if (likely(__pyx_t_2)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_3); __Pyx_INCREF(__pyx_t_2); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_3, function); } } __pyx_t_12 = (__pyx_t_2) ? __Pyx_PyObject_CallOneArg(__pyx_t_3, __pyx_t_2) : __Pyx_PyObject_CallNoArg(__pyx_t_3); __Pyx_XDECREF(__pyx_t_2); __pyx_t_2 = 0; if (unlikely(!__pyx_t_12)) __PYX_ERR(0, 3885, __pyx_L13_error) __Pyx_GOTREF(__pyx_t_12); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_12); __pyx_t_12 = 0; /*try:*/ { { (void)__pyx_t_8; (void)__pyx_t_7; (void)__pyx_t_14; /* mark used */ /*try:*/ { { #ifdef WITH_THREAD PyThreadState *_save; Py_UNBLOCK_THREADS __Pyx_FastGIL_Remember(); #endif /*try:*/ { /* "numpy/random/mtrand.pyx":3886 * offset = 0 * with self.lock, nogil: * for i in range(sz // d): # <<<<<<<<<<<<<< * legacy_random_multinomial(&self._bitgen, ni, &mnix[offset], pix, d, &self._binomial) * offset += d */ __pyx_t_15 = (__pyx_v_sz / __pyx_v_d); __pyx_t_16 = __pyx_t_15; for (__pyx_t_17 = 0; __pyx_t_17 < __pyx_t_16; __pyx_t_17+=1) { __pyx_v_i = __pyx_t_17; /* "numpy/random/mtrand.pyx":3887 * with self.lock, nogil: * for i in range(sz // d): * legacy_random_multinomial(&self._bitgen, ni, &mnix[offset], pix, d, &self._binomial) # <<<<<<<<<<<<<< * offset += d * */ legacy_random_multinomial((&__pyx_v_self->_bitgen), __pyx_v_ni, (&(__pyx_v_mnix[__pyx_v_offset])), __pyx_v_pix, __pyx_v_d, (&__pyx_v_self->_binomial)); /* "numpy/random/mtrand.pyx":3888 * for i in range(sz // d): * legacy_random_multinomial(&self._bitgen, ni, &mnix[offset], pix, d, &self._binomial) * offset += d # <<<<<<<<<<<<<< * * return multin */ __pyx_v_offset = (__pyx_v_offset + __pyx_v_d); } } /* "numpy/random/mtrand.pyx":3885 * check_constraint(ni, 'n', CONS_NON_NEGATIVE) * offset = 0 * with self.lock, nogil: # <<<<<<<<<<<<<< * for i in range(sz // d): * legacy_random_multinomial(&self._bitgen, ni, &mnix[offset], pix, d, &self._binomial) */ /*finally:*/ { /*normal exit:*/{ #ifdef WITH_THREAD __Pyx_FastGIL_Forget(); Py_BLOCK_THREADS #endif goto __pyx_L25; } __pyx_L25:; } } } } } /*finally:*/ { /*normal exit:*/{ if (__pyx_t_9) { __pyx_t_14 = __Pyx_PyObject_Call(__pyx_t_9, __pyx_tuple__13, NULL); __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; if (unlikely(!__pyx_t_14)) __PYX_ERR(0, 3885, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_14); __Pyx_DECREF(__pyx_t_14); __pyx_t_14 = 0; } goto __pyx_L16; } __pyx_L16:; } goto __pyx_L28; __pyx_L13_error:; __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; goto __pyx_L1_error; __pyx_L28:; } /* "numpy/random/mtrand.pyx":3890 * offset += d * * return multin # <<<<<<<<<<<<<< * * def dirichlet(self, object alpha, size=None): */ __Pyx_XDECREF(__pyx_r); __Pyx_INCREF(__pyx_v_multin); __pyx_r = __pyx_v_multin; goto __pyx_L0; /* "numpy/random/mtrand.pyx":3780 * return x * * def multinomial(self, np.npy_intp n, object pvals, size=None): # <<<<<<<<<<<<<< * """ * multinomial(n, pvals, size=None) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_10); __Pyx_XDECREF(__pyx_t_11); __Pyx_XDECREF(__pyx_t_12); __Pyx_XDECREF(__pyx_t_13); __Pyx_AddTraceback("numpy.random.mtrand.RandomState.multinomial", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XDECREF((PyObject *)__pyx_v_parr); __Pyx_XDECREF((PyObject *)__pyx_v_mnarr); __Pyx_XDECREF(__pyx_v_shape); __Pyx_XDECREF(__pyx_v_multin); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "numpy/random/mtrand.pyx":3892 * return multin * * def dirichlet(self, object alpha, size=None): # <<<<<<<<<<<<<< * """ * dirichlet(alpha, size=None) */ /* Python wrapper */ static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_105dirichlet(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static char __pyx_doc_5numpy_6random_6mtrand_11RandomState_104dirichlet[] = "\n dirichlet(alpha, size=None)\n\n Draw samples from the Dirichlet distribution.\n\n Draw `size` samples of dimension k from a Dirichlet distribution. A\n Dirichlet-distributed random variable can be seen as a multivariate\n generalization of a Beta distribution. The Dirichlet distribution\n is a conjugate prior of a multinomial distribution in Bayesian\n inference.\n\n Parameters\n ----------\n alpha : array\n Parameter of the distribution (k dimension for sample of\n dimension k).\n size : int or tuple of ints, optional\n Output shape. If the given shape is, e.g., ``(m, n, k)``, then\n ``m * n * k`` samples are drawn. Default is None, in which case a\n single value is returned.\n\n Returns\n -------\n samples : ndarray,\n The drawn samples, of shape (size, alpha.ndim).\n\n Raises\n -------\n ValueError\n If any value in alpha is less than or equal to zero\n\n Notes\n -----\n The Dirichlet distribution is a distribution over vectors\n :math:`x` that fulfil the conditions :math:`x_i>0` and\n :math:`\\sum_{i=1}^k x_i = 1`.\n\n The probability density function :math:`p` of a\n Dirichlet-distributed random vector :math:`X` is\n proportional to\n\n .. math:: p(x) \\propto \\prod_{i=1}^{k}{x^{\\alpha_i-1}_i},\n\n where :math:`\\alpha` is a vector containing the positive\n concentration parameters.\n\n The method uses the following property for computation: let :math:`Y`\n be a random vector which has components that follow a standard gamma\n distribution, then :math:`X = \\frac{1}{\\sum_{i=1}^k{Y_i}} Y`\n is Dirichlet-distributed\n\n References\n ----------\n .. [1] David McKay, \"Information Theory, Inference and Learning\n Algorithms,""\" chapter 23,\n http://www.inference.org.uk/mackay/itila/\n .. [2] Wikipedia, \"Dirichlet distribution\",\n https://en.wikipedia.org/wiki/Dirichlet_distribution\n\n Examples\n --------\n Taking an example cited in Wikipedia, this distribution can be used if\n one wanted to cut strings (each of initial length 1.0) into K pieces\n with different lengths, where each piece had, on average, a designated\n average length, but allowing some variation in the relative sizes of\n the pieces.\n\n >>> s = np.random.dirichlet((10, 5, 3), 20).transpose()\n\n >>> import matplotlib.pyplot as plt\n >>> plt.barh(range(20), s[0])\n >>> plt.barh(range(20), s[1], left=s[0], color='g')\n >>> plt.barh(range(20), s[2], left=s[0]+s[1], color='r')\n >>> plt.title(\"Lengths of Strings\")\n\n "; static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_105dirichlet(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_alpha = 0; PyObject *__pyx_v_size = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("dirichlet (wrapper)", 0); { static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_alpha,&__pyx_n_s_size,0}; PyObject* values[2] = {0,0}; values[1] = ((PyObject *)Py_None); if (unlikely(__pyx_kwds)) { Py_ssize_t kw_args; const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args); switch (pos_args) { case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); CYTHON_FALLTHROUGH; case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); CYTHON_FALLTHROUGH; case 0: break; default: goto __pyx_L5_argtuple_error; } kw_args = PyDict_Size(__pyx_kwds); switch (pos_args) { case 0: if (likely((values[0] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_alpha)) != 0)) kw_args--; else goto __pyx_L5_argtuple_error; CYTHON_FALLTHROUGH; case 1: if (kw_args > 0) { PyObject* value = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_size); if (value) { values[1] = value; kw_args--; } } } if (unlikely(kw_args > 0)) { if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "dirichlet") < 0)) __PYX_ERR(0, 3892, __pyx_L3_error) } } else { switch (PyTuple_GET_SIZE(__pyx_args)) { case 2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1); CYTHON_FALLTHROUGH; case 1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0); break; default: goto __pyx_L5_argtuple_error; } } __pyx_v_alpha = values[0]; __pyx_v_size = values[1]; } goto __pyx_L4_argument_unpacking_done; __pyx_L5_argtuple_error:; __Pyx_RaiseArgtupleInvalid("dirichlet", 0, 1, 2, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(0, 3892, __pyx_L3_error) __pyx_L3_error:; __Pyx_AddTraceback("numpy.random.mtrand.RandomState.dirichlet", __pyx_clineno, __pyx_lineno, __pyx_filename); __Pyx_RefNannyFinishContext(); return NULL; __pyx_L4_argument_unpacking_done:; __pyx_r = __pyx_pf_5numpy_6random_6mtrand_11RandomState_104dirichlet(((struct __pyx_obj_5numpy_6random_6mtrand_RandomState *)__pyx_v_self), __pyx_v_alpha, __pyx_v_size); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_104dirichlet(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_alpha, PyObject *__pyx_v_size) { npy_intp __pyx_v_k; npy_intp __pyx_v_totsize; npy_intp __pyx_v_i; npy_intp __pyx_v_j; PyArrayObject *__pyx_v_alpha_arr = 0; PyArrayObject *__pyx_v_val_arr = 0; double *__pyx_v_alpha_data; double *__pyx_v_val_data; double __pyx_v_acc; double __pyx_v_invacc; PyObject *__pyx_v_shape = NULL; PyObject *__pyx_v_diric = NULL; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations Py_ssize_t __pyx_t_1; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; PyObject *__pyx_t_5 = NULL; PyObject *__pyx_t_6 = NULL; int __pyx_t_7; PyObject *__pyx_t_8 = NULL; int __pyx_t_9; int __pyx_t_10; PyObject *__pyx_t_11 = NULL; PyObject *__pyx_t_12 = NULL; PyObject *__pyx_t_13 = NULL; PyObject *__pyx_t_14 = NULL; npy_intp __pyx_t_15; npy_intp __pyx_t_16; npy_intp __pyx_t_17; __Pyx_RefNannySetupContext("dirichlet", 0); /* "numpy/random/mtrand.pyx":3995 * cdef double acc, invacc * * k = len(alpha) # <<<<<<<<<<<<<< * alpha_arr = np.PyArray_FROM_OTF( * alpha, np.NPY_DOUBLE, np.NPY_ALIGNED | np.NPY_ARRAY_C_CONTIGUOUS) */ __pyx_t_1 = PyObject_Length(__pyx_v_alpha); if (unlikely(__pyx_t_1 == ((Py_ssize_t)-1))) __PYX_ERR(0, 3995, __pyx_L1_error) __pyx_v_k = __pyx_t_1; /* "numpy/random/mtrand.pyx":3996 * * k = len(alpha) * alpha_arr = np.PyArray_FROM_OTF( # <<<<<<<<<<<<<< * alpha, np.NPY_DOUBLE, np.NPY_ALIGNED | np.NPY_ARRAY_C_CONTIGUOUS) * if np.any(np.less_equal(alpha_arr, 0)): */ __pyx_t_2 = PyArray_FROM_OTF(__pyx_v_alpha, NPY_DOUBLE, (NPY_ALIGNED | NPY_ARRAY_C_CONTIGUOUS)); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 3996, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = __pyx_t_2; __Pyx_INCREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_v_alpha_arr = ((PyArrayObject *)__pyx_t_3); __pyx_t_3 = 0; /* "numpy/random/mtrand.pyx":3998 * alpha_arr = np.PyArray_FROM_OTF( * alpha, np.NPY_DOUBLE, np.NPY_ALIGNED | np.NPY_ARRAY_C_CONTIGUOUS) * if np.any(np.less_equal(alpha_arr, 0)): # <<<<<<<<<<<<<< * raise ValueError('alpha <= 0') * alpha_data = np.PyArray_DATA(alpha_arr) */ __Pyx_GetModuleGlobalName(__pyx_t_2, __pyx_n_s_np); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 3998, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_any); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 3998, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_GetModuleGlobalName(__pyx_t_5, __pyx_n_s_np); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 3998, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __pyx_t_6 = __Pyx_PyObject_GetAttrStr(__pyx_t_5, __pyx_n_s_less_equal); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 3998, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_5 = NULL; __pyx_t_7 = 0; if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_6))) { __pyx_t_5 = PyMethod_GET_SELF(__pyx_t_6); if (likely(__pyx_t_5)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_6); __Pyx_INCREF(__pyx_t_5); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_6, function); __pyx_t_7 = 1; } } #if CYTHON_FAST_PYCALL if (PyFunction_Check(__pyx_t_6)) { PyObject *__pyx_temp[3] = {__pyx_t_5, ((PyObject *)__pyx_v_alpha_arr), __pyx_int_0}; __pyx_t_2 = __Pyx_PyFunction_FastCall(__pyx_t_6, __pyx_temp+1-__pyx_t_7, 2+__pyx_t_7); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 3998, __pyx_L1_error) __Pyx_XDECREF(__pyx_t_5); __pyx_t_5 = 0; __Pyx_GOTREF(__pyx_t_2); } else #endif #if CYTHON_FAST_PYCCALL if (__Pyx_PyFastCFunction_Check(__pyx_t_6)) { PyObject *__pyx_temp[3] = {__pyx_t_5, ((PyObject *)__pyx_v_alpha_arr), __pyx_int_0}; __pyx_t_2 = __Pyx_PyCFunction_FastCall(__pyx_t_6, __pyx_temp+1-__pyx_t_7, 2+__pyx_t_7); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 3998, __pyx_L1_error) __Pyx_XDECREF(__pyx_t_5); __pyx_t_5 = 0; __Pyx_GOTREF(__pyx_t_2); } else #endif { __pyx_t_8 = PyTuple_New(2+__pyx_t_7); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 3998, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_8); if (__pyx_t_5) { __Pyx_GIVEREF(__pyx_t_5); PyTuple_SET_ITEM(__pyx_t_8, 0, __pyx_t_5); __pyx_t_5 = NULL; } __Pyx_INCREF(((PyObject *)__pyx_v_alpha_arr)); __Pyx_GIVEREF(((PyObject *)__pyx_v_alpha_arr)); PyTuple_SET_ITEM(__pyx_t_8, 0+__pyx_t_7, ((PyObject *)__pyx_v_alpha_arr)); __Pyx_INCREF(__pyx_int_0); __Pyx_GIVEREF(__pyx_int_0); PyTuple_SET_ITEM(__pyx_t_8, 1+__pyx_t_7, __pyx_int_0); __pyx_t_2 = __Pyx_PyObject_Call(__pyx_t_6, __pyx_t_8, NULL); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 3998, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; } __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __pyx_t_6 = NULL; if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_4))) { __pyx_t_6 = PyMethod_GET_SELF(__pyx_t_4); if (likely(__pyx_t_6)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_4); __Pyx_INCREF(__pyx_t_6); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_4, function); } } __pyx_t_3 = (__pyx_t_6) ? __Pyx_PyObject_Call2Args(__pyx_t_4, __pyx_t_6, __pyx_t_2) : __Pyx_PyObject_CallOneArg(__pyx_t_4, __pyx_t_2); __Pyx_XDECREF(__pyx_t_6); __pyx_t_6 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 3998, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_9 = __Pyx_PyObject_IsTrue(__pyx_t_3); if (unlikely(__pyx_t_9 < 0)) __PYX_ERR(0, 3998, __pyx_L1_error) __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; if (unlikely(__pyx_t_9)) { /* "numpy/random/mtrand.pyx":3999 * alpha, np.NPY_DOUBLE, np.NPY_ALIGNED | np.NPY_ARRAY_C_CONTIGUOUS) * if np.any(np.less_equal(alpha_arr, 0)): * raise ValueError('alpha <= 0') # <<<<<<<<<<<<<< * alpha_data = np.PyArray_DATA(alpha_arr) * */ __pyx_t_3 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__44, NULL); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 3999, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_Raise(__pyx_t_3, 0, 0, 0); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __PYX_ERR(0, 3999, __pyx_L1_error) /* "numpy/random/mtrand.pyx":3998 * alpha_arr = np.PyArray_FROM_OTF( * alpha, np.NPY_DOUBLE, np.NPY_ALIGNED | np.NPY_ARRAY_C_CONTIGUOUS) * if np.any(np.less_equal(alpha_arr, 0)): # <<<<<<<<<<<<<< * raise ValueError('alpha <= 0') * alpha_data = np.PyArray_DATA(alpha_arr) */ } /* "numpy/random/mtrand.pyx":4000 * if np.any(np.less_equal(alpha_arr, 0)): * raise ValueError('alpha <= 0') * alpha_data = np.PyArray_DATA(alpha_arr) # <<<<<<<<<<<<<< * * if size is None: */ __pyx_v_alpha_data = ((double *)PyArray_DATA(__pyx_v_alpha_arr)); /* "numpy/random/mtrand.pyx":4002 * alpha_data = np.PyArray_DATA(alpha_arr) * * if size is None: # <<<<<<<<<<<<<< * shape = (k,) * else: */ __pyx_t_9 = (__pyx_v_size == Py_None); __pyx_t_10 = (__pyx_t_9 != 0); if (__pyx_t_10) { /* "numpy/random/mtrand.pyx":4003 * * if size is None: * shape = (k,) # <<<<<<<<<<<<<< * else: * try: */ __pyx_t_3 = __Pyx_PyInt_From_Py_intptr_t(__pyx_v_k); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 4003, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_4 = PyTuple_New(1); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 4003, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_GIVEREF(__pyx_t_3); PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_t_3); __pyx_t_3 = 0; __pyx_v_shape = __pyx_t_4; __pyx_t_4 = 0; /* "numpy/random/mtrand.pyx":4002 * alpha_data = np.PyArray_DATA(alpha_arr) * * if size is None: # <<<<<<<<<<<<<< * shape = (k,) * else: */ goto __pyx_L4; } /* "numpy/random/mtrand.pyx":4005 * shape = (k,) * else: * try: # <<<<<<<<<<<<<< * shape = (operator.index(size), k) * except: */ /*else*/ { { __Pyx_PyThreadState_declare __Pyx_PyThreadState_assign __Pyx_ExceptionSave(&__pyx_t_11, &__pyx_t_12, &__pyx_t_13); __Pyx_XGOTREF(__pyx_t_11); __Pyx_XGOTREF(__pyx_t_12); __Pyx_XGOTREF(__pyx_t_13); /*try:*/ { /* "numpy/random/mtrand.pyx":4006 * else: * try: * shape = (operator.index(size), k) # <<<<<<<<<<<<<< * except: * shape = tuple(size) + (k,) */ __Pyx_GetModuleGlobalName(__pyx_t_3, __pyx_n_s_operator); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 4006, __pyx_L5_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_index); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 4006, __pyx_L5_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = NULL; if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_2))) { __pyx_t_3 = PyMethod_GET_SELF(__pyx_t_2); if (likely(__pyx_t_3)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_2); __Pyx_INCREF(__pyx_t_3); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_2, function); } } __pyx_t_4 = (__pyx_t_3) ? __Pyx_PyObject_Call2Args(__pyx_t_2, __pyx_t_3, __pyx_v_size) : __Pyx_PyObject_CallOneArg(__pyx_t_2, __pyx_v_size); __Pyx_XDECREF(__pyx_t_3); __pyx_t_3 = 0; if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 4006, __pyx_L5_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = __Pyx_PyInt_From_Py_intptr_t(__pyx_v_k); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 4006, __pyx_L5_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = PyTuple_New(2); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 4006, __pyx_L5_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_GIVEREF(__pyx_t_4); PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_t_4); __Pyx_GIVEREF(__pyx_t_2); PyTuple_SET_ITEM(__pyx_t_3, 1, __pyx_t_2); __pyx_t_4 = 0; __pyx_t_2 = 0; __pyx_v_shape = __pyx_t_3; __pyx_t_3 = 0; /* "numpy/random/mtrand.pyx":4005 * shape = (k,) * else: * try: # <<<<<<<<<<<<<< * shape = (operator.index(size), k) * except: */ } __Pyx_XDECREF(__pyx_t_11); __pyx_t_11 = 0; __Pyx_XDECREF(__pyx_t_12); __pyx_t_12 = 0; __Pyx_XDECREF(__pyx_t_13); __pyx_t_13 = 0; goto __pyx_L10_try_end; __pyx_L5_error:; __Pyx_XDECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_XDECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_XDECREF(__pyx_t_4); __pyx_t_4 = 0; __Pyx_XDECREF(__pyx_t_5); __pyx_t_5 = 0; __Pyx_XDECREF(__pyx_t_6); __pyx_t_6 = 0; __Pyx_XDECREF(__pyx_t_8); __pyx_t_8 = 0; /* "numpy/random/mtrand.pyx":4007 * try: * shape = (operator.index(size), k) * except: # <<<<<<<<<<<<<< * shape = tuple(size) + (k,) * */ /*except:*/ { __Pyx_AddTraceback("numpy.random.mtrand.RandomState.dirichlet", __pyx_clineno, __pyx_lineno, __pyx_filename); if (__Pyx_GetException(&__pyx_t_3, &__pyx_t_2, &__pyx_t_4) < 0) __PYX_ERR(0, 4007, __pyx_L7_except_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_GOTREF(__pyx_t_2); __Pyx_GOTREF(__pyx_t_4); /* "numpy/random/mtrand.pyx":4008 * shape = (operator.index(size), k) * except: * shape = tuple(size) + (k,) # <<<<<<<<<<<<<< * * diric = np.zeros(shape, np.float64) */ __pyx_t_6 = __Pyx_PySequence_Tuple(__pyx_v_size); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 4008, __pyx_L7_except_error) __Pyx_GOTREF(__pyx_t_6); __pyx_t_8 = __Pyx_PyInt_From_Py_intptr_t(__pyx_v_k); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 4008, __pyx_L7_except_error) __Pyx_GOTREF(__pyx_t_8); __pyx_t_5 = PyTuple_New(1); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 4008, __pyx_L7_except_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_GIVEREF(__pyx_t_8); PyTuple_SET_ITEM(__pyx_t_5, 0, __pyx_t_8); __pyx_t_8 = 0; __pyx_t_8 = PyNumber_Add(__pyx_t_6, __pyx_t_5); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 4008, __pyx_L7_except_error) __Pyx_GOTREF(__pyx_t_8); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __Pyx_XDECREF_SET(__pyx_v_shape, __pyx_t_8); __pyx_t_8 = 0; __Pyx_XDECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_XDECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_XDECREF(__pyx_t_4); __pyx_t_4 = 0; goto __pyx_L6_exception_handled; } __pyx_L7_except_error:; /* "numpy/random/mtrand.pyx":4005 * shape = (k,) * else: * try: # <<<<<<<<<<<<<< * shape = (operator.index(size), k) * except: */ __Pyx_XGIVEREF(__pyx_t_11); __Pyx_XGIVEREF(__pyx_t_12); __Pyx_XGIVEREF(__pyx_t_13); __Pyx_ExceptionReset(__pyx_t_11, __pyx_t_12, __pyx_t_13); goto __pyx_L1_error; __pyx_L6_exception_handled:; __Pyx_XGIVEREF(__pyx_t_11); __Pyx_XGIVEREF(__pyx_t_12); __Pyx_XGIVEREF(__pyx_t_13); __Pyx_ExceptionReset(__pyx_t_11, __pyx_t_12, __pyx_t_13); __pyx_L10_try_end:; } } __pyx_L4:; /* "numpy/random/mtrand.pyx":4010 * shape = tuple(size) + (k,) * * diric = np.zeros(shape, np.float64) # <<<<<<<<<<<<<< * val_arr = diric * val_data = np.PyArray_DATA(val_arr) */ __Pyx_GetModuleGlobalName(__pyx_t_2, __pyx_n_s_np); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 4010, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_zeros); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 4010, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_GetModuleGlobalName(__pyx_t_2, __pyx_n_s_np); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 4010, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_8 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_float64); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 4010, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_8); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = NULL; __pyx_t_7 = 0; if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_3))) { __pyx_t_2 = PyMethod_GET_SELF(__pyx_t_3); if (likely(__pyx_t_2)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_3); __Pyx_INCREF(__pyx_t_2); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_3, function); __pyx_t_7 = 1; } } #if CYTHON_FAST_PYCALL if (PyFunction_Check(__pyx_t_3)) { PyObject *__pyx_temp[3] = {__pyx_t_2, __pyx_v_shape, __pyx_t_8}; __pyx_t_4 = __Pyx_PyFunction_FastCall(__pyx_t_3, __pyx_temp+1-__pyx_t_7, 2+__pyx_t_7); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 4010, __pyx_L1_error) __Pyx_XDECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; } else #endif #if CYTHON_FAST_PYCCALL if (__Pyx_PyFastCFunction_Check(__pyx_t_3)) { PyObject *__pyx_temp[3] = {__pyx_t_2, __pyx_v_shape, __pyx_t_8}; __pyx_t_4 = __Pyx_PyCFunction_FastCall(__pyx_t_3, __pyx_temp+1-__pyx_t_7, 2+__pyx_t_7); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 4010, __pyx_L1_error) __Pyx_XDECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; } else #endif { __pyx_t_5 = PyTuple_New(2+__pyx_t_7); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 4010, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); if (__pyx_t_2) { __Pyx_GIVEREF(__pyx_t_2); PyTuple_SET_ITEM(__pyx_t_5, 0, __pyx_t_2); __pyx_t_2 = NULL; } __Pyx_INCREF(__pyx_v_shape); __Pyx_GIVEREF(__pyx_v_shape); PyTuple_SET_ITEM(__pyx_t_5, 0+__pyx_t_7, __pyx_v_shape); __Pyx_GIVEREF(__pyx_t_8); PyTuple_SET_ITEM(__pyx_t_5, 1+__pyx_t_7, __pyx_t_8); __pyx_t_8 = 0; __pyx_t_4 = __Pyx_PyObject_Call(__pyx_t_3, __pyx_t_5, NULL); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 4010, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; } __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_v_diric = __pyx_t_4; __pyx_t_4 = 0; /* "numpy/random/mtrand.pyx":4011 * * diric = np.zeros(shape, np.float64) * val_arr = diric # <<<<<<<<<<<<<< * val_data = np.PyArray_DATA(val_arr) * */ __pyx_t_4 = __pyx_v_diric; __Pyx_INCREF(__pyx_t_4); __pyx_v_val_arr = ((PyArrayObject *)__pyx_t_4); __pyx_t_4 = 0; /* "numpy/random/mtrand.pyx":4012 * diric = np.zeros(shape, np.float64) * val_arr = diric * val_data = np.PyArray_DATA(val_arr) # <<<<<<<<<<<<<< * * i = 0 */ __pyx_v_val_data = ((double *)PyArray_DATA(__pyx_v_val_arr)); /* "numpy/random/mtrand.pyx":4014 * val_data = np.PyArray_DATA(val_arr) * * i = 0 # <<<<<<<<<<<<<< * totsize = np.PyArray_SIZE(val_arr) * with self.lock, nogil: */ __pyx_v_i = 0; /* "numpy/random/mtrand.pyx":4015 * * i = 0 * totsize = np.PyArray_SIZE(val_arr) # <<<<<<<<<<<<<< * with self.lock, nogil: * while i < totsize: */ __pyx_v_totsize = PyArray_SIZE(__pyx_v_val_arr); /* "numpy/random/mtrand.pyx":4016 * i = 0 * totsize = np.PyArray_SIZE(val_arr) * with self.lock, nogil: # <<<<<<<<<<<<<< * while i < totsize: * acc = 0.0 */ /*with:*/ { __pyx_t_13 = __Pyx_PyObject_LookupSpecial(__pyx_v_self->lock, __pyx_n_s_exit); if (unlikely(!__pyx_t_13)) __PYX_ERR(0, 4016, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_13); __pyx_t_3 = __Pyx_PyObject_LookupSpecial(__pyx_v_self->lock, __pyx_n_s_enter); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 4016, __pyx_L13_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_5 = NULL; if (CYTHON_UNPACK_METHODS && likely(PyMethod_Check(__pyx_t_3))) { __pyx_t_5 = PyMethod_GET_SELF(__pyx_t_3); if (likely(__pyx_t_5)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_3); __Pyx_INCREF(__pyx_t_5); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_3, function); } } __pyx_t_4 = (__pyx_t_5) ? __Pyx_PyObject_CallOneArg(__pyx_t_3, __pyx_t_5) : __Pyx_PyObject_CallNoArg(__pyx_t_3); __Pyx_XDECREF(__pyx_t_5); __pyx_t_5 = 0; if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 4016, __pyx_L13_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; /*try:*/ { { (void)__pyx_t_12; (void)__pyx_t_11; (void)__pyx_t_14; /* mark used */ /*try:*/ { { #ifdef WITH_THREAD PyThreadState *_save; Py_UNBLOCK_THREADS __Pyx_FastGIL_Remember(); #endif /*try:*/ { /* "numpy/random/mtrand.pyx":4017 * totsize = np.PyArray_SIZE(val_arr) * with self.lock, nogil: * while i < totsize: # <<<<<<<<<<<<<< * acc = 0.0 * for j in range(k): */ while (1) { __pyx_t_10 = ((__pyx_v_i < __pyx_v_totsize) != 0); if (!__pyx_t_10) break; /* "numpy/random/mtrand.pyx":4018 * with self.lock, nogil: * while i < totsize: * acc = 0.0 # <<<<<<<<<<<<<< * for j in range(k): * val_data[i+j] = legacy_standard_gamma(&self._aug_state, */ __pyx_v_acc = 0.0; /* "numpy/random/mtrand.pyx":4019 * while i < totsize: * acc = 0.0 * for j in range(k): # <<<<<<<<<<<<<< * val_data[i+j] = legacy_standard_gamma(&self._aug_state, * alpha_data[j]) */ __pyx_t_15 = __pyx_v_k; __pyx_t_16 = __pyx_t_15; for (__pyx_t_17 = 0; __pyx_t_17 < __pyx_t_16; __pyx_t_17+=1) { __pyx_v_j = __pyx_t_17; /* "numpy/random/mtrand.pyx":4020 * acc = 0.0 * for j in range(k): * val_data[i+j] = legacy_standard_gamma(&self._aug_state, # <<<<<<<<<<<<<< * alpha_data[j]) * acc = acc + val_data[i + j] */ (__pyx_v_val_data[(__pyx_v_i + __pyx_v_j)]) = legacy_standard_gamma((&__pyx_v_self->_aug_state), (__pyx_v_alpha_data[__pyx_v_j])); /* "numpy/random/mtrand.pyx":4022 * val_data[i+j] = legacy_standard_gamma(&self._aug_state, * alpha_data[j]) * acc = acc + val_data[i + j] # <<<<<<<<<<<<<< * invacc = 1/acc * for j in range(k): */ __pyx_v_acc = (__pyx_v_acc + (__pyx_v_val_data[(__pyx_v_i + __pyx_v_j)])); } /* "numpy/random/mtrand.pyx":4023 * alpha_data[j]) * acc = acc + val_data[i + j] * invacc = 1/acc # <<<<<<<<<<<<<< * for j in range(k): * val_data[i + j] = val_data[i + j] * invacc */ __pyx_v_invacc = (1.0 / __pyx_v_acc); /* "numpy/random/mtrand.pyx":4024 * acc = acc + val_data[i + j] * invacc = 1/acc * for j in range(k): # <<<<<<<<<<<<<< * val_data[i + j] = val_data[i + j] * invacc * i = i + k */ __pyx_t_15 = __pyx_v_k; __pyx_t_16 = __pyx_t_15; for (__pyx_t_17 = 0; __pyx_t_17 < __pyx_t_16; __pyx_t_17+=1) { __pyx_v_j = __pyx_t_17; /* "numpy/random/mtrand.pyx":4025 * invacc = 1/acc * for j in range(k): * val_data[i + j] = val_data[i + j] * invacc # <<<<<<<<<<<<<< * i = i + k * */ (__pyx_v_val_data[(__pyx_v_i + __pyx_v_j)]) = ((__pyx_v_val_data[(__pyx_v_i + __pyx_v_j)]) * __pyx_v_invacc); } /* "numpy/random/mtrand.pyx":4026 * for j in range(k): * val_data[i + j] = val_data[i + j] * invacc * i = i + k # <<<<<<<<<<<<<< * * return diric */ __pyx_v_i = (__pyx_v_i + __pyx_v_k); } } /* "numpy/random/mtrand.pyx":4016 * i = 0 * totsize = np.PyArray_SIZE(val_arr) * with self.lock, nogil: # <<<<<<<<<<<<<< * while i < totsize: * acc = 0.0 */ /*finally:*/ { /*normal exit:*/{ #ifdef WITH_THREAD __Pyx_FastGIL_Forget(); Py_BLOCK_THREADS #endif goto __pyx_L25; } __pyx_L25:; } } } } } /*finally:*/ { /*normal exit:*/{ if (__pyx_t_13) { __pyx_t_14 = __Pyx_PyObject_Call(__pyx_t_13, __pyx_tuple__13, NULL); __Pyx_DECREF(__pyx_t_13); __pyx_t_13 = 0; if (unlikely(!__pyx_t_14)) __PYX_ERR(0, 4016, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_14); __Pyx_DECREF(__pyx_t_14); __pyx_t_14 = 0; } goto __pyx_L16; } __pyx_L16:; } goto __pyx_L32; __pyx_L13_error:; __Pyx_DECREF(__pyx_t_13); __pyx_t_13 = 0; goto __pyx_L1_error; __pyx_L32:; } /* "numpy/random/mtrand.pyx":4028 * i = i + k * * return diric # <<<<<<<<<<<<<< * * # Shuffling and permutations: */ __Pyx_XDECREF(__pyx_r); __Pyx_INCREF(__pyx_v_diric); __pyx_r = __pyx_v_diric; goto __pyx_L0; /* "numpy/random/mtrand.pyx":3892 * return multin * * def dirichlet(self, object alpha, size=None): # <<<<<<<<<<<<<< * """ * dirichlet(alpha, size=None) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __Pyx_XDECREF(__pyx_t_5); __Pyx_XDECREF(__pyx_t_6); __Pyx_XDECREF(__pyx_t_8); __Pyx_AddTraceback("numpy.random.mtrand.RandomState.dirichlet", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XDECREF((PyObject *)__pyx_v_alpha_arr); __Pyx_XDECREF((PyObject *)__pyx_v_val_arr); __Pyx_XDECREF(__pyx_v_shape); __Pyx_XDECREF(__pyx_v_diric); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "numpy/random/mtrand.pyx":4031 * * # Shuffling and permutations: * def shuffle(self, object x): # <<<<<<<<<<<<<< * """ * shuffle(x) */ /* Python wrapper */ static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_107shuffle(PyObject *__pyx_v_self, PyObject *__pyx_v_x); /*proto*/ static char __pyx_doc_5numpy_6random_6mtrand_11RandomState_106shuffle[] = "\n shuffle(x)\n\n Modify a sequence in-place by shuffling its contents.\n\n This function only shuffles the array along the first axis of a\n multi-dimensional array. The order of sub-arrays is changed but\n their contents remains the same.\n\n Parameters\n ----------\n x : array_like\n The array or list to be shuffled.\n\n Returns\n -------\n None\n\n Examples\n --------\n >>> arr = np.arange(10)\n >>> np.random.shuffle(arr)\n >>> arr\n [1 7 5 2 9 4 3 6 0 8] # random\n\n Multi-dimensional arrays are only shuffled along the first axis:\n\n >>> arr = np.arange(9).reshape((3, 3))\n >>> np.random.shuffle(arr)\n >>> arr\n array([[3, 4, 5], # random\n [6, 7, 8],\n [0, 1, 2]])\n\n "; static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_107shuffle(PyObject *__pyx_v_self, PyObject *__pyx_v_x) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("shuffle (wrapper)", 0); __pyx_r = __pyx_pf_5numpy_6random_6mtrand_11RandomState_106shuffle(((struct __pyx_obj_5numpy_6random_6mtrand_RandomState *)__pyx_v_self), ((PyObject *)__pyx_v_x)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_106shuffle(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_x) { npy_intp __pyx_v_i; npy_intp __pyx_v_j; npy_intp __pyx_v_n; npy_intp __pyx_v_stride; npy_intp __pyx_v_itemsize; char *__pyx_v_x_ptr; char *__pyx_v_buf_ptr; PyObject *__pyx_v_buf = NULL; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations Py_ssize_t __pyx_t_1; int __pyx_t_2; int __pyx_t_3; int __pyx_t_4; PyObject *__pyx_t_5 = NULL; PyObject *__pyx_t_6 = NULL; size_t __pyx_t_7; npy_intp __pyx_t_8; PyObject *__pyx_t_9 = NULL; PyObject *__pyx_t_10 = NULL; PyObject *__pyx_t_11 = NULL; PyObject *__pyx_t_12 = NULL; PyObject *__pyx_t_13 = NULL; PyObject *__pyx_t_14 = NULL; PyObject *__pyx_t_15 = NULL; PyObject *__pyx_t_16 = NULL; __Pyx_RefNannySetupContext("shuffle", 0); /* "numpy/random/mtrand.pyx":4068 * """ * cdef: * np.npy_intp i, j, n = len(x), stride, itemsize # <<<<<<<<<<<<<< * char* x_ptr * char* buf_ptr */ __pyx_t_1 = PyObject_Length(__pyx_v_x); if (unlikely(__pyx_t_1 == ((Py_ssize_t)-1))) __PYX_ERR(0, 4068, __pyx_L1_error) __pyx_v_n = __pyx_t_1; /* "numpy/random/mtrand.pyx":4072 * char* buf_ptr * * if type(x) is np.ndarray and x.ndim == 1 and x.size: # <<<<<<<<<<<<<< * # Fast, statically typed path: shuffle the underlying buffer. * # Only for non-empty, 1d objects of class ndarray (subclasses such */ __pyx_t_3 = (((PyObject *)Py_TYPE(__pyx_v_x)) == ((PyObject *)__pyx_ptype_5numpy_ndarray)); __pyx_t_4 = (__pyx_t_3 != 0); if (__pyx_t_4) { } else { __pyx_t_2 = __pyx_t_4; goto __pyx_L4_bool_binop_done; } __pyx_t_5 = __Pyx_PyObject_GetAttrStr(__pyx_v_x, __pyx_n_s_ndim); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 4072, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __pyx_t_6 = __Pyx_PyInt_EqObjC(__pyx_t_5, __pyx_int_1, 1, 0); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 4072, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_4 = __Pyx_PyObject_IsTrue(__pyx_t_6); if (unlikely(__pyx_t_4 < 0)) __PYX_ERR(0, 4072, __pyx_L1_error) __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; if (__pyx_t_4) { } else { __pyx_t_2 = __pyx_t_4; goto __pyx_L4_bool_binop_done; } __pyx_t_6 = __Pyx_PyObject_GetAttrStr(__pyx_v_x, __pyx_n_s_size); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 4072, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __pyx_t_4 = __Pyx_PyObject_IsTrue(__pyx_t_6); if (unlikely(__pyx_t_4 < 0)) __PYX_ERR(0, 4072, __pyx_L1_error) __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __pyx_t_2 = __pyx_t_4; __pyx_L4_bool_binop_done:; if (__pyx_t_2) { /* "numpy/random/mtrand.pyx":4076 * # Only for non-empty, 1d objects of class ndarray (subclasses such * # as MaskedArrays may not support this approach). * x_ptr = x.ctypes.data # <<<<<<<<<<<<<< * stride = x.strides[0] * itemsize = x.dtype.itemsize */ __pyx_t_6 = __Pyx_PyObject_GetAttrStr(__pyx_v_x, __pyx_n_s_ctypes); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 4076, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __pyx_t_5 = __Pyx_PyObject_GetAttrStr(__pyx_t_6, __pyx_n_s_data); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 4076, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __pyx_t_7 = __Pyx_PyInt_As_size_t(__pyx_t_5); if (unlikely((__pyx_t_7 == (size_t)-1) && PyErr_Occurred())) __PYX_ERR(0, 4076, __pyx_L1_error) __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_v_x_ptr = ((char *)((size_t)__pyx_t_7)); /* "numpy/random/mtrand.pyx":4077 * # as MaskedArrays may not support this approach). * x_ptr = x.ctypes.data * stride = x.strides[0] # <<<<<<<<<<<<<< * itemsize = x.dtype.itemsize * # As the array x could contain python objects we use a buffer */ __pyx_t_5 = __Pyx_PyObject_GetAttrStr(__pyx_v_x, __pyx_n_s_strides); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 4077, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __pyx_t_6 = __Pyx_GetItemInt(__pyx_t_5, 0, long, 1, __Pyx_PyInt_From_long, 0, 0, 0); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 4077, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_8 = __Pyx_PyInt_As_Py_intptr_t(__pyx_t_6); if (unlikely((__pyx_t_8 == ((npy_intp)-1)) && PyErr_Occurred())) __PYX_ERR(0, 4077, __pyx_L1_error) __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __pyx_v_stride = __pyx_t_8; /* "numpy/random/mtrand.pyx":4078 * x_ptr = x.ctypes.data * stride = x.strides[0] * itemsize = x.dtype.itemsize # <<<<<<<<<<<<<< * # As the array x could contain python objects we use a buffer * # of bytes for the swaps to avoid leaving one of the objects */ __pyx_t_6 = __Pyx_PyObject_GetAttrStr(__pyx_v_x, __pyx_n_s_dtype); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 4078, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __pyx_t_5 = __Pyx_PyObject_GetAttrStr(__pyx_t_6, __pyx_n_s_itemsize); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 4078, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __pyx_t_8 = __Pyx_PyInt_As_Py_intptr_t(__pyx_t_5); if (unlikely((__pyx_t_8 == ((npy_intp)-1)) && PyErr_Occurred())) __PYX_ERR(0, 4078, __pyx_L1_error) __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_v_itemsize = __pyx_t_8; /* "numpy/random/mtrand.pyx":4083 * # within the buffer and erroneously decrementing it's refcount * # when the function exits. * buf = np.empty(itemsize, dtype=np.int8) # GC'd at function exit # <<<<<<<<<<<<<< * buf_ptr = buf.ctypes.data * with self.lock: */ __Pyx_GetModuleGlobalName(__pyx_t_5, __pyx_n_s_np); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 4083, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __pyx_t_6 = __Pyx_PyObject_GetAttrStr(__pyx_t_5, __pyx_n_s_empty); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 4083, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_5 = __Pyx_PyInt_From_Py_intptr_t(__pyx_v_itemsize); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 4083, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __pyx_t_9 = PyTuple_New(1); if (unlikely(!__pyx_t_9)) __PYX_ERR(0, 4083, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_9); __Pyx_GIVEREF(__pyx_t_5); PyTuple_SET_ITEM(__pyx_t_9, 0, __pyx_t_5); __pyx_t_5 = 0; __pyx_t_5 = __Pyx_PyDict_NewPresized(1); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 4083, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_GetModuleGlobalName(__pyx_t_10, __pyx_n_s_np); if (unlikely(!__pyx_t_10)) __PYX_ERR(0, 4083, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_10); __pyx_t_11 = __Pyx_PyObject_GetAttrStr(__pyx_t_10, __pyx_n_s_int8); if (unlikely(!__pyx_t_11)) __PYX_ERR(0, 4083, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_11); __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0; if (PyDict_SetItem(__pyx_t_5, __pyx_n_s_dtype, __pyx_t_11) < 0) __PYX_ERR(0, 4083, __pyx_L1_error) __Pyx_DECREF(__pyx_t_11); __pyx_t_11 = 0; __pyx_t_11 = __Pyx_PyObject_Call(__pyx_t_6, __pyx_t_9, __pyx_t_5); if (unlikely(!__pyx_t_11)) __PYX_ERR(0, 4083, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_11); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_v_buf = __pyx_t_11; __pyx_t_11 = 0; /* "numpy/random/mtrand.pyx":4084 * # when the function exits. * buf = np.empty(itemsize, dtype=np.int8) # GC'd at function exit * buf_ptr = buf.ctypes.data # <<<<<<<<<<<<<< * with self.lock: * # We trick gcc into providing a specialized implementation for */ __pyx_t_11 = __Pyx_PyObject_GetAttrStr(__pyx_v_buf, __pyx_n_s_ctypes); if (unlikely(!__pyx_t_11)) __PYX_ERR(0, 4084, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_11); __pyx_t_5 = __Pyx_PyObject_GetAttrStr(__pyx_t_11, __pyx_n_s_data); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 4084, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_11); __pyx_t_11 = 0; __pyx_t_7 = __Pyx_PyInt_As_size_t(__pyx_t_5); if (unlikely((__pyx_t_7 == (size_t)-1) && PyErr_Occurred())) __PYX_ERR(0, 4084, __pyx_L1_error) __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_v_buf_ptr = ((char *)((size_t)__pyx_t_7)); /* "numpy/random/mtrand.pyx":4085 * buf = np.empty(itemsize, dtype=np.int8) # GC'd at function exit * buf_ptr = buf.ctypes.data * with self.lock: # <<<<<<<<<<<<<< * # We trick gcc into providing a specialized implementation for * # the most common case, yielding a ~33% performance improvement. */ /*with:*/ { __pyx_t_12 = __Pyx_PyObject_LookupSpecial(__pyx_v_self->lock, __pyx_n_s_exit); if (unlikely(!__pyx_t_12)) __PYX_ERR(0, 4085, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_12); __pyx_t_11 = __Pyx_PyObject_LookupSpecial(__pyx_v_self->lock, __pyx_n_s_enter); if (unlikely(!__pyx_t_11)) __PYX_ERR(0, 4085, __pyx_L7_error) __Pyx_GOTREF(__pyx_t_11); __pyx_t_9 = NULL; if (CYTHON_UNPACK_METHODS && likely(PyMethod_Check(__pyx_t_11))) { __pyx_t_9 = PyMethod_GET_SELF(__pyx_t_11); if (likely(__pyx_t_9)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_11); __Pyx_INCREF(__pyx_t_9); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_11, function); } } __pyx_t_5 = (__pyx_t_9) ? __Pyx_PyObject_CallOneArg(__pyx_t_11, __pyx_t_9) : __Pyx_PyObject_CallNoArg(__pyx_t_11); __Pyx_XDECREF(__pyx_t_9); __pyx_t_9 = 0; if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 4085, __pyx_L7_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_11); __pyx_t_11 = 0; __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; /*try:*/ { { __Pyx_PyThreadState_declare __Pyx_PyThreadState_assign __Pyx_ExceptionSave(&__pyx_t_13, &__pyx_t_14, &__pyx_t_15); __Pyx_XGOTREF(__pyx_t_13); __Pyx_XGOTREF(__pyx_t_14); __Pyx_XGOTREF(__pyx_t_15); /*try:*/ { /* "numpy/random/mtrand.pyx":4089 * # the most common case, yielding a ~33% performance improvement. * # Note that apparently, only one branch can ever be specialized. * if itemsize == sizeof(np.npy_intp): # <<<<<<<<<<<<<< * self._shuffle_raw(n, sizeof(np.npy_intp), stride, x_ptr, buf_ptr) * else: */ __pyx_t_2 = ((__pyx_v_itemsize == (sizeof(npy_intp))) != 0); if (__pyx_t_2) { /* "numpy/random/mtrand.pyx":4090 * # Note that apparently, only one branch can ever be specialized. * if itemsize == sizeof(np.npy_intp): * self._shuffle_raw(n, sizeof(np.npy_intp), stride, x_ptr, buf_ptr) # <<<<<<<<<<<<<< * else: * self._shuffle_raw(n, itemsize, stride, x_ptr, buf_ptr) */ __pyx_t_5 = __pyx_f_5numpy_6random_6mtrand_11RandomState__shuffle_raw(__pyx_v_self, __pyx_v_n, (sizeof(npy_intp)), __pyx_v_stride, __pyx_v_x_ptr, __pyx_v_buf_ptr); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 4090, __pyx_L11_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; /* "numpy/random/mtrand.pyx":4089 * # the most common case, yielding a ~33% performance improvement. * # Note that apparently, only one branch can ever be specialized. * if itemsize == sizeof(np.npy_intp): # <<<<<<<<<<<<<< * self._shuffle_raw(n, sizeof(np.npy_intp), stride, x_ptr, buf_ptr) * else: */ goto __pyx_L17; } /* "numpy/random/mtrand.pyx":4092 * self._shuffle_raw(n, sizeof(np.npy_intp), stride, x_ptr, buf_ptr) * else: * self._shuffle_raw(n, itemsize, stride, x_ptr, buf_ptr) # <<<<<<<<<<<<<< * elif isinstance(x, np.ndarray) and x.ndim and x.size: * buf = np.empty_like(x[0, ...]) */ /*else*/ { __pyx_t_5 = __pyx_f_5numpy_6random_6mtrand_11RandomState__shuffle_raw(__pyx_v_self, __pyx_v_n, __pyx_v_itemsize, __pyx_v_stride, __pyx_v_x_ptr, __pyx_v_buf_ptr); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 4092, __pyx_L11_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; } __pyx_L17:; /* "numpy/random/mtrand.pyx":4085 * buf = np.empty(itemsize, dtype=np.int8) # GC'd at function exit * buf_ptr = buf.ctypes.data * with self.lock: # <<<<<<<<<<<<<< * # We trick gcc into providing a specialized implementation for * # the most common case, yielding a ~33% performance improvement. */ } __Pyx_XDECREF(__pyx_t_13); __pyx_t_13 = 0; __Pyx_XDECREF(__pyx_t_14); __pyx_t_14 = 0; __Pyx_XDECREF(__pyx_t_15); __pyx_t_15 = 0; goto __pyx_L16_try_end; __pyx_L11_error:; __Pyx_XDECREF(__pyx_t_10); __pyx_t_10 = 0; __Pyx_XDECREF(__pyx_t_11); __pyx_t_11 = 0; __Pyx_XDECREF(__pyx_t_5); __pyx_t_5 = 0; __Pyx_XDECREF(__pyx_t_6); __pyx_t_6 = 0; __Pyx_XDECREF(__pyx_t_9); __pyx_t_9 = 0; /*except:*/ { __Pyx_AddTraceback("numpy.random.mtrand.RandomState.shuffle", __pyx_clineno, __pyx_lineno, __pyx_filename); if (__Pyx_GetException(&__pyx_t_5, &__pyx_t_11, &__pyx_t_9) < 0) __PYX_ERR(0, 4085, __pyx_L13_except_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_GOTREF(__pyx_t_11); __Pyx_GOTREF(__pyx_t_9); __pyx_t_6 = PyTuple_Pack(3, __pyx_t_5, __pyx_t_11, __pyx_t_9); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 4085, __pyx_L13_except_error) __Pyx_GOTREF(__pyx_t_6); __pyx_t_16 = __Pyx_PyObject_Call(__pyx_t_12, __pyx_t_6, NULL); __Pyx_DECREF(__pyx_t_12); __pyx_t_12 = 0; __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; if (unlikely(!__pyx_t_16)) __PYX_ERR(0, 4085, __pyx_L13_except_error) __Pyx_GOTREF(__pyx_t_16); __pyx_t_2 = __Pyx_PyObject_IsTrue(__pyx_t_16); __Pyx_DECREF(__pyx_t_16); __pyx_t_16 = 0; if (__pyx_t_2 < 0) __PYX_ERR(0, 4085, __pyx_L13_except_error) __pyx_t_4 = ((!(__pyx_t_2 != 0)) != 0); if (__pyx_t_4) { __Pyx_GIVEREF(__pyx_t_5); __Pyx_GIVEREF(__pyx_t_11); __Pyx_XGIVEREF(__pyx_t_9); __Pyx_ErrRestoreWithState(__pyx_t_5, __pyx_t_11, __pyx_t_9); __pyx_t_5 = 0; __pyx_t_11 = 0; __pyx_t_9 = 0; __PYX_ERR(0, 4085, __pyx_L13_except_error) } __Pyx_XDECREF(__pyx_t_5); __pyx_t_5 = 0; __Pyx_XDECREF(__pyx_t_11); __pyx_t_11 = 0; __Pyx_XDECREF(__pyx_t_9); __pyx_t_9 = 0; goto __pyx_L12_exception_handled; } __pyx_L13_except_error:; __Pyx_XGIVEREF(__pyx_t_13); __Pyx_XGIVEREF(__pyx_t_14); __Pyx_XGIVEREF(__pyx_t_15); __Pyx_ExceptionReset(__pyx_t_13, __pyx_t_14, __pyx_t_15); goto __pyx_L1_error; __pyx_L12_exception_handled:; __Pyx_XGIVEREF(__pyx_t_13); __Pyx_XGIVEREF(__pyx_t_14); __Pyx_XGIVEREF(__pyx_t_15); __Pyx_ExceptionReset(__pyx_t_13, __pyx_t_14, __pyx_t_15); __pyx_L16_try_end:; } } /*finally:*/ { /*normal exit:*/{ if (__pyx_t_12) { __pyx_t_15 = __Pyx_PyObject_Call(__pyx_t_12, __pyx_tuple__13, NULL); __Pyx_DECREF(__pyx_t_12); __pyx_t_12 = 0; if (unlikely(!__pyx_t_15)) __PYX_ERR(0, 4085, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_15); __Pyx_DECREF(__pyx_t_15); __pyx_t_15 = 0; } goto __pyx_L10; } __pyx_L10:; } goto __pyx_L21; __pyx_L7_error:; __Pyx_DECREF(__pyx_t_12); __pyx_t_12 = 0; goto __pyx_L1_error; __pyx_L21:; } /* "numpy/random/mtrand.pyx":4072 * char* buf_ptr * * if type(x) is np.ndarray and x.ndim == 1 and x.size: # <<<<<<<<<<<<<< * # Fast, statically typed path: shuffle the underlying buffer. * # Only for non-empty, 1d objects of class ndarray (subclasses such */ goto __pyx_L3; } /* "numpy/random/mtrand.pyx":4093 * else: * self._shuffle_raw(n, itemsize, stride, x_ptr, buf_ptr) * elif isinstance(x, np.ndarray) and x.ndim and x.size: # <<<<<<<<<<<<<< * buf = np.empty_like(x[0, ...]) * with self.lock: */ __pyx_t_2 = __Pyx_TypeCheck(__pyx_v_x, __pyx_ptype_5numpy_ndarray); __pyx_t_3 = (__pyx_t_2 != 0); if (__pyx_t_3) { } else { __pyx_t_4 = __pyx_t_3; goto __pyx_L22_bool_binop_done; } __pyx_t_9 = __Pyx_PyObject_GetAttrStr(__pyx_v_x, __pyx_n_s_ndim); if (unlikely(!__pyx_t_9)) __PYX_ERR(0, 4093, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_9); __pyx_t_3 = __Pyx_PyObject_IsTrue(__pyx_t_9); if (unlikely(__pyx_t_3 < 0)) __PYX_ERR(0, 4093, __pyx_L1_error) __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; if (__pyx_t_3) { } else { __pyx_t_4 = __pyx_t_3; goto __pyx_L22_bool_binop_done; } __pyx_t_9 = __Pyx_PyObject_GetAttrStr(__pyx_v_x, __pyx_n_s_size); if (unlikely(!__pyx_t_9)) __PYX_ERR(0, 4093, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_9); __pyx_t_3 = __Pyx_PyObject_IsTrue(__pyx_t_9); if (unlikely(__pyx_t_3 < 0)) __PYX_ERR(0, 4093, __pyx_L1_error) __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; __pyx_t_4 = __pyx_t_3; __pyx_L22_bool_binop_done:; if (__pyx_t_4) { /* "numpy/random/mtrand.pyx":4094 * self._shuffle_raw(n, itemsize, stride, x_ptr, buf_ptr) * elif isinstance(x, np.ndarray) and x.ndim and x.size: * buf = np.empty_like(x[0, ...]) # <<<<<<<<<<<<<< * with self.lock: * for i in reversed(range(1, n)): */ __Pyx_GetModuleGlobalName(__pyx_t_11, __pyx_n_s_np); if (unlikely(!__pyx_t_11)) __PYX_ERR(0, 4094, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_11); __pyx_t_5 = __Pyx_PyObject_GetAttrStr(__pyx_t_11, __pyx_n_s_empty_like); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 4094, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_11); __pyx_t_11 = 0; __pyx_t_11 = __Pyx_PyObject_GetItem(__pyx_v_x, __pyx_tuple__45); if (unlikely(!__pyx_t_11)) __PYX_ERR(0, 4094, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_11); __pyx_t_6 = NULL; if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_5))) { __pyx_t_6 = PyMethod_GET_SELF(__pyx_t_5); if (likely(__pyx_t_6)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_5); __Pyx_INCREF(__pyx_t_6); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_5, function); } } __pyx_t_9 = (__pyx_t_6) ? __Pyx_PyObject_Call2Args(__pyx_t_5, __pyx_t_6, __pyx_t_11) : __Pyx_PyObject_CallOneArg(__pyx_t_5, __pyx_t_11); __Pyx_XDECREF(__pyx_t_6); __pyx_t_6 = 0; __Pyx_DECREF(__pyx_t_11); __pyx_t_11 = 0; if (unlikely(!__pyx_t_9)) __PYX_ERR(0, 4094, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_9); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_v_buf = __pyx_t_9; __pyx_t_9 = 0; /* "numpy/random/mtrand.pyx":4095 * elif isinstance(x, np.ndarray) and x.ndim and x.size: * buf = np.empty_like(x[0, ...]) * with self.lock: # <<<<<<<<<<<<<< * for i in reversed(range(1, n)): * j = random_interval(&self._bitgen, i) */ /*with:*/ { __pyx_t_12 = __Pyx_PyObject_LookupSpecial(__pyx_v_self->lock, __pyx_n_s_exit); if (unlikely(!__pyx_t_12)) __PYX_ERR(0, 4095, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_12); __pyx_t_5 = __Pyx_PyObject_LookupSpecial(__pyx_v_self->lock, __pyx_n_s_enter); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 4095, __pyx_L25_error) __Pyx_GOTREF(__pyx_t_5); __pyx_t_11 = NULL; if (CYTHON_UNPACK_METHODS && likely(PyMethod_Check(__pyx_t_5))) { __pyx_t_11 = PyMethod_GET_SELF(__pyx_t_5); if (likely(__pyx_t_11)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_5); __Pyx_INCREF(__pyx_t_11); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_5, function); } } __pyx_t_9 = (__pyx_t_11) ? __Pyx_PyObject_CallOneArg(__pyx_t_5, __pyx_t_11) : __Pyx_PyObject_CallNoArg(__pyx_t_5); __Pyx_XDECREF(__pyx_t_11); __pyx_t_11 = 0; if (unlikely(!__pyx_t_9)) __PYX_ERR(0, 4095, __pyx_L25_error) __Pyx_GOTREF(__pyx_t_9); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; /*try:*/ { { __Pyx_PyThreadState_declare __Pyx_PyThreadState_assign __Pyx_ExceptionSave(&__pyx_t_15, &__pyx_t_14, &__pyx_t_13); __Pyx_XGOTREF(__pyx_t_15); __Pyx_XGOTREF(__pyx_t_14); __Pyx_XGOTREF(__pyx_t_13); /*try:*/ { /* "numpy/random/mtrand.pyx":4096 * buf = np.empty_like(x[0, ...]) * with self.lock: * for i in reversed(range(1, n)): # <<<<<<<<<<<<<< * j = random_interval(&self._bitgen, i) * if i == j: */ for (__pyx_t_8 = __pyx_v_n-1; __pyx_t_8 >= 1; __pyx_t_8-=1) { __pyx_v_i = __pyx_t_8; /* "numpy/random/mtrand.pyx":4097 * with self.lock: * for i in reversed(range(1, n)): * j = random_interval(&self._bitgen, i) # <<<<<<<<<<<<<< * if i == j: * continue # i == j is not needed and memcpy is undefined. */ __pyx_v_j = random_interval((&__pyx_v_self->_bitgen), __pyx_v_i); /* "numpy/random/mtrand.pyx":4098 * for i in reversed(range(1, n)): * j = random_interval(&self._bitgen, i) * if i == j: # <<<<<<<<<<<<<< * continue # i == j is not needed and memcpy is undefined. * buf[...] = x[j] */ __pyx_t_4 = ((__pyx_v_i == __pyx_v_j) != 0); if (__pyx_t_4) { /* "numpy/random/mtrand.pyx":4099 * j = random_interval(&self._bitgen, i) * if i == j: * continue # i == j is not needed and memcpy is undefined. # <<<<<<<<<<<<<< * buf[...] = x[j] * x[j] = x[i] */ goto __pyx_L35_continue; /* "numpy/random/mtrand.pyx":4098 * for i in reversed(range(1, n)): * j = random_interval(&self._bitgen, i) * if i == j: # <<<<<<<<<<<<<< * continue # i == j is not needed and memcpy is undefined. * buf[...] = x[j] */ } /* "numpy/random/mtrand.pyx":4100 * if i == j: * continue # i == j is not needed and memcpy is undefined. * buf[...] = x[j] # <<<<<<<<<<<<<< * x[j] = x[i] * x[i] = buf */ __pyx_t_9 = __Pyx_GetItemInt(__pyx_v_x, __pyx_v_j, npy_intp, 1, __Pyx_PyInt_From_Py_intptr_t, 0, 0, 0); if (unlikely(!__pyx_t_9)) __PYX_ERR(0, 4100, __pyx_L29_error) __Pyx_GOTREF(__pyx_t_9); if (unlikely(PyObject_SetItem(__pyx_v_buf, Py_Ellipsis, __pyx_t_9) < 0)) __PYX_ERR(0, 4100, __pyx_L29_error) __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; /* "numpy/random/mtrand.pyx":4101 * continue # i == j is not needed and memcpy is undefined. * buf[...] = x[j] * x[j] = x[i] # <<<<<<<<<<<<<< * x[i] = buf * else: */ __pyx_t_9 = __Pyx_GetItemInt(__pyx_v_x, __pyx_v_i, npy_intp, 1, __Pyx_PyInt_From_Py_intptr_t, 0, 0, 0); if (unlikely(!__pyx_t_9)) __PYX_ERR(0, 4101, __pyx_L29_error) __Pyx_GOTREF(__pyx_t_9); if (unlikely(__Pyx_SetItemInt(__pyx_v_x, __pyx_v_j, __pyx_t_9, npy_intp, 1, __Pyx_PyInt_From_Py_intptr_t, 0, 0, 0) < 0)) __PYX_ERR(0, 4101, __pyx_L29_error) __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; /* "numpy/random/mtrand.pyx":4102 * buf[...] = x[j] * x[j] = x[i] * x[i] = buf # <<<<<<<<<<<<<< * else: * # Untyped path. */ if (unlikely(__Pyx_SetItemInt(__pyx_v_x, __pyx_v_i, __pyx_v_buf, npy_intp, 1, __Pyx_PyInt_From_Py_intptr_t, 0, 0, 0) < 0)) __PYX_ERR(0, 4102, __pyx_L29_error) __pyx_L35_continue:; } /* "numpy/random/mtrand.pyx":4095 * elif isinstance(x, np.ndarray) and x.ndim and x.size: * buf = np.empty_like(x[0, ...]) * with self.lock: # <<<<<<<<<<<<<< * for i in reversed(range(1, n)): * j = random_interval(&self._bitgen, i) */ } __Pyx_XDECREF(__pyx_t_15); __pyx_t_15 = 0; __Pyx_XDECREF(__pyx_t_14); __pyx_t_14 = 0; __Pyx_XDECREF(__pyx_t_13); __pyx_t_13 = 0; goto __pyx_L34_try_end; __pyx_L29_error:; __Pyx_XDECREF(__pyx_t_10); __pyx_t_10 = 0; __Pyx_XDECREF(__pyx_t_11); __pyx_t_11 = 0; __Pyx_XDECREF(__pyx_t_5); __pyx_t_5 = 0; __Pyx_XDECREF(__pyx_t_6); __pyx_t_6 = 0; __Pyx_XDECREF(__pyx_t_9); __pyx_t_9 = 0; /*except:*/ { __Pyx_AddTraceback("numpy.random.mtrand.RandomState.shuffle", __pyx_clineno, __pyx_lineno, __pyx_filename); if (__Pyx_GetException(&__pyx_t_9, &__pyx_t_5, &__pyx_t_11) < 0) __PYX_ERR(0, 4095, __pyx_L31_except_error) __Pyx_GOTREF(__pyx_t_9); __Pyx_GOTREF(__pyx_t_5); __Pyx_GOTREF(__pyx_t_11); __pyx_t_6 = PyTuple_Pack(3, __pyx_t_9, __pyx_t_5, __pyx_t_11); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 4095, __pyx_L31_except_error) __Pyx_GOTREF(__pyx_t_6); __pyx_t_16 = __Pyx_PyObject_Call(__pyx_t_12, __pyx_t_6, NULL); __Pyx_DECREF(__pyx_t_12); __pyx_t_12 = 0; __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; if (unlikely(!__pyx_t_16)) __PYX_ERR(0, 4095, __pyx_L31_except_error) __Pyx_GOTREF(__pyx_t_16); __pyx_t_4 = __Pyx_PyObject_IsTrue(__pyx_t_16); __Pyx_DECREF(__pyx_t_16); __pyx_t_16 = 0; if (__pyx_t_4 < 0) __PYX_ERR(0, 4095, __pyx_L31_except_error) __pyx_t_3 = ((!(__pyx_t_4 != 0)) != 0); if (__pyx_t_3) { __Pyx_GIVEREF(__pyx_t_9); __Pyx_GIVEREF(__pyx_t_5); __Pyx_XGIVEREF(__pyx_t_11); __Pyx_ErrRestoreWithState(__pyx_t_9, __pyx_t_5, __pyx_t_11); __pyx_t_9 = 0; __pyx_t_5 = 0; __pyx_t_11 = 0; __PYX_ERR(0, 4095, __pyx_L31_except_error) } __Pyx_XDECREF(__pyx_t_9); __pyx_t_9 = 0; __Pyx_XDECREF(__pyx_t_5); __pyx_t_5 = 0; __Pyx_XDECREF(__pyx_t_11); __pyx_t_11 = 0; goto __pyx_L30_exception_handled; } __pyx_L31_except_error:; __Pyx_XGIVEREF(__pyx_t_15); __Pyx_XGIVEREF(__pyx_t_14); __Pyx_XGIVEREF(__pyx_t_13); __Pyx_ExceptionReset(__pyx_t_15, __pyx_t_14, __pyx_t_13); goto __pyx_L1_error; __pyx_L30_exception_handled:; __Pyx_XGIVEREF(__pyx_t_15); __Pyx_XGIVEREF(__pyx_t_14); __Pyx_XGIVEREF(__pyx_t_13); __Pyx_ExceptionReset(__pyx_t_15, __pyx_t_14, __pyx_t_13); __pyx_L34_try_end:; } } /*finally:*/ { /*normal exit:*/{ if (__pyx_t_12) { __pyx_t_13 = __Pyx_PyObject_Call(__pyx_t_12, __pyx_tuple__13, NULL); __Pyx_DECREF(__pyx_t_12); __pyx_t_12 = 0; if (unlikely(!__pyx_t_13)) __PYX_ERR(0, 4095, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_13); __Pyx_DECREF(__pyx_t_13); __pyx_t_13 = 0; } goto __pyx_L28; } __pyx_L28:; } goto __pyx_L41; __pyx_L25_error:; __Pyx_DECREF(__pyx_t_12); __pyx_t_12 = 0; goto __pyx_L1_error; __pyx_L41:; } /* "numpy/random/mtrand.pyx":4093 * else: * self._shuffle_raw(n, itemsize, stride, x_ptr, buf_ptr) * elif isinstance(x, np.ndarray) and x.ndim and x.size: # <<<<<<<<<<<<<< * buf = np.empty_like(x[0, ...]) * with self.lock: */ goto __pyx_L3; } /* "numpy/random/mtrand.pyx":4105 * else: * # Untyped path. * with self.lock: # <<<<<<<<<<<<<< * for i in reversed(range(1, n)): * j = random_interval(&self._bitgen, i) */ /*else*/ { /*with:*/ { __pyx_t_12 = __Pyx_PyObject_LookupSpecial(__pyx_v_self->lock, __pyx_n_s_exit); if (unlikely(!__pyx_t_12)) __PYX_ERR(0, 4105, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_12); __pyx_t_5 = __Pyx_PyObject_LookupSpecial(__pyx_v_self->lock, __pyx_n_s_enter); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 4105, __pyx_L42_error) __Pyx_GOTREF(__pyx_t_5); __pyx_t_9 = NULL; if (CYTHON_UNPACK_METHODS && likely(PyMethod_Check(__pyx_t_5))) { __pyx_t_9 = PyMethod_GET_SELF(__pyx_t_5); if (likely(__pyx_t_9)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_5); __Pyx_INCREF(__pyx_t_9); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_5, function); } } __pyx_t_11 = (__pyx_t_9) ? __Pyx_PyObject_CallOneArg(__pyx_t_5, __pyx_t_9) : __Pyx_PyObject_CallNoArg(__pyx_t_5); __Pyx_XDECREF(__pyx_t_9); __pyx_t_9 = 0; if (unlikely(!__pyx_t_11)) __PYX_ERR(0, 4105, __pyx_L42_error) __Pyx_GOTREF(__pyx_t_11); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __Pyx_DECREF(__pyx_t_11); __pyx_t_11 = 0; /*try:*/ { { __Pyx_PyThreadState_declare __Pyx_PyThreadState_assign __Pyx_ExceptionSave(&__pyx_t_13, &__pyx_t_14, &__pyx_t_15); __Pyx_XGOTREF(__pyx_t_13); __Pyx_XGOTREF(__pyx_t_14); __Pyx_XGOTREF(__pyx_t_15); /*try:*/ { /* "numpy/random/mtrand.pyx":4106 * # Untyped path. * with self.lock: * for i in reversed(range(1, n)): # <<<<<<<<<<<<<< * j = random_interval(&self._bitgen, i) * x[i], x[j] = x[j], x[i] */ for (__pyx_t_8 = __pyx_v_n-1; __pyx_t_8 >= 1; __pyx_t_8-=1) { __pyx_v_i = __pyx_t_8; /* "numpy/random/mtrand.pyx":4107 * with self.lock: * for i in reversed(range(1, n)): * j = random_interval(&self._bitgen, i) # <<<<<<<<<<<<<< * x[i], x[j] = x[j], x[i] * */ __pyx_v_j = random_interval((&__pyx_v_self->_bitgen), __pyx_v_i); /* "numpy/random/mtrand.pyx":4108 * for i in reversed(range(1, n)): * j = random_interval(&self._bitgen, i) * x[i], x[j] = x[j], x[i] # <<<<<<<<<<<<<< * * cdef inline _shuffle_raw(self, np.npy_intp n, np.npy_intp itemsize, */ __pyx_t_11 = __Pyx_GetItemInt(__pyx_v_x, __pyx_v_j, npy_intp, 1, __Pyx_PyInt_From_Py_intptr_t, 0, 0, 0); if (unlikely(!__pyx_t_11)) __PYX_ERR(0, 4108, __pyx_L46_error) __Pyx_GOTREF(__pyx_t_11); __pyx_t_5 = __Pyx_GetItemInt(__pyx_v_x, __pyx_v_i, npy_intp, 1, __Pyx_PyInt_From_Py_intptr_t, 0, 0, 0); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 4108, __pyx_L46_error) __Pyx_GOTREF(__pyx_t_5); if (unlikely(__Pyx_SetItemInt(__pyx_v_x, __pyx_v_i, __pyx_t_11, npy_intp, 1, __Pyx_PyInt_From_Py_intptr_t, 0, 0, 0) < 0)) __PYX_ERR(0, 4108, __pyx_L46_error) __Pyx_DECREF(__pyx_t_11); __pyx_t_11 = 0; if (unlikely(__Pyx_SetItemInt(__pyx_v_x, __pyx_v_j, __pyx_t_5, npy_intp, 1, __Pyx_PyInt_From_Py_intptr_t, 0, 0, 0) < 0)) __PYX_ERR(0, 4108, __pyx_L46_error) __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; } /* "numpy/random/mtrand.pyx":4105 * else: * # Untyped path. * with self.lock: # <<<<<<<<<<<<<< * for i in reversed(range(1, n)): * j = random_interval(&self._bitgen, i) */ } __Pyx_XDECREF(__pyx_t_13); __pyx_t_13 = 0; __Pyx_XDECREF(__pyx_t_14); __pyx_t_14 = 0; __Pyx_XDECREF(__pyx_t_15); __pyx_t_15 = 0; goto __pyx_L51_try_end; __pyx_L46_error:; __Pyx_XDECREF(__pyx_t_10); __pyx_t_10 = 0; __Pyx_XDECREF(__pyx_t_11); __pyx_t_11 = 0; __Pyx_XDECREF(__pyx_t_5); __pyx_t_5 = 0; __Pyx_XDECREF(__pyx_t_6); __pyx_t_6 = 0; __Pyx_XDECREF(__pyx_t_9); __pyx_t_9 = 0; /*except:*/ { __Pyx_AddTraceback("numpy.random.mtrand.RandomState.shuffle", __pyx_clineno, __pyx_lineno, __pyx_filename); if (__Pyx_GetException(&__pyx_t_5, &__pyx_t_11, &__pyx_t_9) < 0) __PYX_ERR(0, 4105, __pyx_L48_except_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_GOTREF(__pyx_t_11); __Pyx_GOTREF(__pyx_t_9); __pyx_t_6 = PyTuple_Pack(3, __pyx_t_5, __pyx_t_11, __pyx_t_9); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 4105, __pyx_L48_except_error) __Pyx_GOTREF(__pyx_t_6); __pyx_t_16 = __Pyx_PyObject_Call(__pyx_t_12, __pyx_t_6, NULL); __Pyx_DECREF(__pyx_t_12); __pyx_t_12 = 0; __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; if (unlikely(!__pyx_t_16)) __PYX_ERR(0, 4105, __pyx_L48_except_error) __Pyx_GOTREF(__pyx_t_16); __pyx_t_3 = __Pyx_PyObject_IsTrue(__pyx_t_16); __Pyx_DECREF(__pyx_t_16); __pyx_t_16 = 0; if (__pyx_t_3 < 0) __PYX_ERR(0, 4105, __pyx_L48_except_error) __pyx_t_4 = ((!(__pyx_t_3 != 0)) != 0); if (__pyx_t_4) { __Pyx_GIVEREF(__pyx_t_5); __Pyx_GIVEREF(__pyx_t_11); __Pyx_XGIVEREF(__pyx_t_9); __Pyx_ErrRestoreWithState(__pyx_t_5, __pyx_t_11, __pyx_t_9); __pyx_t_5 = 0; __pyx_t_11 = 0; __pyx_t_9 = 0; __PYX_ERR(0, 4105, __pyx_L48_except_error) } __Pyx_XDECREF(__pyx_t_5); __pyx_t_5 = 0; __Pyx_XDECREF(__pyx_t_11); __pyx_t_11 = 0; __Pyx_XDECREF(__pyx_t_9); __pyx_t_9 = 0; goto __pyx_L47_exception_handled; } __pyx_L48_except_error:; __Pyx_XGIVEREF(__pyx_t_13); __Pyx_XGIVEREF(__pyx_t_14); __Pyx_XGIVEREF(__pyx_t_15); __Pyx_ExceptionReset(__pyx_t_13, __pyx_t_14, __pyx_t_15); goto __pyx_L1_error; __pyx_L47_exception_handled:; __Pyx_XGIVEREF(__pyx_t_13); __Pyx_XGIVEREF(__pyx_t_14); __Pyx_XGIVEREF(__pyx_t_15); __Pyx_ExceptionReset(__pyx_t_13, __pyx_t_14, __pyx_t_15); __pyx_L51_try_end:; } } /*finally:*/ { /*normal exit:*/{ if (__pyx_t_12) { __pyx_t_15 = __Pyx_PyObject_Call(__pyx_t_12, __pyx_tuple__13, NULL); __Pyx_DECREF(__pyx_t_12); __pyx_t_12 = 0; if (unlikely(!__pyx_t_15)) __PYX_ERR(0, 4105, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_15); __Pyx_DECREF(__pyx_t_15); __pyx_t_15 = 0; } goto __pyx_L45; } __pyx_L45:; } goto __pyx_L57; __pyx_L42_error:; __Pyx_DECREF(__pyx_t_12); __pyx_t_12 = 0; goto __pyx_L1_error; __pyx_L57:; } } __pyx_L3:; /* "numpy/random/mtrand.pyx":4031 * * # Shuffling and permutations: * def shuffle(self, object x): # <<<<<<<<<<<<<< * """ * shuffle(x) */ /* function exit code */ __pyx_r = Py_None; __Pyx_INCREF(Py_None); goto __pyx_L0; __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_5); __Pyx_XDECREF(__pyx_t_6); __Pyx_XDECREF(__pyx_t_9); __Pyx_XDECREF(__pyx_t_10); __Pyx_XDECREF(__pyx_t_11); __Pyx_AddTraceback("numpy.random.mtrand.RandomState.shuffle", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XDECREF(__pyx_v_buf); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "numpy/random/mtrand.pyx":4110 * x[i], x[j] = x[j], x[i] * * cdef inline _shuffle_raw(self, np.npy_intp n, np.npy_intp itemsize, # <<<<<<<<<<<<<< * np.npy_intp stride, char* data, char* buf): * cdef np.npy_intp i, j */ static CYTHON_INLINE PyObject *__pyx_f_5numpy_6random_6mtrand_11RandomState__shuffle_raw(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, npy_intp __pyx_v_n, npy_intp __pyx_v_itemsize, npy_intp __pyx_v_stride, char *__pyx_v_data, char *__pyx_v_buf) { npy_intp __pyx_v_i; npy_intp __pyx_v_j; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations npy_intp __pyx_t_1; __Pyx_RefNannySetupContext("_shuffle_raw", 0); /* "numpy/random/mtrand.pyx":4113 * np.npy_intp stride, char* data, char* buf): * cdef np.npy_intp i, j * for i in reversed(range(1, n)): # <<<<<<<<<<<<<< * j = random_interval(&self._bitgen, i) * string.memcpy(buf, data + j * stride, itemsize) */ for (__pyx_t_1 = __pyx_v_n-1; __pyx_t_1 >= 1; __pyx_t_1-=1) { __pyx_v_i = __pyx_t_1; /* "numpy/random/mtrand.pyx":4114 * cdef np.npy_intp i, j * for i in reversed(range(1, n)): * j = random_interval(&self._bitgen, i) # <<<<<<<<<<<<<< * string.memcpy(buf, data + j * stride, itemsize) * string.memcpy(data + j * stride, data + i * stride, itemsize) */ __pyx_v_j = random_interval((&__pyx_v_self->_bitgen), __pyx_v_i); /* "numpy/random/mtrand.pyx":4115 * for i in reversed(range(1, n)): * j = random_interval(&self._bitgen, i) * string.memcpy(buf, data + j * stride, itemsize) # <<<<<<<<<<<<<< * string.memcpy(data + j * stride, data + i * stride, itemsize) * string.memcpy(data + i * stride, buf, itemsize) */ (void)(memcpy(__pyx_v_buf, (__pyx_v_data + (__pyx_v_j * __pyx_v_stride)), __pyx_v_itemsize)); /* "numpy/random/mtrand.pyx":4116 * j = random_interval(&self._bitgen, i) * string.memcpy(buf, data + j * stride, itemsize) * string.memcpy(data + j * stride, data + i * stride, itemsize) # <<<<<<<<<<<<<< * string.memcpy(data + i * stride, buf, itemsize) * */ (void)(memcpy((__pyx_v_data + (__pyx_v_j * __pyx_v_stride)), (__pyx_v_data + (__pyx_v_i * __pyx_v_stride)), __pyx_v_itemsize)); /* "numpy/random/mtrand.pyx":4117 * string.memcpy(buf, data + j * stride, itemsize) * string.memcpy(data + j * stride, data + i * stride, itemsize) * string.memcpy(data + i * stride, buf, itemsize) # <<<<<<<<<<<<<< * * def permutation(self, object x): */ (void)(memcpy((__pyx_v_data + (__pyx_v_i * __pyx_v_stride)), __pyx_v_buf, __pyx_v_itemsize)); } /* "numpy/random/mtrand.pyx":4110 * x[i], x[j] = x[j], x[i] * * cdef inline _shuffle_raw(self, np.npy_intp n, np.npy_intp itemsize, # <<<<<<<<<<<<<< * np.npy_intp stride, char* data, char* buf): * cdef np.npy_intp i, j */ /* function exit code */ __pyx_r = Py_None; __Pyx_INCREF(Py_None); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "numpy/random/mtrand.pyx":4119 * string.memcpy(data + i * stride, buf, itemsize) * * def permutation(self, object x): # <<<<<<<<<<<<<< * """ * permutation(x) */ /* Python wrapper */ static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_109permutation(PyObject *__pyx_v_self, PyObject *__pyx_v_x); /*proto*/ static char __pyx_doc_5numpy_6random_6mtrand_11RandomState_108permutation[] = "\n permutation(x)\n\n Randomly permute a sequence, or return a permuted range.\n\n If `x` is a multi-dimensional array, it is only shuffled along its\n first index.\n\n Parameters\n ----------\n x : int or array_like\n If `x` is an integer, randomly permute ``np.arange(x)``.\n If `x` is an array, make a copy and shuffle the elements\n randomly.\n\n Returns\n -------\n out : ndarray\n Permuted sequence or array range.\n\n\n Examples\n --------\n >>> np.random.permutation(10)\n array([1, 7, 4, 3, 0, 9, 2, 5, 8, 6]) # random\n\n >>> np.random.permutation([1, 4, 9, 12, 15])\n array([15, 1, 9, 4, 12]) # random\n\n >>> arr = np.arange(9).reshape((3, 3))\n >>> np.random.permutation(arr)\n array([[6, 7, 8], # random\n [0, 1, 2],\n [3, 4, 5]])\n\n "; static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_109permutation(PyObject *__pyx_v_self, PyObject *__pyx_v_x) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("permutation (wrapper)", 0); __pyx_r = __pyx_pf_5numpy_6random_6mtrand_11RandomState_108permutation(((struct __pyx_obj_5numpy_6random_6mtrand_RandomState *)__pyx_v_self), ((PyObject *)__pyx_v_x)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_108permutation(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_x) { PyObject *__pyx_v_arr = NULL; PyObject *__pyx_v_idx = NULL; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; int __pyx_t_3; int __pyx_t_4; int __pyx_t_5; PyObject *__pyx_t_6 = NULL; int __pyx_t_7; PyObject *__pyx_t_8 = NULL; PyObject *__pyx_t_9 = NULL; __Pyx_RefNannySetupContext("permutation", 0); /* "numpy/random/mtrand.pyx":4157 * """ * * if isinstance(x, (int, np.integer)): # <<<<<<<<<<<<<< * arr = np.arange(x) * self.shuffle(arr) */ __Pyx_GetModuleGlobalName(__pyx_t_1, __pyx_n_s_np); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 4157, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_integer); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 4157, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_4 = PyInt_Check(__pyx_v_x); __pyx_t_5 = (__pyx_t_4 != 0); if (!__pyx_t_5) { } else { __pyx_t_3 = __pyx_t_5; goto __pyx_L4_bool_binop_done; } __pyx_t_5 = PyObject_IsInstance(__pyx_v_x, __pyx_t_2); __pyx_t_4 = (__pyx_t_5 != 0); __pyx_t_3 = __pyx_t_4; __pyx_L4_bool_binop_done:; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_4 = (__pyx_t_3 != 0); if (__pyx_t_4) { /* "numpy/random/mtrand.pyx":4158 * * if isinstance(x, (int, np.integer)): * arr = np.arange(x) # <<<<<<<<<<<<<< * self.shuffle(arr) * return arr */ __Pyx_GetModuleGlobalName(__pyx_t_1, __pyx_n_s_np); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 4158, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_6 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_arange); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 4158, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = NULL; if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_6))) { __pyx_t_1 = PyMethod_GET_SELF(__pyx_t_6); if (likely(__pyx_t_1)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_6); __Pyx_INCREF(__pyx_t_1); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_6, function); } } __pyx_t_2 = (__pyx_t_1) ? __Pyx_PyObject_Call2Args(__pyx_t_6, __pyx_t_1, __pyx_v_x) : __Pyx_PyObject_CallOneArg(__pyx_t_6, __pyx_v_x); __Pyx_XDECREF(__pyx_t_1); __pyx_t_1 = 0; if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 4158, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __pyx_v_arr = __pyx_t_2; __pyx_t_2 = 0; /* "numpy/random/mtrand.pyx":4159 * if isinstance(x, (int, np.integer)): * arr = np.arange(x) * self.shuffle(arr) # <<<<<<<<<<<<<< * return arr * */ __pyx_t_6 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_self), __pyx_n_s_shuffle); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 4159, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __pyx_t_1 = NULL; if (CYTHON_UNPACK_METHODS && likely(PyMethod_Check(__pyx_t_6))) { __pyx_t_1 = PyMethod_GET_SELF(__pyx_t_6); if (likely(__pyx_t_1)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_6); __Pyx_INCREF(__pyx_t_1); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_6, function); } } __pyx_t_2 = (__pyx_t_1) ? __Pyx_PyObject_Call2Args(__pyx_t_6, __pyx_t_1, __pyx_v_arr) : __Pyx_PyObject_CallOneArg(__pyx_t_6, __pyx_v_arr); __Pyx_XDECREF(__pyx_t_1); __pyx_t_1 = 0; if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 4159, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; /* "numpy/random/mtrand.pyx":4160 * arr = np.arange(x) * self.shuffle(arr) * return arr # <<<<<<<<<<<<<< * * arr = np.asarray(x) */ __Pyx_XDECREF(__pyx_r); __Pyx_INCREF(__pyx_v_arr); __pyx_r = __pyx_v_arr; goto __pyx_L0; /* "numpy/random/mtrand.pyx":4157 * """ * * if isinstance(x, (int, np.integer)): # <<<<<<<<<<<<<< * arr = np.arange(x) * self.shuffle(arr) */ } /* "numpy/random/mtrand.pyx":4162 * return arr * * arr = np.asarray(x) # <<<<<<<<<<<<<< * if arr.ndim < 1: * raise IndexError("x must be an integer or at least 1-dimensional") */ __Pyx_GetModuleGlobalName(__pyx_t_6, __pyx_n_s_np); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 4162, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_6, __pyx_n_s_asarray); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 4162, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __pyx_t_6 = NULL; if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_1))) { __pyx_t_6 = PyMethod_GET_SELF(__pyx_t_1); if (likely(__pyx_t_6)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_1); __Pyx_INCREF(__pyx_t_6); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_1, function); } } __pyx_t_2 = (__pyx_t_6) ? __Pyx_PyObject_Call2Args(__pyx_t_1, __pyx_t_6, __pyx_v_x) : __Pyx_PyObject_CallOneArg(__pyx_t_1, __pyx_v_x); __Pyx_XDECREF(__pyx_t_6); __pyx_t_6 = 0; if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 4162, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_v_arr = __pyx_t_2; __pyx_t_2 = 0; /* "numpy/random/mtrand.pyx":4163 * * arr = np.asarray(x) * if arr.ndim < 1: # <<<<<<<<<<<<<< * raise IndexError("x must be an integer or at least 1-dimensional") * */ __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_v_arr, __pyx_n_s_ndim); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 4163, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_1 = PyObject_RichCompare(__pyx_t_2, __pyx_int_1, Py_LT); __Pyx_XGOTREF(__pyx_t_1); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 4163, __pyx_L1_error) __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_4 = __Pyx_PyObject_IsTrue(__pyx_t_1); if (unlikely(__pyx_t_4 < 0)) __PYX_ERR(0, 4163, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; if (unlikely(__pyx_t_4)) { /* "numpy/random/mtrand.pyx":4164 * arr = np.asarray(x) * if arr.ndim < 1: * raise IndexError("x must be an integer or at least 1-dimensional") # <<<<<<<<<<<<<< * * # shuffle has fast-path for 1-d */ __pyx_t_1 = __Pyx_PyObject_Call(__pyx_builtin_IndexError, __pyx_tuple__46, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 4164, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_Raise(__pyx_t_1, 0, 0, 0); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __PYX_ERR(0, 4164, __pyx_L1_error) /* "numpy/random/mtrand.pyx":4163 * * arr = np.asarray(x) * if arr.ndim < 1: # <<<<<<<<<<<<<< * raise IndexError("x must be an integer or at least 1-dimensional") * */ } /* "numpy/random/mtrand.pyx":4167 * * # shuffle has fast-path for 1-d * if arr.ndim == 1: # <<<<<<<<<<<<<< * # Return a copy if same memory * if np.may_share_memory(arr, x): */ __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_arr, __pyx_n_s_ndim); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 4167, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = __Pyx_PyInt_EqObjC(__pyx_t_1, __pyx_int_1, 1, 0); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 4167, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_4 = __Pyx_PyObject_IsTrue(__pyx_t_2); if (unlikely(__pyx_t_4 < 0)) __PYX_ERR(0, 4167, __pyx_L1_error) __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; if (__pyx_t_4) { /* "numpy/random/mtrand.pyx":4169 * if arr.ndim == 1: * # Return a copy if same memory * if np.may_share_memory(arr, x): # <<<<<<<<<<<<<< * arr = np.array(arr) * self.shuffle(arr) */ __Pyx_GetModuleGlobalName(__pyx_t_1, __pyx_n_s_np); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 4169, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_6 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_may_share_memory); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 4169, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = NULL; __pyx_t_7 = 0; if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_6))) { __pyx_t_1 = PyMethod_GET_SELF(__pyx_t_6); if (likely(__pyx_t_1)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_6); __Pyx_INCREF(__pyx_t_1); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_6, function); __pyx_t_7 = 1; } } #if CYTHON_FAST_PYCALL if (PyFunction_Check(__pyx_t_6)) { PyObject *__pyx_temp[3] = {__pyx_t_1, __pyx_v_arr, __pyx_v_x}; __pyx_t_2 = __Pyx_PyFunction_FastCall(__pyx_t_6, __pyx_temp+1-__pyx_t_7, 2+__pyx_t_7); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 4169, __pyx_L1_error) __Pyx_XDECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_GOTREF(__pyx_t_2); } else #endif #if CYTHON_FAST_PYCCALL if (__Pyx_PyFastCFunction_Check(__pyx_t_6)) { PyObject *__pyx_temp[3] = {__pyx_t_1, __pyx_v_arr, __pyx_v_x}; __pyx_t_2 = __Pyx_PyCFunction_FastCall(__pyx_t_6, __pyx_temp+1-__pyx_t_7, 2+__pyx_t_7); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 4169, __pyx_L1_error) __Pyx_XDECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_GOTREF(__pyx_t_2); } else #endif { __pyx_t_8 = PyTuple_New(2+__pyx_t_7); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 4169, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_8); if (__pyx_t_1) { __Pyx_GIVEREF(__pyx_t_1); PyTuple_SET_ITEM(__pyx_t_8, 0, __pyx_t_1); __pyx_t_1 = NULL; } __Pyx_INCREF(__pyx_v_arr); __Pyx_GIVEREF(__pyx_v_arr); PyTuple_SET_ITEM(__pyx_t_8, 0+__pyx_t_7, __pyx_v_arr); __Pyx_INCREF(__pyx_v_x); __Pyx_GIVEREF(__pyx_v_x); PyTuple_SET_ITEM(__pyx_t_8, 1+__pyx_t_7, __pyx_v_x); __pyx_t_2 = __Pyx_PyObject_Call(__pyx_t_6, __pyx_t_8, NULL); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 4169, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; } __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __pyx_t_4 = __Pyx_PyObject_IsTrue(__pyx_t_2); if (unlikely(__pyx_t_4 < 0)) __PYX_ERR(0, 4169, __pyx_L1_error) __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; if (__pyx_t_4) { /* "numpy/random/mtrand.pyx":4170 * # Return a copy if same memory * if np.may_share_memory(arr, x): * arr = np.array(arr) # <<<<<<<<<<<<<< * self.shuffle(arr) * return arr */ __Pyx_GetModuleGlobalName(__pyx_t_6, __pyx_n_s_np); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 4170, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __pyx_t_8 = __Pyx_PyObject_GetAttrStr(__pyx_t_6, __pyx_n_s_array); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 4170, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_8); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __pyx_t_6 = NULL; if (CYTHON_UNPACK_METHODS && unlikely(PyMethod_Check(__pyx_t_8))) { __pyx_t_6 = PyMethod_GET_SELF(__pyx_t_8); if (likely(__pyx_t_6)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_8); __Pyx_INCREF(__pyx_t_6); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_8, function); } } __pyx_t_2 = (__pyx_t_6) ? __Pyx_PyObject_Call2Args(__pyx_t_8, __pyx_t_6, __pyx_v_arr) : __Pyx_PyObject_CallOneArg(__pyx_t_8, __pyx_v_arr); __Pyx_XDECREF(__pyx_t_6); __pyx_t_6 = 0; if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 4170, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; __Pyx_DECREF_SET(__pyx_v_arr, __pyx_t_2); __pyx_t_2 = 0; /* "numpy/random/mtrand.pyx":4169 * if arr.ndim == 1: * # Return a copy if same memory * if np.may_share_memory(arr, x): # <<<<<<<<<<<<<< * arr = np.array(arr) * self.shuffle(arr) */ } /* "numpy/random/mtrand.pyx":4171 * if np.may_share_memory(arr, x): * arr = np.array(arr) * self.shuffle(arr) # <<<<<<<<<<<<<< * return arr * */ __pyx_t_8 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_self), __pyx_n_s_shuffle); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 4171, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_8); __pyx_t_6 = NULL; if (CYTHON_UNPACK_METHODS && likely(PyMethod_Check(__pyx_t_8))) { __pyx_t_6 = PyMethod_GET_SELF(__pyx_t_8); if (likely(__pyx_t_6)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_8); __Pyx_INCREF(__pyx_t_6); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_8, function); } } __pyx_t_2 = (__pyx_t_6) ? __Pyx_PyObject_Call2Args(__pyx_t_8, __pyx_t_6, __pyx_v_arr) : __Pyx_PyObject_CallOneArg(__pyx_t_8, __pyx_v_arr); __Pyx_XDECREF(__pyx_t_6); __pyx_t_6 = 0; if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 4171, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; /* "numpy/random/mtrand.pyx":4172 * arr = np.array(arr) * self.shuffle(arr) * return arr # <<<<<<<<<<<<<< * * # Shuffle index array, dtype to ensure fast path */ __Pyx_XDECREF(__pyx_r); __Pyx_INCREF(__pyx_v_arr); __pyx_r = __pyx_v_arr; goto __pyx_L0; /* "numpy/random/mtrand.pyx":4167 * * # shuffle has fast-path for 1-d * if arr.ndim == 1: # <<<<<<<<<<<<<< * # Return a copy if same memory * if np.may_share_memory(arr, x): */ } /* "numpy/random/mtrand.pyx":4175 * * # Shuffle index array, dtype to ensure fast path * idx = np.arange(arr.shape[0], dtype=np.intp) # <<<<<<<<<<<<<< * self.shuffle(idx) * return arr[idx] */ __Pyx_GetModuleGlobalName(__pyx_t_2, __pyx_n_s_np); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 4175, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_8 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_arange); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 4175, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_8); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_v_arr, __pyx_n_s_shape); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 4175, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_6 = __Pyx_GetItemInt(__pyx_t_2, 0, long, 1, __Pyx_PyInt_From_long, 0, 0, 0); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 4175, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = PyTuple_New(1); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 4175, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_GIVEREF(__pyx_t_6); PyTuple_SET_ITEM(__pyx_t_2, 0, __pyx_t_6); __pyx_t_6 = 0; __pyx_t_6 = __Pyx_PyDict_NewPresized(1); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 4175, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __Pyx_GetModuleGlobalName(__pyx_t_1, __pyx_n_s_np); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 4175, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_9 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_intp); if (unlikely(!__pyx_t_9)) __PYX_ERR(0, 4175, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_9); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; if (PyDict_SetItem(__pyx_t_6, __pyx_n_s_dtype, __pyx_t_9) < 0) __PYX_ERR(0, 4175, __pyx_L1_error) __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; __pyx_t_9 = __Pyx_PyObject_Call(__pyx_t_8, __pyx_t_2, __pyx_t_6); if (unlikely(!__pyx_t_9)) __PYX_ERR(0, 4175, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_9); __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __pyx_v_idx = __pyx_t_9; __pyx_t_9 = 0; /* "numpy/random/mtrand.pyx":4176 * # Shuffle index array, dtype to ensure fast path * idx = np.arange(arr.shape[0], dtype=np.intp) * self.shuffle(idx) # <<<<<<<<<<<<<< * return arr[idx] * */ __pyx_t_6 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_self), __pyx_n_s_shuffle); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 4176, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_6); __pyx_t_2 = NULL; if (CYTHON_UNPACK_METHODS && likely(PyMethod_Check(__pyx_t_6))) { __pyx_t_2 = PyMethod_GET_SELF(__pyx_t_6); if (likely(__pyx_t_2)) { PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_6); __Pyx_INCREF(__pyx_t_2); __Pyx_INCREF(function); __Pyx_DECREF_SET(__pyx_t_6, function); } } __pyx_t_9 = (__pyx_t_2) ? __Pyx_PyObject_Call2Args(__pyx_t_6, __pyx_t_2, __pyx_v_idx) : __Pyx_PyObject_CallOneArg(__pyx_t_6, __pyx_v_idx); __Pyx_XDECREF(__pyx_t_2); __pyx_t_2 = 0; if (unlikely(!__pyx_t_9)) __PYX_ERR(0, 4176, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_9); __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0; /* "numpy/random/mtrand.pyx":4177 * idx = np.arange(arr.shape[0], dtype=np.intp) * self.shuffle(idx) * return arr[idx] # <<<<<<<<<<<<<< * * _rand = RandomState() */ __Pyx_XDECREF(__pyx_r); __pyx_t_9 = __Pyx_PyObject_GetItem(__pyx_v_arr, __pyx_v_idx); if (unlikely(!__pyx_t_9)) __PYX_ERR(0, 4177, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_9); __pyx_r = __pyx_t_9; __pyx_t_9 = 0; goto __pyx_L0; /* "numpy/random/mtrand.pyx":4119 * string.memcpy(data + i * stride, buf, itemsize) * * def permutation(self, object x): # <<<<<<<<<<<<<< * """ * permutation(x) */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_XDECREF(__pyx_t_6); __Pyx_XDECREF(__pyx_t_8); __Pyx_XDECREF(__pyx_t_9); __Pyx_AddTraceback("numpy.random.mtrand.RandomState.permutation", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XDECREF(__pyx_v_arr); __Pyx_XDECREF(__pyx_v_idx); __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "numpy/random/mtrand.pyx":90 * * """ * cdef public object _bit_generator # <<<<<<<<<<<<<< * cdef bitgen_t _bitgen * cdef aug_bitgen_t _aug_state */ /* Python wrapper */ static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_14_bit_generator_1__get__(PyObject *__pyx_v_self); /*proto*/ static PyObject *__pyx_pw_5numpy_6random_6mtrand_11RandomState_14_bit_generator_1__get__(PyObject *__pyx_v_self) { PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__get__ (wrapper)", 0); __pyx_r = __pyx_pf_5numpy_6random_6mtrand_11RandomState_14_bit_generator___get__(((struct __pyx_obj_5numpy_6random_6mtrand_RandomState *)__pyx_v_self)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_5numpy_6random_6mtrand_11RandomState_14_bit_generator___get__(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__get__", 0); __Pyx_XDECREF(__pyx_r); __Pyx_INCREF(__pyx_v_self->_bit_generator); __pyx_r = __pyx_v_self->_bit_generator; goto __pyx_L0; /* function exit code */ __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* Python wrapper */ static int __pyx_pw_5numpy_6random_6mtrand_11RandomState_14_bit_generator_3__set__(PyObject *__pyx_v_self, PyObject *__pyx_v_value); /*proto*/ static int __pyx_pw_5numpy_6random_6mtrand_11RandomState_14_bit_generator_3__set__(PyObject *__pyx_v_self, PyObject *__pyx_v_value) { int __pyx_r; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__set__ (wrapper)", 0); __pyx_r = __pyx_pf_5numpy_6random_6mtrand_11RandomState_14_bit_generator_2__set__(((struct __pyx_obj_5numpy_6random_6mtrand_RandomState *)__pyx_v_self), ((PyObject *)__pyx_v_value)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static int __pyx_pf_5numpy_6random_6mtrand_11RandomState_14_bit_generator_2__set__(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self, PyObject *__pyx_v_value) { int __pyx_r; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__set__", 0); __Pyx_INCREF(__pyx_v_value); __Pyx_GIVEREF(__pyx_v_value); __Pyx_GOTREF(__pyx_v_self->_bit_generator); __Pyx_DECREF(__pyx_v_self->_bit_generator); __pyx_v_self->_bit_generator = __pyx_v_value; /* function exit code */ __pyx_r = 0; __Pyx_RefNannyFinishContext(); return __pyx_r; } /* Python wrapper */ static int __pyx_pw_5numpy_6random_6mtrand_11RandomState_14_bit_generator_5__del__(PyObject *__pyx_v_self); /*proto*/ static int __pyx_pw_5numpy_6random_6mtrand_11RandomState_14_bit_generator_5__del__(PyObject *__pyx_v_self) { int __pyx_r; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__del__ (wrapper)", 0); __pyx_r = __pyx_pf_5numpy_6random_6mtrand_11RandomState_14_bit_generator_4__del__(((struct __pyx_obj_5numpy_6random_6mtrand_RandomState *)__pyx_v_self)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static int __pyx_pf_5numpy_6random_6mtrand_11RandomState_14_bit_generator_4__del__(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *__pyx_v_self) { int __pyx_r; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__del__", 0); __Pyx_INCREF(Py_None); __Pyx_GIVEREF(Py_None); __Pyx_GOTREF(__pyx_v_self->_bit_generator); __Pyx_DECREF(__pyx_v_self->_bit_generator); __pyx_v_self->_bit_generator = Py_None; /* function exit code */ __pyx_r = 0; __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "numpy/random/mtrand.pyx":4231 * * # Old aliases that should not be removed * def sample(*args, **kwargs): # <<<<<<<<<<<<<< * """ * This is an alias of `random_sample`. See `random_sample` for the complete */ /* Python wrapper */ static PyObject *__pyx_pw_5numpy_6random_6mtrand_1sample(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static char __pyx_doc_5numpy_6random_6mtrand_sample[] = "\n This is an alias of `random_sample`. See `random_sample` for the complete\n documentation.\n "; static PyMethodDef __pyx_mdef_5numpy_6random_6mtrand_1sample = {"sample", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_5numpy_6random_6mtrand_1sample, METH_VARARGS|METH_KEYWORDS, __pyx_doc_5numpy_6random_6mtrand_sample}; static PyObject *__pyx_pw_5numpy_6random_6mtrand_1sample(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_args = 0; PyObject *__pyx_v_kwargs = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("sample (wrapper)", 0); if (unlikely(__pyx_kwds) && unlikely(!__Pyx_CheckKeywordStrings(__pyx_kwds, "sample", 1))) return NULL; if (unlikely(__pyx_kwds)) { __pyx_v_kwargs = PyDict_Copy(__pyx_kwds); if (unlikely(!__pyx_v_kwargs)) return NULL; __Pyx_GOTREF(__pyx_v_kwargs); } else { __pyx_v_kwargs = NULL; } __Pyx_INCREF(__pyx_args); __pyx_v_args = __pyx_args; __pyx_r = __pyx_pf_5numpy_6random_6mtrand_sample(__pyx_self, __pyx_v_args, __pyx_v_kwargs); /* function exit code */ __Pyx_XDECREF(__pyx_v_args); __Pyx_XDECREF(__pyx_v_kwargs); __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_5numpy_6random_6mtrand_sample(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_args, PyObject *__pyx_v_kwargs) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; __Pyx_RefNannySetupContext("sample", 0); /* "numpy/random/mtrand.pyx":4236 * documentation. * """ * return _rand.random_sample(*args, **kwargs) # <<<<<<<<<<<<<< * * def ranf(*args, **kwargs): */ __Pyx_XDECREF(__pyx_r); __Pyx_GetModuleGlobalName(__pyx_t_1, __pyx_n_s_rand_2); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 4236, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_random_sample); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 4236, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = __Pyx_PyObject_Call(__pyx_t_2, __pyx_v_args, __pyx_v_kwargs); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 4236, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_r = __pyx_t_1; __pyx_t_1 = 0; goto __pyx_L0; /* "numpy/random/mtrand.pyx":4231 * * # Old aliases that should not be removed * def sample(*args, **kwargs): # <<<<<<<<<<<<<< * """ * This is an alias of `random_sample`. See `random_sample` for the complete */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_AddTraceback("numpy.random.mtrand.sample", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "numpy/random/mtrand.pyx":4238 * return _rand.random_sample(*args, **kwargs) * * def ranf(*args, **kwargs): # <<<<<<<<<<<<<< * """ * This is an alias of `random_sample`. See `random_sample` for the complete */ /* Python wrapper */ static PyObject *__pyx_pw_5numpy_6random_6mtrand_3ranf(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/ static char __pyx_doc_5numpy_6random_6mtrand_2ranf[] = "\n This is an alias of `random_sample`. See `random_sample` for the complete\n documentation.\n "; static PyMethodDef __pyx_mdef_5numpy_6random_6mtrand_3ranf = {"ranf", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_5numpy_6random_6mtrand_3ranf, METH_VARARGS|METH_KEYWORDS, __pyx_doc_5numpy_6random_6mtrand_2ranf}; static PyObject *__pyx_pw_5numpy_6random_6mtrand_3ranf(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds) { PyObject *__pyx_v_args = 0; PyObject *__pyx_v_kwargs = 0; PyObject *__pyx_r = 0; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("ranf (wrapper)", 0); if (unlikely(__pyx_kwds) && unlikely(!__Pyx_CheckKeywordStrings(__pyx_kwds, "ranf", 1))) return NULL; if (unlikely(__pyx_kwds)) { __pyx_v_kwargs = PyDict_Copy(__pyx_kwds); if (unlikely(!__pyx_v_kwargs)) return NULL; __Pyx_GOTREF(__pyx_v_kwargs); } else { __pyx_v_kwargs = NULL; } __Pyx_INCREF(__pyx_args); __pyx_v_args = __pyx_args; __pyx_r = __pyx_pf_5numpy_6random_6mtrand_2ranf(__pyx_self, __pyx_v_args, __pyx_v_kwargs); /* function exit code */ __Pyx_XDECREF(__pyx_v_args); __Pyx_XDECREF(__pyx_v_kwargs); __Pyx_RefNannyFinishContext(); return __pyx_r; } static PyObject *__pyx_pf_5numpy_6random_6mtrand_2ranf(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_args, PyObject *__pyx_v_kwargs) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; __Pyx_RefNannySetupContext("ranf", 0); /* "numpy/random/mtrand.pyx":4243 * documentation. * """ * return _rand.random_sample(*args, **kwargs) # <<<<<<<<<<<<<< * * __all__ = [ */ __Pyx_XDECREF(__pyx_r); __Pyx_GetModuleGlobalName(__pyx_t_1, __pyx_n_s_rand_2); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 4243, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_random_sample); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 4243, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = __Pyx_PyObject_Call(__pyx_t_2, __pyx_v_args, __pyx_v_kwargs); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 4243, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_r = __pyx_t_1; __pyx_t_1 = 0; goto __pyx_L0; /* "numpy/random/mtrand.pyx":4238 * return _rand.random_sample(*args, **kwargs) * * def ranf(*args, **kwargs): # <<<<<<<<<<<<<< * """ * This is an alias of `random_sample`. See `random_sample` for the complete */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_AddTraceback("numpy.random.mtrand.ranf", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":258 * # experimental exception made for __getbuffer__ and __releasebuffer__ * # -- the details of this may change. * def __getbuffer__(ndarray self, Py_buffer* info, int flags): # <<<<<<<<<<<<<< * # This implementation of getbuffer is geared towards Cython * # requirements, and does not yet fulfill the PEP. */ /* Python wrapper */ static CYTHON_UNUSED int __pyx_pw_5numpy_7ndarray_1__getbuffer__(PyObject *__pyx_v_self, Py_buffer *__pyx_v_info, int __pyx_v_flags); /*proto*/ static CYTHON_UNUSED int __pyx_pw_5numpy_7ndarray_1__getbuffer__(PyObject *__pyx_v_self, Py_buffer *__pyx_v_info, int __pyx_v_flags) { int __pyx_r; __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__getbuffer__ (wrapper)", 0); __pyx_r = __pyx_pf_5numpy_7ndarray___getbuffer__(((PyArrayObject *)__pyx_v_self), ((Py_buffer *)__pyx_v_info), ((int)__pyx_v_flags)); /* function exit code */ __Pyx_RefNannyFinishContext(); return __pyx_r; } static int __pyx_pf_5numpy_7ndarray___getbuffer__(PyArrayObject *__pyx_v_self, Py_buffer *__pyx_v_info, int __pyx_v_flags) { int __pyx_v_i; int __pyx_v_ndim; int __pyx_v_endian_detector; int __pyx_v_little_endian; int __pyx_v_t; char *__pyx_v_f; PyArray_Descr *__pyx_v_descr = 0; int __pyx_v_offset; int __pyx_r; __Pyx_RefNannyDeclarations int __pyx_t_1; int __pyx_t_2; PyObject *__pyx_t_3 = NULL; int __pyx_t_4; int __pyx_t_5; int __pyx_t_6; PyArray_Descr *__pyx_t_7; PyObject *__pyx_t_8 = NULL; char *__pyx_t_9; if (__pyx_v_info == NULL) { PyErr_SetString(PyExc_BufferError, "PyObject_GetBuffer: view==NULL argument is obsolete"); return -1; } __Pyx_RefNannySetupContext("__getbuffer__", 0); __pyx_v_info->obj = Py_None; __Pyx_INCREF(Py_None); __Pyx_GIVEREF(__pyx_v_info->obj); /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":265 * * cdef int i, ndim * cdef int endian_detector = 1 # <<<<<<<<<<<<<< * cdef bint little_endian = ((&endian_detector)[0] != 0) * */ __pyx_v_endian_detector = 1; /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":266 * cdef int i, ndim * cdef int endian_detector = 1 * cdef bint little_endian = ((&endian_detector)[0] != 0) # <<<<<<<<<<<<<< * * ndim = PyArray_NDIM(self) */ __pyx_v_little_endian = ((((char *)(&__pyx_v_endian_detector))[0]) != 0); /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":268 * cdef bint little_endian = ((&endian_detector)[0] != 0) * * ndim = PyArray_NDIM(self) # <<<<<<<<<<<<<< * * if ((flags & pybuf.PyBUF_C_CONTIGUOUS == pybuf.PyBUF_C_CONTIGUOUS) */ __pyx_v_ndim = PyArray_NDIM(__pyx_v_self); /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":270 * ndim = PyArray_NDIM(self) * * if ((flags & pybuf.PyBUF_C_CONTIGUOUS == pybuf.PyBUF_C_CONTIGUOUS) # <<<<<<<<<<<<<< * and not PyArray_CHKFLAGS(self, NPY_ARRAY_C_CONTIGUOUS)): * raise ValueError(u"ndarray is not C contiguous") */ __pyx_t_2 = (((__pyx_v_flags & PyBUF_C_CONTIGUOUS) == PyBUF_C_CONTIGUOUS) != 0); if (__pyx_t_2) { } else { __pyx_t_1 = __pyx_t_2; goto __pyx_L4_bool_binop_done; } /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":271 * * if ((flags & pybuf.PyBUF_C_CONTIGUOUS == pybuf.PyBUF_C_CONTIGUOUS) * and not PyArray_CHKFLAGS(self, NPY_ARRAY_C_CONTIGUOUS)): # <<<<<<<<<<<<<< * raise ValueError(u"ndarray is not C contiguous") * */ __pyx_t_2 = ((!(PyArray_CHKFLAGS(__pyx_v_self, NPY_ARRAY_C_CONTIGUOUS) != 0)) != 0); __pyx_t_1 = __pyx_t_2; __pyx_L4_bool_binop_done:; /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":270 * ndim = PyArray_NDIM(self) * * if ((flags & pybuf.PyBUF_C_CONTIGUOUS == pybuf.PyBUF_C_CONTIGUOUS) # <<<<<<<<<<<<<< * and not PyArray_CHKFLAGS(self, NPY_ARRAY_C_CONTIGUOUS)): * raise ValueError(u"ndarray is not C contiguous") */ if (unlikely(__pyx_t_1)) { /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":272 * if ((flags & pybuf.PyBUF_C_CONTIGUOUS == pybuf.PyBUF_C_CONTIGUOUS) * and not PyArray_CHKFLAGS(self, NPY_ARRAY_C_CONTIGUOUS)): * raise ValueError(u"ndarray is not C contiguous") # <<<<<<<<<<<<<< * * if ((flags & pybuf.PyBUF_F_CONTIGUOUS == pybuf.PyBUF_F_CONTIGUOUS) */ __pyx_t_3 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__47, NULL); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 272, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_Raise(__pyx_t_3, 0, 0, 0); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __PYX_ERR(1, 272, __pyx_L1_error) /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":270 * ndim = PyArray_NDIM(self) * * if ((flags & pybuf.PyBUF_C_CONTIGUOUS == pybuf.PyBUF_C_CONTIGUOUS) # <<<<<<<<<<<<<< * and not PyArray_CHKFLAGS(self, NPY_ARRAY_C_CONTIGUOUS)): * raise ValueError(u"ndarray is not C contiguous") */ } /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":274 * raise ValueError(u"ndarray is not C contiguous") * * if ((flags & pybuf.PyBUF_F_CONTIGUOUS == pybuf.PyBUF_F_CONTIGUOUS) # <<<<<<<<<<<<<< * and not PyArray_CHKFLAGS(self, NPY_ARRAY_F_CONTIGUOUS)): * raise ValueError(u"ndarray is not Fortran contiguous") */ __pyx_t_2 = (((__pyx_v_flags & PyBUF_F_CONTIGUOUS) == PyBUF_F_CONTIGUOUS) != 0); if (__pyx_t_2) { } else { __pyx_t_1 = __pyx_t_2; goto __pyx_L7_bool_binop_done; } /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":275 * * if ((flags & pybuf.PyBUF_F_CONTIGUOUS == pybuf.PyBUF_F_CONTIGUOUS) * and not PyArray_CHKFLAGS(self, NPY_ARRAY_F_CONTIGUOUS)): # <<<<<<<<<<<<<< * raise ValueError(u"ndarray is not Fortran contiguous") * */ __pyx_t_2 = ((!(PyArray_CHKFLAGS(__pyx_v_self, NPY_ARRAY_F_CONTIGUOUS) != 0)) != 0); __pyx_t_1 = __pyx_t_2; __pyx_L7_bool_binop_done:; /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":274 * raise ValueError(u"ndarray is not C contiguous") * * if ((flags & pybuf.PyBUF_F_CONTIGUOUS == pybuf.PyBUF_F_CONTIGUOUS) # <<<<<<<<<<<<<< * and not PyArray_CHKFLAGS(self, NPY_ARRAY_F_CONTIGUOUS)): * raise ValueError(u"ndarray is not Fortran contiguous") */ if (unlikely(__pyx_t_1)) { /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":276 * if ((flags & pybuf.PyBUF_F_CONTIGUOUS == pybuf.PyBUF_F_CONTIGUOUS) * and not PyArray_CHKFLAGS(self, NPY_ARRAY_F_CONTIGUOUS)): * raise ValueError(u"ndarray is not Fortran contiguous") # <<<<<<<<<<<<<< * * info.buf = PyArray_DATA(self) */ __pyx_t_3 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__48, NULL); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 276, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_Raise(__pyx_t_3, 0, 0, 0); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __PYX_ERR(1, 276, __pyx_L1_error) /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":274 * raise ValueError(u"ndarray is not C contiguous") * * if ((flags & pybuf.PyBUF_F_CONTIGUOUS == pybuf.PyBUF_F_CONTIGUOUS) # <<<<<<<<<<<<<< * and not PyArray_CHKFLAGS(self, NPY_ARRAY_F_CONTIGUOUS)): * raise ValueError(u"ndarray is not Fortran contiguous") */ } /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":278 * raise ValueError(u"ndarray is not Fortran contiguous") * * info.buf = PyArray_DATA(self) # <<<<<<<<<<<<<< * info.ndim = ndim * if sizeof(npy_intp) != sizeof(Py_ssize_t): */ __pyx_v_info->buf = PyArray_DATA(__pyx_v_self); /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":279 * * info.buf = PyArray_DATA(self) * info.ndim = ndim # <<<<<<<<<<<<<< * if sizeof(npy_intp) != sizeof(Py_ssize_t): * # Allocate new buffer for strides and shape info. */ __pyx_v_info->ndim = __pyx_v_ndim; /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":280 * info.buf = PyArray_DATA(self) * info.ndim = ndim * if sizeof(npy_intp) != sizeof(Py_ssize_t): # <<<<<<<<<<<<<< * # Allocate new buffer for strides and shape info. * # This is allocated as one block, strides first. */ __pyx_t_1 = (((sizeof(npy_intp)) != (sizeof(Py_ssize_t))) != 0); if (__pyx_t_1) { /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":283 * # Allocate new buffer for strides and shape info. * # This is allocated as one block, strides first. * info.strides = PyObject_Malloc(sizeof(Py_ssize_t) * 2 * ndim) # <<<<<<<<<<<<<< * info.shape = info.strides + ndim * for i in range(ndim): */ __pyx_v_info->strides = ((Py_ssize_t *)PyObject_Malloc((((sizeof(Py_ssize_t)) * 2) * ((size_t)__pyx_v_ndim)))); /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":284 * # This is allocated as one block, strides first. * info.strides = PyObject_Malloc(sizeof(Py_ssize_t) * 2 * ndim) * info.shape = info.strides + ndim # <<<<<<<<<<<<<< * for i in range(ndim): * info.strides[i] = PyArray_STRIDES(self)[i] */ __pyx_v_info->shape = (__pyx_v_info->strides + __pyx_v_ndim); /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":285 * info.strides = PyObject_Malloc(sizeof(Py_ssize_t) * 2 * ndim) * info.shape = info.strides + ndim * for i in range(ndim): # <<<<<<<<<<<<<< * info.strides[i] = PyArray_STRIDES(self)[i] * info.shape[i] = PyArray_DIMS(self)[i] */ __pyx_t_4 = __pyx_v_ndim; __pyx_t_5 = __pyx_t_4; for (__pyx_t_6 = 0; __pyx_t_6 < __pyx_t_5; __pyx_t_6+=1) { __pyx_v_i = __pyx_t_6; /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":286 * info.shape = info.strides + ndim * for i in range(ndim): * info.strides[i] = PyArray_STRIDES(self)[i] # <<<<<<<<<<<<<< * info.shape[i] = PyArray_DIMS(self)[i] * else: */ (__pyx_v_info->strides[__pyx_v_i]) = (PyArray_STRIDES(__pyx_v_self)[__pyx_v_i]); /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":287 * for i in range(ndim): * info.strides[i] = PyArray_STRIDES(self)[i] * info.shape[i] = PyArray_DIMS(self)[i] # <<<<<<<<<<<<<< * else: * info.strides = PyArray_STRIDES(self) */ (__pyx_v_info->shape[__pyx_v_i]) = (PyArray_DIMS(__pyx_v_self)[__pyx_v_i]); } /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":280 * info.buf = PyArray_DATA(self) * info.ndim = ndim * if sizeof(npy_intp) != sizeof(Py_ssize_t): # <<<<<<<<<<<<<< * # Allocate new buffer for strides and shape info. * # This is allocated as one block, strides first. */ goto __pyx_L9; } /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":289 * info.shape[i] = PyArray_DIMS(self)[i] * else: * info.strides = PyArray_STRIDES(self) # <<<<<<<<<<<<<< * info.shape = PyArray_DIMS(self) * info.suboffsets = NULL */ /*else*/ { __pyx_v_info->strides = ((Py_ssize_t *)PyArray_STRIDES(__pyx_v_self)); /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":290 * else: * info.strides = PyArray_STRIDES(self) * info.shape = PyArray_DIMS(self) # <<<<<<<<<<<<<< * info.suboffsets = NULL * info.itemsize = PyArray_ITEMSIZE(self) */ __pyx_v_info->shape = ((Py_ssize_t *)PyArray_DIMS(__pyx_v_self)); } __pyx_L9:; /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":291 * info.strides = PyArray_STRIDES(self) * info.shape = PyArray_DIMS(self) * info.suboffsets = NULL # <<<<<<<<<<<<<< * info.itemsize = PyArray_ITEMSIZE(self) * info.readonly = not PyArray_ISWRITEABLE(self) */ __pyx_v_info->suboffsets = NULL; /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":292 * info.shape = PyArray_DIMS(self) * info.suboffsets = NULL * info.itemsize = PyArray_ITEMSIZE(self) # <<<<<<<<<<<<<< * info.readonly = not PyArray_ISWRITEABLE(self) * */ __pyx_v_info->itemsize = PyArray_ITEMSIZE(__pyx_v_self); /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":293 * info.suboffsets = NULL * info.itemsize = PyArray_ITEMSIZE(self) * info.readonly = not PyArray_ISWRITEABLE(self) # <<<<<<<<<<<<<< * * cdef int t */ __pyx_v_info->readonly = (!(PyArray_ISWRITEABLE(__pyx_v_self) != 0)); /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":296 * * cdef int t * cdef char* f = NULL # <<<<<<<<<<<<<< * cdef dtype descr = PyArray_DESCR(self) * cdef int offset */ __pyx_v_f = NULL; /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":297 * cdef int t * cdef char* f = NULL * cdef dtype descr = PyArray_DESCR(self) # <<<<<<<<<<<<<< * cdef int offset * */ __pyx_t_7 = PyArray_DESCR(__pyx_v_self); __pyx_t_3 = ((PyObject *)__pyx_t_7); __Pyx_INCREF(__pyx_t_3); __pyx_v_descr = ((PyArray_Descr *)__pyx_t_3); __pyx_t_3 = 0; /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":300 * cdef int offset * * info.obj = self # <<<<<<<<<<<<<< * * if not PyDataType_HASFIELDS(descr): */ __Pyx_INCREF(((PyObject *)__pyx_v_self)); __Pyx_GIVEREF(((PyObject *)__pyx_v_self)); __Pyx_GOTREF(__pyx_v_info->obj); __Pyx_DECREF(__pyx_v_info->obj); __pyx_v_info->obj = ((PyObject *)__pyx_v_self); /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":302 * info.obj = self * * if not PyDataType_HASFIELDS(descr): # <<<<<<<<<<<<<< * t = descr.type_num * if ((descr.byteorder == c'>' and little_endian) or */ __pyx_t_1 = ((!(PyDataType_HASFIELDS(__pyx_v_descr) != 0)) != 0); if (__pyx_t_1) { /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":303 * * if not PyDataType_HASFIELDS(descr): * t = descr.type_num # <<<<<<<<<<<<<< * if ((descr.byteorder == c'>' and little_endian) or * (descr.byteorder == c'<' and not little_endian)): */ __pyx_t_4 = __pyx_v_descr->type_num; __pyx_v_t = __pyx_t_4; /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":304 * if not PyDataType_HASFIELDS(descr): * t = descr.type_num * if ((descr.byteorder == c'>' and little_endian) or # <<<<<<<<<<<<<< * (descr.byteorder == c'<' and not little_endian)): * raise ValueError(u"Non-native byte order not supported") */ __pyx_t_2 = ((__pyx_v_descr->byteorder == '>') != 0); if (!__pyx_t_2) { goto __pyx_L15_next_or; } else { } __pyx_t_2 = (__pyx_v_little_endian != 0); if (!__pyx_t_2) { } else { __pyx_t_1 = __pyx_t_2; goto __pyx_L14_bool_binop_done; } __pyx_L15_next_or:; /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":305 * t = descr.type_num * if ((descr.byteorder == c'>' and little_endian) or * (descr.byteorder == c'<' and not little_endian)): # <<<<<<<<<<<<<< * raise ValueError(u"Non-native byte order not supported") * if t == NPY_BYTE: f = "b" */ __pyx_t_2 = ((__pyx_v_descr->byteorder == '<') != 0); if (__pyx_t_2) { } else { __pyx_t_1 = __pyx_t_2; goto __pyx_L14_bool_binop_done; } __pyx_t_2 = ((!(__pyx_v_little_endian != 0)) != 0); __pyx_t_1 = __pyx_t_2; __pyx_L14_bool_binop_done:; /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":304 * if not PyDataType_HASFIELDS(descr): * t = descr.type_num * if ((descr.byteorder == c'>' and little_endian) or # <<<<<<<<<<<<<< * (descr.byteorder == c'<' and not little_endian)): * raise ValueError(u"Non-native byte order not supported") */ if (unlikely(__pyx_t_1)) { /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":306 * if ((descr.byteorder == c'>' and little_endian) or * (descr.byteorder == c'<' and not little_endian)): * raise ValueError(u"Non-native byte order not supported") # <<<<<<<<<<<<<< * if t == NPY_BYTE: f = "b" * elif t == NPY_UBYTE: f = "B" */ __pyx_t_3 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__49, NULL); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 306, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_Raise(__pyx_t_3, 0, 0, 0); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __PYX_ERR(1, 306, __pyx_L1_error) /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":304 * if not PyDataType_HASFIELDS(descr): * t = descr.type_num * if ((descr.byteorder == c'>' and little_endian) or # <<<<<<<<<<<<<< * (descr.byteorder == c'<' and not little_endian)): * raise ValueError(u"Non-native byte order not supported") */ } /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":307 * (descr.byteorder == c'<' and not little_endian)): * raise ValueError(u"Non-native byte order not supported") * if t == NPY_BYTE: f = "b" # <<<<<<<<<<<<<< * elif t == NPY_UBYTE: f = "B" * elif t == NPY_SHORT: f = "h" */ switch (__pyx_v_t) { case NPY_BYTE: __pyx_v_f = ((char *)"b"); break; case NPY_UBYTE: /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":308 * raise ValueError(u"Non-native byte order not supported") * if t == NPY_BYTE: f = "b" * elif t == NPY_UBYTE: f = "B" # <<<<<<<<<<<<<< * elif t == NPY_SHORT: f = "h" * elif t == NPY_USHORT: f = "H" */ __pyx_v_f = ((char *)"B"); break; case NPY_SHORT: /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":309 * if t == NPY_BYTE: f = "b" * elif t == NPY_UBYTE: f = "B" * elif t == NPY_SHORT: f = "h" # <<<<<<<<<<<<<< * elif t == NPY_USHORT: f = "H" * elif t == NPY_INT: f = "i" */ __pyx_v_f = ((char *)"h"); break; case NPY_USHORT: /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":310 * elif t == NPY_UBYTE: f = "B" * elif t == NPY_SHORT: f = "h" * elif t == NPY_USHORT: f = "H" # <<<<<<<<<<<<<< * elif t == NPY_INT: f = "i" * elif t == NPY_UINT: f = "I" */ __pyx_v_f = ((char *)"H"); break; case NPY_INT: /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":311 * elif t == NPY_SHORT: f = "h" * elif t == NPY_USHORT: f = "H" * elif t == NPY_INT: f = "i" # <<<<<<<<<<<<<< * elif t == NPY_UINT: f = "I" * elif t == NPY_LONG: f = "l" */ __pyx_v_f = ((char *)"i"); break; case NPY_UINT: /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":312 * elif t == NPY_USHORT: f = "H" * elif t == NPY_INT: f = "i" * elif t == NPY_UINT: f = "I" # <<<<<<<<<<<<<< * elif t == NPY_LONG: f = "l" * elif t == NPY_ULONG: f = "L" */ __pyx_v_f = ((char *)"I"); break; case NPY_LONG: /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":313 * elif t == NPY_INT: f = "i" * elif t == NPY_UINT: f = "I" * elif t == NPY_LONG: f = "l" # <<<<<<<<<<<<<< * elif t == NPY_ULONG: f = "L" * elif t == NPY_LONGLONG: f = "q" */ __pyx_v_f = ((char *)"l"); break; case NPY_ULONG: /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":314 * elif t == NPY_UINT: f = "I" * elif t == NPY_LONG: f = "l" * elif t == NPY_ULONG: f = "L" # <<<<<<<<<<<<<< * elif t == NPY_LONGLONG: f = "q" * elif t == NPY_ULONGLONG: f = "Q" */ __pyx_v_f = ((char *)"L"); break; case NPY_LONGLONG: /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":315 * elif t == NPY_LONG: f = "l" * elif t == NPY_ULONG: f = "L" * elif t == NPY_LONGLONG: f = "q" # <<<<<<<<<<<<<< * elif t == NPY_ULONGLONG: f = "Q" * elif t == NPY_FLOAT: f = "f" */ __pyx_v_f = ((char *)"q"); break; case NPY_ULONGLONG: /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":316 * elif t == NPY_ULONG: f = "L" * elif t == NPY_LONGLONG: f = "q" * elif t == NPY_ULONGLONG: f = "Q" # <<<<<<<<<<<<<< * elif t == NPY_FLOAT: f = "f" * elif t == NPY_DOUBLE: f = "d" */ __pyx_v_f = ((char *)"Q"); break; case NPY_FLOAT: /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":317 * elif t == NPY_LONGLONG: f = "q" * elif t == NPY_ULONGLONG: f = "Q" * elif t == NPY_FLOAT: f = "f" # <<<<<<<<<<<<<< * elif t == NPY_DOUBLE: f = "d" * elif t == NPY_LONGDOUBLE: f = "g" */ __pyx_v_f = ((char *)"f"); break; case NPY_DOUBLE: /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":318 * elif t == NPY_ULONGLONG: f = "Q" * elif t == NPY_FLOAT: f = "f" * elif t == NPY_DOUBLE: f = "d" # <<<<<<<<<<<<<< * elif t == NPY_LONGDOUBLE: f = "g" * elif t == NPY_CFLOAT: f = "Zf" */ __pyx_v_f = ((char *)"d"); break; case NPY_LONGDOUBLE: /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":319 * elif t == NPY_FLOAT: f = "f" * elif t == NPY_DOUBLE: f = "d" * elif t == NPY_LONGDOUBLE: f = "g" # <<<<<<<<<<<<<< * elif t == NPY_CFLOAT: f = "Zf" * elif t == NPY_CDOUBLE: f = "Zd" */ __pyx_v_f = ((char *)"g"); break; case NPY_CFLOAT: /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":320 * elif t == NPY_DOUBLE: f = "d" * elif t == NPY_LONGDOUBLE: f = "g" * elif t == NPY_CFLOAT: f = "Zf" # <<<<<<<<<<<<<< * elif t == NPY_CDOUBLE: f = "Zd" * elif t == NPY_CLONGDOUBLE: f = "Zg" */ __pyx_v_f = ((char *)"Zf"); break; case NPY_CDOUBLE: /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":321 * elif t == NPY_LONGDOUBLE: f = "g" * elif t == NPY_CFLOAT: f = "Zf" * elif t == NPY_CDOUBLE: f = "Zd" # <<<<<<<<<<<<<< * elif t == NPY_CLONGDOUBLE: f = "Zg" * elif t == NPY_OBJECT: f = "O" */ __pyx_v_f = ((char *)"Zd"); break; case NPY_CLONGDOUBLE: /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":322 * elif t == NPY_CFLOAT: f = "Zf" * elif t == NPY_CDOUBLE: f = "Zd" * elif t == NPY_CLONGDOUBLE: f = "Zg" # <<<<<<<<<<<<<< * elif t == NPY_OBJECT: f = "O" * else: */ __pyx_v_f = ((char *)"Zg"); break; case NPY_OBJECT: /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":323 * elif t == NPY_CDOUBLE: f = "Zd" * elif t == NPY_CLONGDOUBLE: f = "Zg" * elif t == NPY_OBJECT: f = "O" # <<<<<<<<<<<<<< * else: * raise ValueError(u"unknown dtype code in numpy.pxd (%d)" % t) */ __pyx_v_f = ((char *)"O"); break; default: /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":325 * elif t == NPY_OBJECT: f = "O" * else: * raise ValueError(u"unknown dtype code in numpy.pxd (%d)" % t) # <<<<<<<<<<<<<< * info.format = f * return */ __pyx_t_3 = __Pyx_PyInt_From_int(__pyx_v_t); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 325, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_8 = PyUnicode_Format(__pyx_kp_u_unknown_dtype_code_in_numpy_pxd, __pyx_t_3); if (unlikely(!__pyx_t_8)) __PYX_ERR(1, 325, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_8); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_3 = __Pyx_PyObject_CallOneArg(__pyx_builtin_ValueError, __pyx_t_8); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 325, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; __Pyx_Raise(__pyx_t_3, 0, 0, 0); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __PYX_ERR(1, 325, __pyx_L1_error) break; } /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":326 * else: * raise ValueError(u"unknown dtype code in numpy.pxd (%d)" % t) * info.format = f # <<<<<<<<<<<<<< * return * else: */ __pyx_v_info->format = __pyx_v_f; /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":327 * raise ValueError(u"unknown dtype code in numpy.pxd (%d)" % t) * info.format = f * return # <<<<<<<<<<<<<< * else: * info.format = PyObject_Malloc(_buffer_format_string_len) */ __pyx_r = 0; goto __pyx_L0; /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":302 * info.obj = self * * if not PyDataType_HASFIELDS(descr): # <<<<<<<<<<<<<< * t = descr.type_num * if ((descr.byteorder == c'>' and little_endian) or */ } /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":329 * return * else: * info.format = PyObject_Malloc(_buffer_format_string_len) # <<<<<<<<<<<<<< * info.format[0] = c'^' # Native data types, manual alignment * offset = 0 */ /*else*/ { __pyx_v_info->format = ((char *)PyObject_Malloc(0xFF)); /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":330 * else: * info.format = PyObject_Malloc(_buffer_format_string_len) * info.format[0] = c'^' # Native data types, manual alignment # <<<<<<<<<<<<<< * offset = 0 * f = _util_dtypestring(descr, info.format + 1, */ (__pyx_v_info->format[0]) = '^'; /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":331 * info.format = PyObject_Malloc(_buffer_format_string_len) * info.format[0] = c'^' # Native data types, manual alignment * offset = 0 # <<<<<<<<<<<<<< * f = _util_dtypestring(descr, info.format + 1, * info.format + _buffer_format_string_len, */ __pyx_v_offset = 0; /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":332 * info.format[0] = c'^' # Native data types, manual alignment * offset = 0 * f = _util_dtypestring(descr, info.format + 1, # <<<<<<<<<<<<<< * info.format + _buffer_format_string_len, * &offset) */ __pyx_t_9 = __pyx_f_5numpy__util_dtypestring(__pyx_v_descr, (__pyx_v_info->format + 1), (__pyx_v_info->format + 0xFF), (&__pyx_v_offset)); if (unlikely(__pyx_t_9 == ((char *)NULL))) __PYX_ERR(1, 332, __pyx_L1_error) __pyx_v_f = __pyx_t_9; /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":335 * info.format + _buffer_format_string_len, * &offset) * f[0] = c'\0' # Terminate format string # <<<<<<<<<<<<<< * * def __releasebuffer__(ndarray self, Py_buffer* info): */ (__pyx_v_f[0]) = '\x00'; } /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":258 * # experimental exception made for __getbuffer__ and __releasebuffer__ * # -- the details of this may change. * def __getbuffer__(ndarray self, Py_buffer* info, int flags): # <<<<<<<<<<<<<< * # This implementation of getbuffer is geared towards Cython * # requirements, and does not yet fulfill the PEP. */ /* function exit code */ __pyx_r = 0; goto __pyx_L0; __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_8); __Pyx_AddTraceback("numpy.ndarray.__getbuffer__", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = -1; if (__pyx_v_info->obj != NULL) { __Pyx_GOTREF(__pyx_v_info->obj); __Pyx_DECREF(__pyx_v_info->obj); __pyx_v_info->obj = 0; } goto __pyx_L2; __pyx_L0:; if (__pyx_v_info->obj == Py_None) { __Pyx_GOTREF(__pyx_v_info->obj); __Pyx_DECREF(__pyx_v_info->obj); __pyx_v_info->obj = 0; } __pyx_L2:; __Pyx_XDECREF((PyObject *)__pyx_v_descr); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":337 * f[0] = c'\0' # Terminate format string * * def __releasebuffer__(ndarray self, Py_buffer* info): # <<<<<<<<<<<<<< * if PyArray_HASFIELDS(self): * PyObject_Free(info.format) */ /* Python wrapper */ static CYTHON_UNUSED void __pyx_pw_5numpy_7ndarray_3__releasebuffer__(PyObject *__pyx_v_self, Py_buffer *__pyx_v_info); /*proto*/ static CYTHON_UNUSED void __pyx_pw_5numpy_7ndarray_3__releasebuffer__(PyObject *__pyx_v_self, Py_buffer *__pyx_v_info) { __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__releasebuffer__ (wrapper)", 0); __pyx_pf_5numpy_7ndarray_2__releasebuffer__(((PyArrayObject *)__pyx_v_self), ((Py_buffer *)__pyx_v_info)); /* function exit code */ __Pyx_RefNannyFinishContext(); } static void __pyx_pf_5numpy_7ndarray_2__releasebuffer__(PyArrayObject *__pyx_v_self, Py_buffer *__pyx_v_info) { __Pyx_RefNannyDeclarations int __pyx_t_1; __Pyx_RefNannySetupContext("__releasebuffer__", 0); /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":338 * * def __releasebuffer__(ndarray self, Py_buffer* info): * if PyArray_HASFIELDS(self): # <<<<<<<<<<<<<< * PyObject_Free(info.format) * if sizeof(npy_intp) != sizeof(Py_ssize_t): */ __pyx_t_1 = (PyArray_HASFIELDS(__pyx_v_self) != 0); if (__pyx_t_1) { /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":339 * def __releasebuffer__(ndarray self, Py_buffer* info): * if PyArray_HASFIELDS(self): * PyObject_Free(info.format) # <<<<<<<<<<<<<< * if sizeof(npy_intp) != sizeof(Py_ssize_t): * PyObject_Free(info.strides) */ PyObject_Free(__pyx_v_info->format); /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":338 * * def __releasebuffer__(ndarray self, Py_buffer* info): * if PyArray_HASFIELDS(self): # <<<<<<<<<<<<<< * PyObject_Free(info.format) * if sizeof(npy_intp) != sizeof(Py_ssize_t): */ } /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":340 * if PyArray_HASFIELDS(self): * PyObject_Free(info.format) * if sizeof(npy_intp) != sizeof(Py_ssize_t): # <<<<<<<<<<<<<< * PyObject_Free(info.strides) * # info.shape was stored after info.strides in the same block */ __pyx_t_1 = (((sizeof(npy_intp)) != (sizeof(Py_ssize_t))) != 0); if (__pyx_t_1) { /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":341 * PyObject_Free(info.format) * if sizeof(npy_intp) != sizeof(Py_ssize_t): * PyObject_Free(info.strides) # <<<<<<<<<<<<<< * # info.shape was stored after info.strides in the same block * */ PyObject_Free(__pyx_v_info->strides); /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":340 * if PyArray_HASFIELDS(self): * PyObject_Free(info.format) * if sizeof(npy_intp) != sizeof(Py_ssize_t): # <<<<<<<<<<<<<< * PyObject_Free(info.strides) * # info.shape was stored after info.strides in the same block */ } /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":337 * f[0] = c'\0' # Terminate format string * * def __releasebuffer__(ndarray self, Py_buffer* info): # <<<<<<<<<<<<<< * if PyArray_HASFIELDS(self): * PyObject_Free(info.format) */ /* function exit code */ __Pyx_RefNannyFinishContext(); } /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":821 * ctypedef npy_cdouble complex_t * * cdef inline object PyArray_MultiIterNew1(a): # <<<<<<<<<<<<<< * return PyArray_MultiIterNew(1, a) * */ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew1(PyObject *__pyx_v_a) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; __Pyx_RefNannySetupContext("PyArray_MultiIterNew1", 0); /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":822 * * cdef inline object PyArray_MultiIterNew1(a): * return PyArray_MultiIterNew(1, a) # <<<<<<<<<<<<<< * * cdef inline object PyArray_MultiIterNew2(a, b): */ __Pyx_XDECREF(__pyx_r); __pyx_t_1 = PyArray_MultiIterNew(1, ((void *)__pyx_v_a)); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 822, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_r = __pyx_t_1; __pyx_t_1 = 0; goto __pyx_L0; /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":821 * ctypedef npy_cdouble complex_t * * cdef inline object PyArray_MultiIterNew1(a): # <<<<<<<<<<<<<< * return PyArray_MultiIterNew(1, a) * */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_AddTraceback("numpy.PyArray_MultiIterNew1", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = 0; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":824 * return PyArray_MultiIterNew(1, a) * * cdef inline object PyArray_MultiIterNew2(a, b): # <<<<<<<<<<<<<< * return PyArray_MultiIterNew(2, a, b) * */ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew2(PyObject *__pyx_v_a, PyObject *__pyx_v_b) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; __Pyx_RefNannySetupContext("PyArray_MultiIterNew2", 0); /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":825 * * cdef inline object PyArray_MultiIterNew2(a, b): * return PyArray_MultiIterNew(2, a, b) # <<<<<<<<<<<<<< * * cdef inline object PyArray_MultiIterNew3(a, b, c): */ __Pyx_XDECREF(__pyx_r); __pyx_t_1 = PyArray_MultiIterNew(2, ((void *)__pyx_v_a), ((void *)__pyx_v_b)); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 825, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_r = __pyx_t_1; __pyx_t_1 = 0; goto __pyx_L0; /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":824 * return PyArray_MultiIterNew(1, a) * * cdef inline object PyArray_MultiIterNew2(a, b): # <<<<<<<<<<<<<< * return PyArray_MultiIterNew(2, a, b) * */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_AddTraceback("numpy.PyArray_MultiIterNew2", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = 0; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":827 * return PyArray_MultiIterNew(2, a, b) * * cdef inline object PyArray_MultiIterNew3(a, b, c): # <<<<<<<<<<<<<< * return PyArray_MultiIterNew(3, a, b, c) * */ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew3(PyObject *__pyx_v_a, PyObject *__pyx_v_b, PyObject *__pyx_v_c) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; __Pyx_RefNannySetupContext("PyArray_MultiIterNew3", 0); /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":828 * * cdef inline object PyArray_MultiIterNew3(a, b, c): * return PyArray_MultiIterNew(3, a, b, c) # <<<<<<<<<<<<<< * * cdef inline object PyArray_MultiIterNew4(a, b, c, d): */ __Pyx_XDECREF(__pyx_r); __pyx_t_1 = PyArray_MultiIterNew(3, ((void *)__pyx_v_a), ((void *)__pyx_v_b), ((void *)__pyx_v_c)); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 828, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_r = __pyx_t_1; __pyx_t_1 = 0; goto __pyx_L0; /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":827 * return PyArray_MultiIterNew(2, a, b) * * cdef inline object PyArray_MultiIterNew3(a, b, c): # <<<<<<<<<<<<<< * return PyArray_MultiIterNew(3, a, b, c) * */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_AddTraceback("numpy.PyArray_MultiIterNew3", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = 0; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":830 * return PyArray_MultiIterNew(3, a, b, c) * * cdef inline object PyArray_MultiIterNew4(a, b, c, d): # <<<<<<<<<<<<<< * return PyArray_MultiIterNew(4, a, b, c, d) * */ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew4(PyObject *__pyx_v_a, PyObject *__pyx_v_b, PyObject *__pyx_v_c, PyObject *__pyx_v_d) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; __Pyx_RefNannySetupContext("PyArray_MultiIterNew4", 0); /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":831 * * cdef inline object PyArray_MultiIterNew4(a, b, c, d): * return PyArray_MultiIterNew(4, a, b, c, d) # <<<<<<<<<<<<<< * * cdef inline object PyArray_MultiIterNew5(a, b, c, d, e): */ __Pyx_XDECREF(__pyx_r); __pyx_t_1 = PyArray_MultiIterNew(4, ((void *)__pyx_v_a), ((void *)__pyx_v_b), ((void *)__pyx_v_c), ((void *)__pyx_v_d)); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 831, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_r = __pyx_t_1; __pyx_t_1 = 0; goto __pyx_L0; /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":830 * return PyArray_MultiIterNew(3, a, b, c) * * cdef inline object PyArray_MultiIterNew4(a, b, c, d): # <<<<<<<<<<<<<< * return PyArray_MultiIterNew(4, a, b, c, d) * */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_AddTraceback("numpy.PyArray_MultiIterNew4", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = 0; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":833 * return PyArray_MultiIterNew(4, a, b, c, d) * * cdef inline object PyArray_MultiIterNew5(a, b, c, d, e): # <<<<<<<<<<<<<< * return PyArray_MultiIterNew(5, a, b, c, d, e) * */ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew5(PyObject *__pyx_v_a, PyObject *__pyx_v_b, PyObject *__pyx_v_c, PyObject *__pyx_v_d, PyObject *__pyx_v_e) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; __Pyx_RefNannySetupContext("PyArray_MultiIterNew5", 0); /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":834 * * cdef inline object PyArray_MultiIterNew5(a, b, c, d, e): * return PyArray_MultiIterNew(5, a, b, c, d, e) # <<<<<<<<<<<<<< * * cdef inline tuple PyDataType_SHAPE(dtype d): */ __Pyx_XDECREF(__pyx_r); __pyx_t_1 = PyArray_MultiIterNew(5, ((void *)__pyx_v_a), ((void *)__pyx_v_b), ((void *)__pyx_v_c), ((void *)__pyx_v_d), ((void *)__pyx_v_e)); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 834, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_r = __pyx_t_1; __pyx_t_1 = 0; goto __pyx_L0; /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":833 * return PyArray_MultiIterNew(4, a, b, c, d) * * cdef inline object PyArray_MultiIterNew5(a, b, c, d, e): # <<<<<<<<<<<<<< * return PyArray_MultiIterNew(5, a, b, c, d, e) * */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_AddTraceback("numpy.PyArray_MultiIterNew5", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = 0; __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":836 * return PyArray_MultiIterNew(5, a, b, c, d, e) * * cdef inline tuple PyDataType_SHAPE(dtype d): # <<<<<<<<<<<<<< * if PyDataType_HASSUBARRAY(d): * return d.subarray.shape */ static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyDataType_SHAPE(PyArray_Descr *__pyx_v_d) { PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations int __pyx_t_1; __Pyx_RefNannySetupContext("PyDataType_SHAPE", 0); /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":837 * * cdef inline tuple PyDataType_SHAPE(dtype d): * if PyDataType_HASSUBARRAY(d): # <<<<<<<<<<<<<< * return d.subarray.shape * else: */ __pyx_t_1 = (PyDataType_HASSUBARRAY(__pyx_v_d) != 0); if (__pyx_t_1) { /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":838 * cdef inline tuple PyDataType_SHAPE(dtype d): * if PyDataType_HASSUBARRAY(d): * return d.subarray.shape # <<<<<<<<<<<<<< * else: * return () */ __Pyx_XDECREF(__pyx_r); __Pyx_INCREF(((PyObject*)__pyx_v_d->subarray->shape)); __pyx_r = ((PyObject*)__pyx_v_d->subarray->shape); goto __pyx_L0; /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":837 * * cdef inline tuple PyDataType_SHAPE(dtype d): * if PyDataType_HASSUBARRAY(d): # <<<<<<<<<<<<<< * return d.subarray.shape * else: */ } /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":840 * return d.subarray.shape * else: * return () # <<<<<<<<<<<<<< * * cdef inline char* _util_dtypestring(dtype descr, char* f, char* end, int* offset) except NULL: */ /*else*/ { __Pyx_XDECREF(__pyx_r); __Pyx_INCREF(__pyx_empty_tuple); __pyx_r = __pyx_empty_tuple; goto __pyx_L0; } /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":836 * return PyArray_MultiIterNew(5, a, b, c, d, e) * * cdef inline tuple PyDataType_SHAPE(dtype d): # <<<<<<<<<<<<<< * if PyDataType_HASSUBARRAY(d): * return d.subarray.shape */ /* function exit code */ __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":842 * return () * * cdef inline char* _util_dtypestring(dtype descr, char* f, char* end, int* offset) except NULL: # <<<<<<<<<<<<<< * # Recursive utility function used in __getbuffer__ to get format * # string. The new location in the format string is returned. */ static CYTHON_INLINE char *__pyx_f_5numpy__util_dtypestring(PyArray_Descr *__pyx_v_descr, char *__pyx_v_f, char *__pyx_v_end, int *__pyx_v_offset) { PyArray_Descr *__pyx_v_child = 0; int __pyx_v_endian_detector; int __pyx_v_little_endian; PyObject *__pyx_v_fields = 0; PyObject *__pyx_v_childname = NULL; PyObject *__pyx_v_new_offset = NULL; PyObject *__pyx_v_t = NULL; char *__pyx_r; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; Py_ssize_t __pyx_t_2; PyObject *__pyx_t_3 = NULL; PyObject *__pyx_t_4 = NULL; int __pyx_t_5; int __pyx_t_6; int __pyx_t_7; long __pyx_t_8; char *__pyx_t_9; __Pyx_RefNannySetupContext("_util_dtypestring", 0); /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":847 * * cdef dtype child * cdef int endian_detector = 1 # <<<<<<<<<<<<<< * cdef bint little_endian = ((&endian_detector)[0] != 0) * cdef tuple fields */ __pyx_v_endian_detector = 1; /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":848 * cdef dtype child * cdef int endian_detector = 1 * cdef bint little_endian = ((&endian_detector)[0] != 0) # <<<<<<<<<<<<<< * cdef tuple fields * */ __pyx_v_little_endian = ((((char *)(&__pyx_v_endian_detector))[0]) != 0); /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":851 * cdef tuple fields * * for childname in descr.names: # <<<<<<<<<<<<<< * fields = descr.fields[childname] * child, new_offset = fields */ if (unlikely(__pyx_v_descr->names == Py_None)) { PyErr_SetString(PyExc_TypeError, "'NoneType' object is not iterable"); __PYX_ERR(1, 851, __pyx_L1_error) } __pyx_t_1 = __pyx_v_descr->names; __Pyx_INCREF(__pyx_t_1); __pyx_t_2 = 0; for (;;) { if (__pyx_t_2 >= PyTuple_GET_SIZE(__pyx_t_1)) break; #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS __pyx_t_3 = PyTuple_GET_ITEM(__pyx_t_1, __pyx_t_2); __Pyx_INCREF(__pyx_t_3); __pyx_t_2++; if (unlikely(0 < 0)) __PYX_ERR(1, 851, __pyx_L1_error) #else __pyx_t_3 = PySequence_ITEM(__pyx_t_1, __pyx_t_2); __pyx_t_2++; if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 851, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); #endif __Pyx_XDECREF_SET(__pyx_v_childname, __pyx_t_3); __pyx_t_3 = 0; /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":852 * * for childname in descr.names: * fields = descr.fields[childname] # <<<<<<<<<<<<<< * child, new_offset = fields * */ if (unlikely(__pyx_v_descr->fields == Py_None)) { PyErr_SetString(PyExc_TypeError, "'NoneType' object is not subscriptable"); __PYX_ERR(1, 852, __pyx_L1_error) } __pyx_t_3 = __Pyx_PyDict_GetItem(__pyx_v_descr->fields, __pyx_v_childname); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 852, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); if (!(likely(PyTuple_CheckExact(__pyx_t_3))||((__pyx_t_3) == Py_None)||(PyErr_Format(PyExc_TypeError, "Expected %.16s, got %.200s", "tuple", Py_TYPE(__pyx_t_3)->tp_name), 0))) __PYX_ERR(1, 852, __pyx_L1_error) __Pyx_XDECREF_SET(__pyx_v_fields, ((PyObject*)__pyx_t_3)); __pyx_t_3 = 0; /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":853 * for childname in descr.names: * fields = descr.fields[childname] * child, new_offset = fields # <<<<<<<<<<<<<< * * if (end - f) - (new_offset - offset[0]) < 15: */ if (likely(__pyx_v_fields != Py_None)) { PyObject* sequence = __pyx_v_fields; Py_ssize_t size = __Pyx_PySequence_SIZE(sequence); if (unlikely(size != 2)) { if (size > 2) __Pyx_RaiseTooManyValuesError(2); else if (size >= 0) __Pyx_RaiseNeedMoreValuesError(size); __PYX_ERR(1, 853, __pyx_L1_error) } #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS __pyx_t_3 = PyTuple_GET_ITEM(sequence, 0); __pyx_t_4 = PyTuple_GET_ITEM(sequence, 1); __Pyx_INCREF(__pyx_t_3); __Pyx_INCREF(__pyx_t_4); #else __pyx_t_3 = PySequence_ITEM(sequence, 0); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 853, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_4 = PySequence_ITEM(sequence, 1); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 853, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); #endif } else { __Pyx_RaiseNoneNotIterableError(); __PYX_ERR(1, 853, __pyx_L1_error) } if (!(likely(((__pyx_t_3) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_3, __pyx_ptype_5numpy_dtype))))) __PYX_ERR(1, 853, __pyx_L1_error) __Pyx_XDECREF_SET(__pyx_v_child, ((PyArray_Descr *)__pyx_t_3)); __pyx_t_3 = 0; __Pyx_XDECREF_SET(__pyx_v_new_offset, __pyx_t_4); __pyx_t_4 = 0; /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":855 * child, new_offset = fields * * if (end - f) - (new_offset - offset[0]) < 15: # <<<<<<<<<<<<<< * raise RuntimeError(u"Format string allocated too short, see comment in numpy.pxd") * */ __pyx_t_4 = __Pyx_PyInt_From_int((__pyx_v_offset[0])); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 855, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_3 = PyNumber_Subtract(__pyx_v_new_offset, __pyx_t_4); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 855, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_5 = __Pyx_PyInt_As_int(__pyx_t_3); if (unlikely((__pyx_t_5 == (int)-1) && PyErr_Occurred())) __PYX_ERR(1, 855, __pyx_L1_error) __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_6 = ((((__pyx_v_end - __pyx_v_f) - ((int)__pyx_t_5)) < 15) != 0); if (unlikely(__pyx_t_6)) { /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":856 * * if (end - f) - (new_offset - offset[0]) < 15: * raise RuntimeError(u"Format string allocated too short, see comment in numpy.pxd") # <<<<<<<<<<<<<< * * if ((child.byteorder == c'>' and little_endian) or */ __pyx_t_3 = __Pyx_PyObject_Call(__pyx_builtin_RuntimeError, __pyx_tuple__50, NULL); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 856, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_Raise(__pyx_t_3, 0, 0, 0); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __PYX_ERR(1, 856, __pyx_L1_error) /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":855 * child, new_offset = fields * * if (end - f) - (new_offset - offset[0]) < 15: # <<<<<<<<<<<<<< * raise RuntimeError(u"Format string allocated too short, see comment in numpy.pxd") * */ } /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":858 * raise RuntimeError(u"Format string allocated too short, see comment in numpy.pxd") * * if ((child.byteorder == c'>' and little_endian) or # <<<<<<<<<<<<<< * (child.byteorder == c'<' and not little_endian)): * raise ValueError(u"Non-native byte order not supported") */ __pyx_t_7 = ((__pyx_v_child->byteorder == '>') != 0); if (!__pyx_t_7) { goto __pyx_L8_next_or; } else { } __pyx_t_7 = (__pyx_v_little_endian != 0); if (!__pyx_t_7) { } else { __pyx_t_6 = __pyx_t_7; goto __pyx_L7_bool_binop_done; } __pyx_L8_next_or:; /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":859 * * if ((child.byteorder == c'>' and little_endian) or * (child.byteorder == c'<' and not little_endian)): # <<<<<<<<<<<<<< * raise ValueError(u"Non-native byte order not supported") * # One could encode it in the format string and have Cython */ __pyx_t_7 = ((__pyx_v_child->byteorder == '<') != 0); if (__pyx_t_7) { } else { __pyx_t_6 = __pyx_t_7; goto __pyx_L7_bool_binop_done; } __pyx_t_7 = ((!(__pyx_v_little_endian != 0)) != 0); __pyx_t_6 = __pyx_t_7; __pyx_L7_bool_binop_done:; /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":858 * raise RuntimeError(u"Format string allocated too short, see comment in numpy.pxd") * * if ((child.byteorder == c'>' and little_endian) or # <<<<<<<<<<<<<< * (child.byteorder == c'<' and not little_endian)): * raise ValueError(u"Non-native byte order not supported") */ if (unlikely(__pyx_t_6)) { /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":860 * if ((child.byteorder == c'>' and little_endian) or * (child.byteorder == c'<' and not little_endian)): * raise ValueError(u"Non-native byte order not supported") # <<<<<<<<<<<<<< * # One could encode it in the format string and have Cython * # complain instead, BUT: < and > in format strings also imply */ __pyx_t_3 = __Pyx_PyObject_Call(__pyx_builtin_ValueError, __pyx_tuple__49, NULL); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 860, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __Pyx_Raise(__pyx_t_3, 0, 0, 0); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __PYX_ERR(1, 860, __pyx_L1_error) /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":858 * raise RuntimeError(u"Format string allocated too short, see comment in numpy.pxd") * * if ((child.byteorder == c'>' and little_endian) or # <<<<<<<<<<<<<< * (child.byteorder == c'<' and not little_endian)): * raise ValueError(u"Non-native byte order not supported") */ } /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":870 * * # Output padding bytes * while offset[0] < new_offset: # <<<<<<<<<<<<<< * f[0] = 120 # "x"; pad byte * f += 1 */ while (1) { __pyx_t_3 = __Pyx_PyInt_From_int((__pyx_v_offset[0])); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 870, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_4 = PyObject_RichCompare(__pyx_t_3, __pyx_v_new_offset, Py_LT); __Pyx_XGOTREF(__pyx_t_4); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 870, __pyx_L1_error) __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_4); if (unlikely(__pyx_t_6 < 0)) __PYX_ERR(1, 870, __pyx_L1_error) __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; if (!__pyx_t_6) break; /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":871 * # Output padding bytes * while offset[0] < new_offset: * f[0] = 120 # "x"; pad byte # <<<<<<<<<<<<<< * f += 1 * offset[0] += 1 */ (__pyx_v_f[0]) = 0x78; /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":872 * while offset[0] < new_offset: * f[0] = 120 # "x"; pad byte * f += 1 # <<<<<<<<<<<<<< * offset[0] += 1 * */ __pyx_v_f = (__pyx_v_f + 1); /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":873 * f[0] = 120 # "x"; pad byte * f += 1 * offset[0] += 1 # <<<<<<<<<<<<<< * * offset[0] += child.itemsize */ __pyx_t_8 = 0; (__pyx_v_offset[__pyx_t_8]) = ((__pyx_v_offset[__pyx_t_8]) + 1); } /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":875 * offset[0] += 1 * * offset[0] += child.itemsize # <<<<<<<<<<<<<< * * if not PyDataType_HASFIELDS(child): */ __pyx_t_8 = 0; (__pyx_v_offset[__pyx_t_8]) = ((__pyx_v_offset[__pyx_t_8]) + __pyx_v_child->elsize); /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":877 * offset[0] += child.itemsize * * if not PyDataType_HASFIELDS(child): # <<<<<<<<<<<<<< * t = child.type_num * if end - f < 5: */ __pyx_t_6 = ((!(PyDataType_HASFIELDS(__pyx_v_child) != 0)) != 0); if (__pyx_t_6) { /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":878 * * if not PyDataType_HASFIELDS(child): * t = child.type_num # <<<<<<<<<<<<<< * if end - f < 5: * raise RuntimeError(u"Format string allocated too short.") */ __pyx_t_4 = __Pyx_PyInt_From_int(__pyx_v_child->type_num); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 878, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_XDECREF_SET(__pyx_v_t, __pyx_t_4); __pyx_t_4 = 0; /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":879 * if not PyDataType_HASFIELDS(child): * t = child.type_num * if end - f < 5: # <<<<<<<<<<<<<< * raise RuntimeError(u"Format string allocated too short.") * */ __pyx_t_6 = (((__pyx_v_end - __pyx_v_f) < 5) != 0); if (unlikely(__pyx_t_6)) { /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":880 * t = child.type_num * if end - f < 5: * raise RuntimeError(u"Format string allocated too short.") # <<<<<<<<<<<<<< * * # Until ticket #99 is fixed, use integers to avoid warnings */ __pyx_t_4 = __Pyx_PyObject_Call(__pyx_builtin_RuntimeError, __pyx_tuple__51, NULL); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 880, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_Raise(__pyx_t_4, 0, 0, 0); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __PYX_ERR(1, 880, __pyx_L1_error) /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":879 * if not PyDataType_HASFIELDS(child): * t = child.type_num * if end - f < 5: # <<<<<<<<<<<<<< * raise RuntimeError(u"Format string allocated too short.") * */ } /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":883 * * # Until ticket #99 is fixed, use integers to avoid warnings * if t == NPY_BYTE: f[0] = 98 #"b" # <<<<<<<<<<<<<< * elif t == NPY_UBYTE: f[0] = 66 #"B" * elif t == NPY_SHORT: f[0] = 104 #"h" */ __pyx_t_4 = __Pyx_PyInt_From_enum__NPY_TYPES(NPY_BYTE); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 883, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_3 = PyObject_RichCompare(__pyx_v_t, __pyx_t_4, Py_EQ); __Pyx_XGOTREF(__pyx_t_3); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 883, __pyx_L1_error) __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_3); if (unlikely(__pyx_t_6 < 0)) __PYX_ERR(1, 883, __pyx_L1_error) __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; if (__pyx_t_6) { (__pyx_v_f[0]) = 98; goto __pyx_L15; } /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":884 * # Until ticket #99 is fixed, use integers to avoid warnings * if t == NPY_BYTE: f[0] = 98 #"b" * elif t == NPY_UBYTE: f[0] = 66 #"B" # <<<<<<<<<<<<<< * elif t == NPY_SHORT: f[0] = 104 #"h" * elif t == NPY_USHORT: f[0] = 72 #"H" */ __pyx_t_3 = __Pyx_PyInt_From_enum__NPY_TYPES(NPY_UBYTE); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 884, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_4 = PyObject_RichCompare(__pyx_v_t, __pyx_t_3, Py_EQ); __Pyx_XGOTREF(__pyx_t_4); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 884, __pyx_L1_error) __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_4); if (unlikely(__pyx_t_6 < 0)) __PYX_ERR(1, 884, __pyx_L1_error) __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; if (__pyx_t_6) { (__pyx_v_f[0]) = 66; goto __pyx_L15; } /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":885 * if t == NPY_BYTE: f[0] = 98 #"b" * elif t == NPY_UBYTE: f[0] = 66 #"B" * elif t == NPY_SHORT: f[0] = 104 #"h" # <<<<<<<<<<<<<< * elif t == NPY_USHORT: f[0] = 72 #"H" * elif t == NPY_INT: f[0] = 105 #"i" */ __pyx_t_4 = __Pyx_PyInt_From_enum__NPY_TYPES(NPY_SHORT); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 885, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_3 = PyObject_RichCompare(__pyx_v_t, __pyx_t_4, Py_EQ); __Pyx_XGOTREF(__pyx_t_3); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 885, __pyx_L1_error) __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_3); if (unlikely(__pyx_t_6 < 0)) __PYX_ERR(1, 885, __pyx_L1_error) __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; if (__pyx_t_6) { (__pyx_v_f[0]) = 0x68; goto __pyx_L15; } /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":886 * elif t == NPY_UBYTE: f[0] = 66 #"B" * elif t == NPY_SHORT: f[0] = 104 #"h" * elif t == NPY_USHORT: f[0] = 72 #"H" # <<<<<<<<<<<<<< * elif t == NPY_INT: f[0] = 105 #"i" * elif t == NPY_UINT: f[0] = 73 #"I" */ __pyx_t_3 = __Pyx_PyInt_From_enum__NPY_TYPES(NPY_USHORT); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 886, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_4 = PyObject_RichCompare(__pyx_v_t, __pyx_t_3, Py_EQ); __Pyx_XGOTREF(__pyx_t_4); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 886, __pyx_L1_error) __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_4); if (unlikely(__pyx_t_6 < 0)) __PYX_ERR(1, 886, __pyx_L1_error) __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; if (__pyx_t_6) { (__pyx_v_f[0]) = 72; goto __pyx_L15; } /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":887 * elif t == NPY_SHORT: f[0] = 104 #"h" * elif t == NPY_USHORT: f[0] = 72 #"H" * elif t == NPY_INT: f[0] = 105 #"i" # <<<<<<<<<<<<<< * elif t == NPY_UINT: f[0] = 73 #"I" * elif t == NPY_LONG: f[0] = 108 #"l" */ __pyx_t_4 = __Pyx_PyInt_From_enum__NPY_TYPES(NPY_INT); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 887, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_3 = PyObject_RichCompare(__pyx_v_t, __pyx_t_4, Py_EQ); __Pyx_XGOTREF(__pyx_t_3); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 887, __pyx_L1_error) __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_3); if (unlikely(__pyx_t_6 < 0)) __PYX_ERR(1, 887, __pyx_L1_error) __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; if (__pyx_t_6) { (__pyx_v_f[0]) = 0x69; goto __pyx_L15; } /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":888 * elif t == NPY_USHORT: f[0] = 72 #"H" * elif t == NPY_INT: f[0] = 105 #"i" * elif t == NPY_UINT: f[0] = 73 #"I" # <<<<<<<<<<<<<< * elif t == NPY_LONG: f[0] = 108 #"l" * elif t == NPY_ULONG: f[0] = 76 #"L" */ __pyx_t_3 = __Pyx_PyInt_From_enum__NPY_TYPES(NPY_UINT); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 888, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_4 = PyObject_RichCompare(__pyx_v_t, __pyx_t_3, Py_EQ); __Pyx_XGOTREF(__pyx_t_4); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 888, __pyx_L1_error) __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_4); if (unlikely(__pyx_t_6 < 0)) __PYX_ERR(1, 888, __pyx_L1_error) __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; if (__pyx_t_6) { (__pyx_v_f[0]) = 73; goto __pyx_L15; } /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":889 * elif t == NPY_INT: f[0] = 105 #"i" * elif t == NPY_UINT: f[0] = 73 #"I" * elif t == NPY_LONG: f[0] = 108 #"l" # <<<<<<<<<<<<<< * elif t == NPY_ULONG: f[0] = 76 #"L" * elif t == NPY_LONGLONG: f[0] = 113 #"q" */ __pyx_t_4 = __Pyx_PyInt_From_enum__NPY_TYPES(NPY_LONG); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 889, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_3 = PyObject_RichCompare(__pyx_v_t, __pyx_t_4, Py_EQ); __Pyx_XGOTREF(__pyx_t_3); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 889, __pyx_L1_error) __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_3); if (unlikely(__pyx_t_6 < 0)) __PYX_ERR(1, 889, __pyx_L1_error) __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; if (__pyx_t_6) { (__pyx_v_f[0]) = 0x6C; goto __pyx_L15; } /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":890 * elif t == NPY_UINT: f[0] = 73 #"I" * elif t == NPY_LONG: f[0] = 108 #"l" * elif t == NPY_ULONG: f[0] = 76 #"L" # <<<<<<<<<<<<<< * elif t == NPY_LONGLONG: f[0] = 113 #"q" * elif t == NPY_ULONGLONG: f[0] = 81 #"Q" */ __pyx_t_3 = __Pyx_PyInt_From_enum__NPY_TYPES(NPY_ULONG); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 890, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_4 = PyObject_RichCompare(__pyx_v_t, __pyx_t_3, Py_EQ); __Pyx_XGOTREF(__pyx_t_4); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 890, __pyx_L1_error) __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_4); if (unlikely(__pyx_t_6 < 0)) __PYX_ERR(1, 890, __pyx_L1_error) __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; if (__pyx_t_6) { (__pyx_v_f[0]) = 76; goto __pyx_L15; } /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":891 * elif t == NPY_LONG: f[0] = 108 #"l" * elif t == NPY_ULONG: f[0] = 76 #"L" * elif t == NPY_LONGLONG: f[0] = 113 #"q" # <<<<<<<<<<<<<< * elif t == NPY_ULONGLONG: f[0] = 81 #"Q" * elif t == NPY_FLOAT: f[0] = 102 #"f" */ __pyx_t_4 = __Pyx_PyInt_From_enum__NPY_TYPES(NPY_LONGLONG); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 891, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_3 = PyObject_RichCompare(__pyx_v_t, __pyx_t_4, Py_EQ); __Pyx_XGOTREF(__pyx_t_3); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 891, __pyx_L1_error) __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_3); if (unlikely(__pyx_t_6 < 0)) __PYX_ERR(1, 891, __pyx_L1_error) __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; if (__pyx_t_6) { (__pyx_v_f[0]) = 0x71; goto __pyx_L15; } /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":892 * elif t == NPY_ULONG: f[0] = 76 #"L" * elif t == NPY_LONGLONG: f[0] = 113 #"q" * elif t == NPY_ULONGLONG: f[0] = 81 #"Q" # <<<<<<<<<<<<<< * elif t == NPY_FLOAT: f[0] = 102 #"f" * elif t == NPY_DOUBLE: f[0] = 100 #"d" */ __pyx_t_3 = __Pyx_PyInt_From_enum__NPY_TYPES(NPY_ULONGLONG); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 892, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_4 = PyObject_RichCompare(__pyx_v_t, __pyx_t_3, Py_EQ); __Pyx_XGOTREF(__pyx_t_4); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 892, __pyx_L1_error) __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_4); if (unlikely(__pyx_t_6 < 0)) __PYX_ERR(1, 892, __pyx_L1_error) __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; if (__pyx_t_6) { (__pyx_v_f[0]) = 81; goto __pyx_L15; } /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":893 * elif t == NPY_LONGLONG: f[0] = 113 #"q" * elif t == NPY_ULONGLONG: f[0] = 81 #"Q" * elif t == NPY_FLOAT: f[0] = 102 #"f" # <<<<<<<<<<<<<< * elif t == NPY_DOUBLE: f[0] = 100 #"d" * elif t == NPY_LONGDOUBLE: f[0] = 103 #"g" */ __pyx_t_4 = __Pyx_PyInt_From_enum__NPY_TYPES(NPY_FLOAT); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 893, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_3 = PyObject_RichCompare(__pyx_v_t, __pyx_t_4, Py_EQ); __Pyx_XGOTREF(__pyx_t_3); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 893, __pyx_L1_error) __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_3); if (unlikely(__pyx_t_6 < 0)) __PYX_ERR(1, 893, __pyx_L1_error) __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; if (__pyx_t_6) { (__pyx_v_f[0]) = 0x66; goto __pyx_L15; } /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":894 * elif t == NPY_ULONGLONG: f[0] = 81 #"Q" * elif t == NPY_FLOAT: f[0] = 102 #"f" * elif t == NPY_DOUBLE: f[0] = 100 #"d" # <<<<<<<<<<<<<< * elif t == NPY_LONGDOUBLE: f[0] = 103 #"g" * elif t == NPY_CFLOAT: f[0] = 90; f[1] = 102; f += 1 # Zf */ __pyx_t_3 = __Pyx_PyInt_From_enum__NPY_TYPES(NPY_DOUBLE); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 894, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_4 = PyObject_RichCompare(__pyx_v_t, __pyx_t_3, Py_EQ); __Pyx_XGOTREF(__pyx_t_4); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 894, __pyx_L1_error) __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_4); if (unlikely(__pyx_t_6 < 0)) __PYX_ERR(1, 894, __pyx_L1_error) __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; if (__pyx_t_6) { (__pyx_v_f[0]) = 0x64; goto __pyx_L15; } /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":895 * elif t == NPY_FLOAT: f[0] = 102 #"f" * elif t == NPY_DOUBLE: f[0] = 100 #"d" * elif t == NPY_LONGDOUBLE: f[0] = 103 #"g" # <<<<<<<<<<<<<< * elif t == NPY_CFLOAT: f[0] = 90; f[1] = 102; f += 1 # Zf * elif t == NPY_CDOUBLE: f[0] = 90; f[1] = 100; f += 1 # Zd */ __pyx_t_4 = __Pyx_PyInt_From_enum__NPY_TYPES(NPY_LONGDOUBLE); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 895, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_3 = PyObject_RichCompare(__pyx_v_t, __pyx_t_4, Py_EQ); __Pyx_XGOTREF(__pyx_t_3); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 895, __pyx_L1_error) __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_3); if (unlikely(__pyx_t_6 < 0)) __PYX_ERR(1, 895, __pyx_L1_error) __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; if (__pyx_t_6) { (__pyx_v_f[0]) = 0x67; goto __pyx_L15; } /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":896 * elif t == NPY_DOUBLE: f[0] = 100 #"d" * elif t == NPY_LONGDOUBLE: f[0] = 103 #"g" * elif t == NPY_CFLOAT: f[0] = 90; f[1] = 102; f += 1 # Zf # <<<<<<<<<<<<<< * elif t == NPY_CDOUBLE: f[0] = 90; f[1] = 100; f += 1 # Zd * elif t == NPY_CLONGDOUBLE: f[0] = 90; f[1] = 103; f += 1 # Zg */ __pyx_t_3 = __Pyx_PyInt_From_enum__NPY_TYPES(NPY_CFLOAT); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 896, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_4 = PyObject_RichCompare(__pyx_v_t, __pyx_t_3, Py_EQ); __Pyx_XGOTREF(__pyx_t_4); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 896, __pyx_L1_error) __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_4); if (unlikely(__pyx_t_6 < 0)) __PYX_ERR(1, 896, __pyx_L1_error) __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; if (__pyx_t_6) { (__pyx_v_f[0]) = 90; (__pyx_v_f[1]) = 0x66; __pyx_v_f = (__pyx_v_f + 1); goto __pyx_L15; } /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":897 * elif t == NPY_LONGDOUBLE: f[0] = 103 #"g" * elif t == NPY_CFLOAT: f[0] = 90; f[1] = 102; f += 1 # Zf * elif t == NPY_CDOUBLE: f[0] = 90; f[1] = 100; f += 1 # Zd # <<<<<<<<<<<<<< * elif t == NPY_CLONGDOUBLE: f[0] = 90; f[1] = 103; f += 1 # Zg * elif t == NPY_OBJECT: f[0] = 79 #"O" */ __pyx_t_4 = __Pyx_PyInt_From_enum__NPY_TYPES(NPY_CDOUBLE); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 897, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_3 = PyObject_RichCompare(__pyx_v_t, __pyx_t_4, Py_EQ); __Pyx_XGOTREF(__pyx_t_3); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 897, __pyx_L1_error) __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_3); if (unlikely(__pyx_t_6 < 0)) __PYX_ERR(1, 897, __pyx_L1_error) __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; if (__pyx_t_6) { (__pyx_v_f[0]) = 90; (__pyx_v_f[1]) = 0x64; __pyx_v_f = (__pyx_v_f + 1); goto __pyx_L15; } /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":898 * elif t == NPY_CFLOAT: f[0] = 90; f[1] = 102; f += 1 # Zf * elif t == NPY_CDOUBLE: f[0] = 90; f[1] = 100; f += 1 # Zd * elif t == NPY_CLONGDOUBLE: f[0] = 90; f[1] = 103; f += 1 # Zg # <<<<<<<<<<<<<< * elif t == NPY_OBJECT: f[0] = 79 #"O" * else: */ __pyx_t_3 = __Pyx_PyInt_From_enum__NPY_TYPES(NPY_CLONGDOUBLE); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 898, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_4 = PyObject_RichCompare(__pyx_v_t, __pyx_t_3, Py_EQ); __Pyx_XGOTREF(__pyx_t_4); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 898, __pyx_L1_error) __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_4); if (unlikely(__pyx_t_6 < 0)) __PYX_ERR(1, 898, __pyx_L1_error) __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; if (__pyx_t_6) { (__pyx_v_f[0]) = 90; (__pyx_v_f[1]) = 0x67; __pyx_v_f = (__pyx_v_f + 1); goto __pyx_L15; } /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":899 * elif t == NPY_CDOUBLE: f[0] = 90; f[1] = 100; f += 1 # Zd * elif t == NPY_CLONGDOUBLE: f[0] = 90; f[1] = 103; f += 1 # Zg * elif t == NPY_OBJECT: f[0] = 79 #"O" # <<<<<<<<<<<<<< * else: * raise ValueError(u"unknown dtype code in numpy.pxd (%d)" % t) */ __pyx_t_4 = __Pyx_PyInt_From_enum__NPY_TYPES(NPY_OBJECT); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 899, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __pyx_t_3 = PyObject_RichCompare(__pyx_v_t, __pyx_t_4, Py_EQ); __Pyx_XGOTREF(__pyx_t_3); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 899, __pyx_L1_error) __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_6 = __Pyx_PyObject_IsTrue(__pyx_t_3); if (unlikely(__pyx_t_6 < 0)) __PYX_ERR(1, 899, __pyx_L1_error) __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; if (likely(__pyx_t_6)) { (__pyx_v_f[0]) = 79; goto __pyx_L15; } /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":901 * elif t == NPY_OBJECT: f[0] = 79 #"O" * else: * raise ValueError(u"unknown dtype code in numpy.pxd (%d)" % t) # <<<<<<<<<<<<<< * f += 1 * else: */ /*else*/ { __pyx_t_3 = __Pyx_PyUnicode_FormatSafe(__pyx_kp_u_unknown_dtype_code_in_numpy_pxd, __pyx_v_t); if (unlikely(!__pyx_t_3)) __PYX_ERR(1, 901, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_3); __pyx_t_4 = __Pyx_PyObject_CallOneArg(__pyx_builtin_ValueError, __pyx_t_3); if (unlikely(!__pyx_t_4)) __PYX_ERR(1, 901, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_4); __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __Pyx_Raise(__pyx_t_4, 0, 0, 0); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __PYX_ERR(1, 901, __pyx_L1_error) } __pyx_L15:; /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":902 * else: * raise ValueError(u"unknown dtype code in numpy.pxd (%d)" % t) * f += 1 # <<<<<<<<<<<<<< * else: * # Cython ignores struct boundary information ("T{...}"), */ __pyx_v_f = (__pyx_v_f + 1); /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":877 * offset[0] += child.itemsize * * if not PyDataType_HASFIELDS(child): # <<<<<<<<<<<<<< * t = child.type_num * if end - f < 5: */ goto __pyx_L13; } /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":906 * # Cython ignores struct boundary information ("T{...}"), * # so don't output it * f = _util_dtypestring(child, f, end, offset) # <<<<<<<<<<<<<< * return f * */ /*else*/ { __pyx_t_9 = __pyx_f_5numpy__util_dtypestring(__pyx_v_child, __pyx_v_f, __pyx_v_end, __pyx_v_offset); if (unlikely(__pyx_t_9 == ((char *)NULL))) __PYX_ERR(1, 906, __pyx_L1_error) __pyx_v_f = __pyx_t_9; } __pyx_L13:; /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":851 * cdef tuple fields * * for childname in descr.names: # <<<<<<<<<<<<<< * fields = descr.fields[childname] * child, new_offset = fields */ } __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":907 * # so don't output it * f = _util_dtypestring(child, f, end, offset) * return f # <<<<<<<<<<<<<< * * */ __pyx_r = __pyx_v_f; goto __pyx_L0; /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":842 * return () * * cdef inline char* _util_dtypestring(dtype descr, char* f, char* end, int* offset) except NULL: # <<<<<<<<<<<<<< * # Recursive utility function used in __getbuffer__ to get format * # string. The new location in the format string is returned. */ /* function exit code */ __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_3); __Pyx_XDECREF(__pyx_t_4); __Pyx_AddTraceback("numpy._util_dtypestring", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = NULL; __pyx_L0:; __Pyx_XDECREF((PyObject *)__pyx_v_child); __Pyx_XDECREF(__pyx_v_fields); __Pyx_XDECREF(__pyx_v_childname); __Pyx_XDECREF(__pyx_v_new_offset); __Pyx_XDECREF(__pyx_v_t); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1022 * int _import_umath() except -1 * * cdef inline void set_array_base(ndarray arr, object base): # <<<<<<<<<<<<<< * Py_INCREF(base) # important to do this before stealing the reference below! * PyArray_SetBaseObject(arr, base) */ static CYTHON_INLINE void __pyx_f_5numpy_set_array_base(PyArrayObject *__pyx_v_arr, PyObject *__pyx_v_base) { __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("set_array_base", 0); /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1023 * * cdef inline void set_array_base(ndarray arr, object base): * Py_INCREF(base) # important to do this before stealing the reference below! # <<<<<<<<<<<<<< * PyArray_SetBaseObject(arr, base) * */ Py_INCREF(__pyx_v_base); /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1024 * cdef inline void set_array_base(ndarray arr, object base): * Py_INCREF(base) # important to do this before stealing the reference below! * PyArray_SetBaseObject(arr, base) # <<<<<<<<<<<<<< * * cdef inline object get_array_base(ndarray arr): */ (void)(PyArray_SetBaseObject(__pyx_v_arr, __pyx_v_base)); /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1022 * int _import_umath() except -1 * * cdef inline void set_array_base(ndarray arr, object base): # <<<<<<<<<<<<<< * Py_INCREF(base) # important to do this before stealing the reference below! * PyArray_SetBaseObject(arr, base) */ /* function exit code */ __Pyx_RefNannyFinishContext(); } /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1026 * PyArray_SetBaseObject(arr, base) * * cdef inline object get_array_base(ndarray arr): # <<<<<<<<<<<<<< * base = PyArray_BASE(arr) * if base is NULL: */ static CYTHON_INLINE PyObject *__pyx_f_5numpy_get_array_base(PyArrayObject *__pyx_v_arr) { PyObject *__pyx_v_base; PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations int __pyx_t_1; __Pyx_RefNannySetupContext("get_array_base", 0); /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1027 * * cdef inline object get_array_base(ndarray arr): * base = PyArray_BASE(arr) # <<<<<<<<<<<<<< * if base is NULL: * return None */ __pyx_v_base = PyArray_BASE(__pyx_v_arr); /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1028 * cdef inline object get_array_base(ndarray arr): * base = PyArray_BASE(arr) * if base is NULL: # <<<<<<<<<<<<<< * return None * return base */ __pyx_t_1 = ((__pyx_v_base == NULL) != 0); if (__pyx_t_1) { /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1029 * base = PyArray_BASE(arr) * if base is NULL: * return None # <<<<<<<<<<<<<< * return base * */ __Pyx_XDECREF(__pyx_r); __pyx_r = Py_None; __Pyx_INCREF(Py_None); goto __pyx_L0; /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1028 * cdef inline object get_array_base(ndarray arr): * base = PyArray_BASE(arr) * if base is NULL: # <<<<<<<<<<<<<< * return None * return base */ } /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1030 * if base is NULL: * return None * return base # <<<<<<<<<<<<<< * * # Versions of the import_* functions which are more suitable for */ __Pyx_XDECREF(__pyx_r); __Pyx_INCREF(((PyObject *)__pyx_v_base)); __pyx_r = ((PyObject *)__pyx_v_base); goto __pyx_L0; /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1026 * PyArray_SetBaseObject(arr, base) * * cdef inline object get_array_base(ndarray arr): # <<<<<<<<<<<<<< * base = PyArray_BASE(arr) * if base is NULL: */ /* function exit code */ __pyx_L0:; __Pyx_XGIVEREF(__pyx_r); __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1034 * # Versions of the import_* functions which are more suitable for * # Cython code. * cdef inline int import_array() except -1: # <<<<<<<<<<<<<< * try: * _import_array() */ static CYTHON_INLINE int __pyx_f_5numpy_import_array(void) { int __pyx_r; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; int __pyx_t_4; PyObject *__pyx_t_5 = NULL; PyObject *__pyx_t_6 = NULL; PyObject *__pyx_t_7 = NULL; PyObject *__pyx_t_8 = NULL; __Pyx_RefNannySetupContext("import_array", 0); /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1035 * # Cython code. * cdef inline int import_array() except -1: * try: # <<<<<<<<<<<<<< * _import_array() * except Exception: */ { __Pyx_PyThreadState_declare __Pyx_PyThreadState_assign __Pyx_ExceptionSave(&__pyx_t_1, &__pyx_t_2, &__pyx_t_3); __Pyx_XGOTREF(__pyx_t_1); __Pyx_XGOTREF(__pyx_t_2); __Pyx_XGOTREF(__pyx_t_3); /*try:*/ { /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1036 * cdef inline int import_array() except -1: * try: * _import_array() # <<<<<<<<<<<<<< * except Exception: * raise ImportError("numpy.core.multiarray failed to import") */ __pyx_t_4 = _import_array(); if (unlikely(__pyx_t_4 == ((int)-1))) __PYX_ERR(1, 1036, __pyx_L3_error) /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1035 * # Cython code. * cdef inline int import_array() except -1: * try: # <<<<<<<<<<<<<< * _import_array() * except Exception: */ } __Pyx_XDECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_XDECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_XDECREF(__pyx_t_3); __pyx_t_3 = 0; goto __pyx_L8_try_end; __pyx_L3_error:; /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1037 * try: * _import_array() * except Exception: # <<<<<<<<<<<<<< * raise ImportError("numpy.core.multiarray failed to import") * */ __pyx_t_4 = __Pyx_PyErr_ExceptionMatches(((PyObject *)(&((PyTypeObject*)PyExc_Exception)[0]))); if (__pyx_t_4) { __Pyx_AddTraceback("numpy.import_array", __pyx_clineno, __pyx_lineno, __pyx_filename); if (__Pyx_GetException(&__pyx_t_5, &__pyx_t_6, &__pyx_t_7) < 0) __PYX_ERR(1, 1037, __pyx_L5_except_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_GOTREF(__pyx_t_6); __Pyx_GOTREF(__pyx_t_7); /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1038 * _import_array() * except Exception: * raise ImportError("numpy.core.multiarray failed to import") # <<<<<<<<<<<<<< * * cdef inline int import_umath() except -1: */ __pyx_t_8 = __Pyx_PyObject_Call(__pyx_builtin_ImportError, __pyx_tuple__52, NULL); if (unlikely(!__pyx_t_8)) __PYX_ERR(1, 1038, __pyx_L5_except_error) __Pyx_GOTREF(__pyx_t_8); __Pyx_Raise(__pyx_t_8, 0, 0, 0); __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; __PYX_ERR(1, 1038, __pyx_L5_except_error) } goto __pyx_L5_except_error; __pyx_L5_except_error:; /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1035 * # Cython code. * cdef inline int import_array() except -1: * try: # <<<<<<<<<<<<<< * _import_array() * except Exception: */ __Pyx_XGIVEREF(__pyx_t_1); __Pyx_XGIVEREF(__pyx_t_2); __Pyx_XGIVEREF(__pyx_t_3); __Pyx_ExceptionReset(__pyx_t_1, __pyx_t_2, __pyx_t_3); goto __pyx_L1_error; __pyx_L8_try_end:; } /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1034 * # Versions of the import_* functions which are more suitable for * # Cython code. * cdef inline int import_array() except -1: # <<<<<<<<<<<<<< * try: * _import_array() */ /* function exit code */ __pyx_r = 0; goto __pyx_L0; __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_5); __Pyx_XDECREF(__pyx_t_6); __Pyx_XDECREF(__pyx_t_7); __Pyx_XDECREF(__pyx_t_8); __Pyx_AddTraceback("numpy.import_array", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = -1; __pyx_L0:; __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1040 * raise ImportError("numpy.core.multiarray failed to import") * * cdef inline int import_umath() except -1: # <<<<<<<<<<<<<< * try: * _import_umath() */ static CYTHON_INLINE int __pyx_f_5numpy_import_umath(void) { int __pyx_r; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; int __pyx_t_4; PyObject *__pyx_t_5 = NULL; PyObject *__pyx_t_6 = NULL; PyObject *__pyx_t_7 = NULL; PyObject *__pyx_t_8 = NULL; __Pyx_RefNannySetupContext("import_umath", 0); /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1041 * * cdef inline int import_umath() except -1: * try: # <<<<<<<<<<<<<< * _import_umath() * except Exception: */ { __Pyx_PyThreadState_declare __Pyx_PyThreadState_assign __Pyx_ExceptionSave(&__pyx_t_1, &__pyx_t_2, &__pyx_t_3); __Pyx_XGOTREF(__pyx_t_1); __Pyx_XGOTREF(__pyx_t_2); __Pyx_XGOTREF(__pyx_t_3); /*try:*/ { /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1042 * cdef inline int import_umath() except -1: * try: * _import_umath() # <<<<<<<<<<<<<< * except Exception: * raise ImportError("numpy.core.umath failed to import") */ __pyx_t_4 = _import_umath(); if (unlikely(__pyx_t_4 == ((int)-1))) __PYX_ERR(1, 1042, __pyx_L3_error) /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1041 * * cdef inline int import_umath() except -1: * try: # <<<<<<<<<<<<<< * _import_umath() * except Exception: */ } __Pyx_XDECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_XDECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_XDECREF(__pyx_t_3); __pyx_t_3 = 0; goto __pyx_L8_try_end; __pyx_L3_error:; /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1043 * try: * _import_umath() * except Exception: # <<<<<<<<<<<<<< * raise ImportError("numpy.core.umath failed to import") * */ __pyx_t_4 = __Pyx_PyErr_ExceptionMatches(((PyObject *)(&((PyTypeObject*)PyExc_Exception)[0]))); if (__pyx_t_4) { __Pyx_AddTraceback("numpy.import_umath", __pyx_clineno, __pyx_lineno, __pyx_filename); if (__Pyx_GetException(&__pyx_t_5, &__pyx_t_6, &__pyx_t_7) < 0) __PYX_ERR(1, 1043, __pyx_L5_except_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_GOTREF(__pyx_t_6); __Pyx_GOTREF(__pyx_t_7); /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1044 * _import_umath() * except Exception: * raise ImportError("numpy.core.umath failed to import") # <<<<<<<<<<<<<< * * cdef inline int import_ufunc() except -1: */ __pyx_t_8 = __Pyx_PyObject_Call(__pyx_builtin_ImportError, __pyx_tuple__53, NULL); if (unlikely(!__pyx_t_8)) __PYX_ERR(1, 1044, __pyx_L5_except_error) __Pyx_GOTREF(__pyx_t_8); __Pyx_Raise(__pyx_t_8, 0, 0, 0); __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; __PYX_ERR(1, 1044, __pyx_L5_except_error) } goto __pyx_L5_except_error; __pyx_L5_except_error:; /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1041 * * cdef inline int import_umath() except -1: * try: # <<<<<<<<<<<<<< * _import_umath() * except Exception: */ __Pyx_XGIVEREF(__pyx_t_1); __Pyx_XGIVEREF(__pyx_t_2); __Pyx_XGIVEREF(__pyx_t_3); __Pyx_ExceptionReset(__pyx_t_1, __pyx_t_2, __pyx_t_3); goto __pyx_L1_error; __pyx_L8_try_end:; } /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1040 * raise ImportError("numpy.core.multiarray failed to import") * * cdef inline int import_umath() except -1: # <<<<<<<<<<<<<< * try: * _import_umath() */ /* function exit code */ __pyx_r = 0; goto __pyx_L0; __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_5); __Pyx_XDECREF(__pyx_t_6); __Pyx_XDECREF(__pyx_t_7); __Pyx_XDECREF(__pyx_t_8); __Pyx_AddTraceback("numpy.import_umath", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = -1; __pyx_L0:; __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1046 * raise ImportError("numpy.core.umath failed to import") * * cdef inline int import_ufunc() except -1: # <<<<<<<<<<<<<< * try: * _import_umath() */ static CYTHON_INLINE int __pyx_f_5numpy_import_ufunc(void) { int __pyx_r; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; PyObject *__pyx_t_3 = NULL; int __pyx_t_4; PyObject *__pyx_t_5 = NULL; PyObject *__pyx_t_6 = NULL; PyObject *__pyx_t_7 = NULL; PyObject *__pyx_t_8 = NULL; __Pyx_RefNannySetupContext("import_ufunc", 0); /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1047 * * cdef inline int import_ufunc() except -1: * try: # <<<<<<<<<<<<<< * _import_umath() * except Exception: */ { __Pyx_PyThreadState_declare __Pyx_PyThreadState_assign __Pyx_ExceptionSave(&__pyx_t_1, &__pyx_t_2, &__pyx_t_3); __Pyx_XGOTREF(__pyx_t_1); __Pyx_XGOTREF(__pyx_t_2); __Pyx_XGOTREF(__pyx_t_3); /*try:*/ { /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1048 * cdef inline int import_ufunc() except -1: * try: * _import_umath() # <<<<<<<<<<<<<< * except Exception: * raise ImportError("numpy.core.umath failed to import") */ __pyx_t_4 = _import_umath(); if (unlikely(__pyx_t_4 == ((int)-1))) __PYX_ERR(1, 1048, __pyx_L3_error) /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1047 * * cdef inline int import_ufunc() except -1: * try: # <<<<<<<<<<<<<< * _import_umath() * except Exception: */ } __Pyx_XDECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_XDECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_XDECREF(__pyx_t_3); __pyx_t_3 = 0; goto __pyx_L8_try_end; __pyx_L3_error:; /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1049 * try: * _import_umath() * except Exception: # <<<<<<<<<<<<<< * raise ImportError("numpy.core.umath failed to import") */ __pyx_t_4 = __Pyx_PyErr_ExceptionMatches(((PyObject *)(&((PyTypeObject*)PyExc_Exception)[0]))); if (__pyx_t_4) { __Pyx_AddTraceback("numpy.import_ufunc", __pyx_clineno, __pyx_lineno, __pyx_filename); if (__Pyx_GetException(&__pyx_t_5, &__pyx_t_6, &__pyx_t_7) < 0) __PYX_ERR(1, 1049, __pyx_L5_except_error) __Pyx_GOTREF(__pyx_t_5); __Pyx_GOTREF(__pyx_t_6); __Pyx_GOTREF(__pyx_t_7); /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1050 * _import_umath() * except Exception: * raise ImportError("numpy.core.umath failed to import") # <<<<<<<<<<<<<< */ __pyx_t_8 = __Pyx_PyObject_Call(__pyx_builtin_ImportError, __pyx_tuple__53, NULL); if (unlikely(!__pyx_t_8)) __PYX_ERR(1, 1050, __pyx_L5_except_error) __Pyx_GOTREF(__pyx_t_8); __Pyx_Raise(__pyx_t_8, 0, 0, 0); __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0; __PYX_ERR(1, 1050, __pyx_L5_except_error) } goto __pyx_L5_except_error; __pyx_L5_except_error:; /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1047 * * cdef inline int import_ufunc() except -1: * try: # <<<<<<<<<<<<<< * _import_umath() * except Exception: */ __Pyx_XGIVEREF(__pyx_t_1); __Pyx_XGIVEREF(__pyx_t_2); __Pyx_XGIVEREF(__pyx_t_3); __Pyx_ExceptionReset(__pyx_t_1, __pyx_t_2, __pyx_t_3); goto __pyx_L1_error; __pyx_L8_try_end:; } /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1046 * raise ImportError("numpy.core.umath failed to import") * * cdef inline int import_ufunc() except -1: # <<<<<<<<<<<<<< * try: * _import_umath() */ /* function exit code */ __pyx_r = 0; goto __pyx_L0; __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_5); __Pyx_XDECREF(__pyx_t_6); __Pyx_XDECREF(__pyx_t_7); __Pyx_XDECREF(__pyx_t_8); __Pyx_AddTraceback("numpy.import_ufunc", __pyx_clineno, __pyx_lineno, __pyx_filename); __pyx_r = -1; __pyx_L0:; __Pyx_RefNannyFinishContext(); return __pyx_r; } /* "common.pxd":77 * cdef double kahan_sum(double *darr, np.npy_intp n) * * cdef inline double uint64_to_double(uint64_t rnd) nogil: # <<<<<<<<<<<<<< * return (rnd >> 11) * (1.0 / 9007199254740992.0) * */ static CYTHON_INLINE double __pyx_f_5numpy_6random_6common_uint64_to_double(uint64_t __pyx_v_rnd) { double __pyx_r; /* "common.pxd":78 * * cdef inline double uint64_to_double(uint64_t rnd) nogil: * return (rnd >> 11) * (1.0 / 9007199254740992.0) # <<<<<<<<<<<<<< * * cdef object double_fill(void *func, bitgen_t *state, object size, object lock, object out) */ __pyx_r = ((__pyx_v_rnd >> 11) * (1.0 / 9007199254740992.0)); goto __pyx_L0; /* "common.pxd":77 * cdef double kahan_sum(double *darr, np.npy_intp n) * * cdef inline double uint64_to_double(uint64_t rnd) nogil: # <<<<<<<<<<<<<< * return (rnd >> 11) * (1.0 / 9007199254740992.0) * */ /* function exit code */ __pyx_L0:; return __pyx_r; } /* "bounded_integers.pxd":9 * from .common cimport bitgen_t * * cdef inline uint64_t _gen_mask(uint64_t max_val) nogil: # <<<<<<<<<<<<<< * """Mask generator for use in bounded random numbers""" * # Smallest bit mask >= max */ static CYTHON_INLINE uint64_t __pyx_f_5numpy_6random_16bounded_integers__gen_mask(uint64_t __pyx_v_max_val) { uint64_t __pyx_v_mask; uint64_t __pyx_r; /* "bounded_integers.pxd":12 * """Mask generator for use in bounded random numbers""" * # Smallest bit mask >= max * cdef uint64_t mask = max_val # <<<<<<<<<<<<<< * mask |= mask >> 1 * mask |= mask >> 2 */ __pyx_v_mask = __pyx_v_max_val; /* "bounded_integers.pxd":13 * # Smallest bit mask >= max * cdef uint64_t mask = max_val * mask |= mask >> 1 # <<<<<<<<<<<<<< * mask |= mask >> 2 * mask |= mask >> 4 */ __pyx_v_mask = (__pyx_v_mask | (__pyx_v_mask >> 1)); /* "bounded_integers.pxd":14 * cdef uint64_t mask = max_val * mask |= mask >> 1 * mask |= mask >> 2 # <<<<<<<<<<<<<< * mask |= mask >> 4 * mask |= mask >> 8 */ __pyx_v_mask = (__pyx_v_mask | (__pyx_v_mask >> 2)); /* "bounded_integers.pxd":15 * mask |= mask >> 1 * mask |= mask >> 2 * mask |= mask >> 4 # <<<<<<<<<<<<<< * mask |= mask >> 8 * mask |= mask >> 16 */ __pyx_v_mask = (__pyx_v_mask | (__pyx_v_mask >> 4)); /* "bounded_integers.pxd":16 * mask |= mask >> 2 * mask |= mask >> 4 * mask |= mask >> 8 # <<<<<<<<<<<<<< * mask |= mask >> 16 * mask |= mask >> 32 */ __pyx_v_mask = (__pyx_v_mask | (__pyx_v_mask >> 8)); /* "bounded_integers.pxd":17 * mask |= mask >> 4 * mask |= mask >> 8 * mask |= mask >> 16 # <<<<<<<<<<<<<< * mask |= mask >> 32 * return mask */ __pyx_v_mask = (__pyx_v_mask | (__pyx_v_mask >> 16)); /* "bounded_integers.pxd":18 * mask |= mask >> 8 * mask |= mask >> 16 * mask |= mask >> 32 # <<<<<<<<<<<<<< * return mask * */ __pyx_v_mask = (__pyx_v_mask | (__pyx_v_mask >> 32)); /* "bounded_integers.pxd":19 * mask |= mask >> 16 * mask |= mask >> 32 * return mask # <<<<<<<<<<<<<< * * cdef object _rand_uint64(object low, object high, object size, bint use_masked, bint closed, bitgen_t *state, object lock) */ __pyx_r = __pyx_v_mask; goto __pyx_L0; /* "bounded_integers.pxd":9 * from .common cimport bitgen_t * * cdef inline uint64_t _gen_mask(uint64_t max_val) nogil: # <<<<<<<<<<<<<< * """Mask generator for use in bounded random numbers""" * # Smallest bit mask >= max */ /* function exit code */ __pyx_L0:; return __pyx_r; } static struct __pyx_vtabstruct_5numpy_6random_6mtrand_RandomState __pyx_vtable_5numpy_6random_6mtrand_RandomState; static PyObject *__pyx_tp_new_5numpy_6random_6mtrand_RandomState(PyTypeObject *t, CYTHON_UNUSED PyObject *a, CYTHON_UNUSED PyObject *k) { struct __pyx_obj_5numpy_6random_6mtrand_RandomState *p; PyObject *o; if (likely((t->tp_flags & Py_TPFLAGS_IS_ABSTRACT) == 0)) { o = (*t->tp_alloc)(t, 0); } else { o = (PyObject *) PyBaseObject_Type.tp_new(t, __pyx_empty_tuple, 0); } if (unlikely(!o)) return 0; p = ((struct __pyx_obj_5numpy_6random_6mtrand_RandomState *)o); p->__pyx_vtab = __pyx_vtabptr_5numpy_6random_6mtrand_RandomState; p->_bit_generator = Py_None; Py_INCREF(Py_None); p->lock = Py_None; Py_INCREF(Py_None); return o; } static void __pyx_tp_dealloc_5numpy_6random_6mtrand_RandomState(PyObject *o) { struct __pyx_obj_5numpy_6random_6mtrand_RandomState *p = (struct __pyx_obj_5numpy_6random_6mtrand_RandomState *)o; #if CYTHON_USE_TP_FINALIZE if (unlikely(PyType_HasFeature(Py_TYPE(o), Py_TPFLAGS_HAVE_FINALIZE) && Py_TYPE(o)->tp_finalize) && !_PyGC_FINALIZED(o)) { if (PyObject_CallFinalizerFromDealloc(o)) return; } #endif PyObject_GC_UnTrack(o); Py_CLEAR(p->_bit_generator); Py_CLEAR(p->lock); (*Py_TYPE(o)->tp_free)(o); } static int __pyx_tp_traverse_5numpy_6random_6mtrand_RandomState(PyObject *o, visitproc v, void *a) { int e; struct __pyx_obj_5numpy_6random_6mtrand_RandomState *p = (struct __pyx_obj_5numpy_6random_6mtrand_RandomState *)o; if (p->_bit_generator) { e = (*v)(p->_bit_generator, a); if (e) return e; } if (p->lock) { e = (*v)(p->lock, a); if (e) return e; } return 0; } static int __pyx_tp_clear_5numpy_6random_6mtrand_RandomState(PyObject *o) { PyObject* tmp; struct __pyx_obj_5numpy_6random_6mtrand_RandomState *p = (struct __pyx_obj_5numpy_6random_6mtrand_RandomState *)o; tmp = ((PyObject*)p->_bit_generator); p->_bit_generator = Py_None; Py_INCREF(Py_None); Py_XDECREF(tmp); tmp = ((PyObject*)p->lock); p->lock = Py_None; Py_INCREF(Py_None); Py_XDECREF(tmp); return 0; } static PyObject *__pyx_getprop_5numpy_6random_6mtrand_11RandomState__bit_generator(PyObject *o, CYTHON_UNUSED void *x) { return __pyx_pw_5numpy_6random_6mtrand_11RandomState_14_bit_generator_1__get__(o); } static int __pyx_setprop_5numpy_6random_6mtrand_11RandomState__bit_generator(PyObject *o, PyObject *v, CYTHON_UNUSED void *x) { if (v) { return __pyx_pw_5numpy_6random_6mtrand_11RandomState_14_bit_generator_3__set__(o, v); } else { return __pyx_pw_5numpy_6random_6mtrand_11RandomState_14_bit_generator_5__del__(o); } } static PyMethodDef __pyx_methods_5numpy_6random_6mtrand_RandomState[] = { {"__getstate__", (PyCFunction)__pyx_pw_5numpy_6random_6mtrand_11RandomState_7__getstate__, METH_NOARGS, 0}, {"__setstate__", (PyCFunction)__pyx_pw_5numpy_6random_6mtrand_11RandomState_9__setstate__, METH_O, 0}, {"__reduce__", (PyCFunction)__pyx_pw_5numpy_6random_6mtrand_11RandomState_11__reduce__, METH_NOARGS, 0}, {"seed", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_5numpy_6random_6mtrand_11RandomState_13seed, METH_VARARGS|METH_KEYWORDS, __pyx_doc_5numpy_6random_6mtrand_11RandomState_12seed}, {"get_state", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_5numpy_6random_6mtrand_11RandomState_15get_state, METH_VARARGS|METH_KEYWORDS, __pyx_doc_5numpy_6random_6mtrand_11RandomState_14get_state}, {"set_state", (PyCFunction)__pyx_pw_5numpy_6random_6mtrand_11RandomState_17set_state, METH_O, __pyx_doc_5numpy_6random_6mtrand_11RandomState_16set_state}, {"random_sample", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_5numpy_6random_6mtrand_11RandomState_19random_sample, METH_VARARGS|METH_KEYWORDS, __pyx_doc_5numpy_6random_6mtrand_11RandomState_18random_sample}, {"random", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_5numpy_6random_6mtrand_11RandomState_21random, METH_VARARGS|METH_KEYWORDS, __pyx_doc_5numpy_6random_6mtrand_11RandomState_20random}, {"beta", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_5numpy_6random_6mtrand_11RandomState_23beta, METH_VARARGS|METH_KEYWORDS, __pyx_doc_5numpy_6random_6mtrand_11RandomState_22beta}, {"exponential", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_5numpy_6random_6mtrand_11RandomState_25exponential, METH_VARARGS|METH_KEYWORDS, __pyx_doc_5numpy_6random_6mtrand_11RandomState_24exponential}, {"standard_exponential", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_5numpy_6random_6mtrand_11RandomState_27standard_exponential, METH_VARARGS|METH_KEYWORDS, __pyx_doc_5numpy_6random_6mtrand_11RandomState_26standard_exponential}, {"tomaxint", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_5numpy_6random_6mtrand_11RandomState_29tomaxint, METH_VARARGS|METH_KEYWORDS, __pyx_doc_5numpy_6random_6mtrand_11RandomState_28tomaxint}, {"randint", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_5numpy_6random_6mtrand_11RandomState_31randint, METH_VARARGS|METH_KEYWORDS, __pyx_doc_5numpy_6random_6mtrand_11RandomState_30randint}, {"bytes", (PyCFunction)__pyx_pw_5numpy_6random_6mtrand_11RandomState_33bytes, METH_O, __pyx_doc_5numpy_6random_6mtrand_11RandomState_32bytes}, {"choice", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_5numpy_6random_6mtrand_11RandomState_35choice, METH_VARARGS|METH_KEYWORDS, __pyx_doc_5numpy_6random_6mtrand_11RandomState_34choice}, {"uniform", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_5numpy_6random_6mtrand_11RandomState_37uniform, METH_VARARGS|METH_KEYWORDS, __pyx_doc_5numpy_6random_6mtrand_11RandomState_36uniform}, {"rand", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_5numpy_6random_6mtrand_11RandomState_39rand, METH_VARARGS|METH_KEYWORDS, __pyx_doc_5numpy_6random_6mtrand_11RandomState_38rand}, {"randn", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_5numpy_6random_6mtrand_11RandomState_41randn, METH_VARARGS|METH_KEYWORDS, __pyx_doc_5numpy_6random_6mtrand_11RandomState_40randn}, {"random_integers", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_5numpy_6random_6mtrand_11RandomState_43random_integers, METH_VARARGS|METH_KEYWORDS, __pyx_doc_5numpy_6random_6mtrand_11RandomState_42random_integers}, {"standard_normal", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_5numpy_6random_6mtrand_11RandomState_45standard_normal, METH_VARARGS|METH_KEYWORDS, __pyx_doc_5numpy_6random_6mtrand_11RandomState_44standard_normal}, {"normal", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_5numpy_6random_6mtrand_11RandomState_47normal, METH_VARARGS|METH_KEYWORDS, __pyx_doc_5numpy_6random_6mtrand_11RandomState_46normal}, {"standard_gamma", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_5numpy_6random_6mtrand_11RandomState_49standard_gamma, METH_VARARGS|METH_KEYWORDS, __pyx_doc_5numpy_6random_6mtrand_11RandomState_48standard_gamma}, {"gamma", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_5numpy_6random_6mtrand_11RandomState_51gamma, METH_VARARGS|METH_KEYWORDS, __pyx_doc_5numpy_6random_6mtrand_11RandomState_50gamma}, {"f", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_5numpy_6random_6mtrand_11RandomState_53f, METH_VARARGS|METH_KEYWORDS, __pyx_doc_5numpy_6random_6mtrand_11RandomState_52f}, {"noncentral_f", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_5numpy_6random_6mtrand_11RandomState_55noncentral_f, METH_VARARGS|METH_KEYWORDS, __pyx_doc_5numpy_6random_6mtrand_11RandomState_54noncentral_f}, {"chisquare", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_5numpy_6random_6mtrand_11RandomState_57chisquare, METH_VARARGS|METH_KEYWORDS, __pyx_doc_5numpy_6random_6mtrand_11RandomState_56chisquare}, {"noncentral_chisquare", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_5numpy_6random_6mtrand_11RandomState_59noncentral_chisquare, METH_VARARGS|METH_KEYWORDS, __pyx_doc_5numpy_6random_6mtrand_11RandomState_58noncentral_chisquare}, {"standard_cauchy", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_5numpy_6random_6mtrand_11RandomState_61standard_cauchy, METH_VARARGS|METH_KEYWORDS, __pyx_doc_5numpy_6random_6mtrand_11RandomState_60standard_cauchy}, {"standard_t", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_5numpy_6random_6mtrand_11RandomState_63standard_t, METH_VARARGS|METH_KEYWORDS, __pyx_doc_5numpy_6random_6mtrand_11RandomState_62standard_t}, {"vonmises", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_5numpy_6random_6mtrand_11RandomState_65vonmises, METH_VARARGS|METH_KEYWORDS, __pyx_doc_5numpy_6random_6mtrand_11RandomState_64vonmises}, {"pareto", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_5numpy_6random_6mtrand_11RandomState_67pareto, METH_VARARGS|METH_KEYWORDS, __pyx_doc_5numpy_6random_6mtrand_11RandomState_66pareto}, {"weibull", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_5numpy_6random_6mtrand_11RandomState_69weibull, METH_VARARGS|METH_KEYWORDS, __pyx_doc_5numpy_6random_6mtrand_11RandomState_68weibull}, {"power", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_5numpy_6random_6mtrand_11RandomState_71power, METH_VARARGS|METH_KEYWORDS, __pyx_doc_5numpy_6random_6mtrand_11RandomState_70power}, {"laplace", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_5numpy_6random_6mtrand_11RandomState_73laplace, METH_VARARGS|METH_KEYWORDS, __pyx_doc_5numpy_6random_6mtrand_11RandomState_72laplace}, {"gumbel", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_5numpy_6random_6mtrand_11RandomState_75gumbel, METH_VARARGS|METH_KEYWORDS, __pyx_doc_5numpy_6random_6mtrand_11RandomState_74gumbel}, {"logistic", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_5numpy_6random_6mtrand_11RandomState_77logistic, METH_VARARGS|METH_KEYWORDS, __pyx_doc_5numpy_6random_6mtrand_11RandomState_76logistic}, {"lognormal", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_5numpy_6random_6mtrand_11RandomState_79lognormal, METH_VARARGS|METH_KEYWORDS, __pyx_doc_5numpy_6random_6mtrand_11RandomState_78lognormal}, {"rayleigh", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_5numpy_6random_6mtrand_11RandomState_81rayleigh, METH_VARARGS|METH_KEYWORDS, __pyx_doc_5numpy_6random_6mtrand_11RandomState_80rayleigh}, {"wald", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_5numpy_6random_6mtrand_11RandomState_83wald, METH_VARARGS|METH_KEYWORDS, __pyx_doc_5numpy_6random_6mtrand_11RandomState_82wald}, {"triangular", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_5numpy_6random_6mtrand_11RandomState_85triangular, METH_VARARGS|METH_KEYWORDS, __pyx_doc_5numpy_6random_6mtrand_11RandomState_84triangular}, {"binomial", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_5numpy_6random_6mtrand_11RandomState_87binomial, METH_VARARGS|METH_KEYWORDS, __pyx_doc_5numpy_6random_6mtrand_11RandomState_86binomial}, {"negative_binomial", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_5numpy_6random_6mtrand_11RandomState_89negative_binomial, METH_VARARGS|METH_KEYWORDS, __pyx_doc_5numpy_6random_6mtrand_11RandomState_88negative_binomial}, {"poisson", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_5numpy_6random_6mtrand_11RandomState_91poisson, METH_VARARGS|METH_KEYWORDS, __pyx_doc_5numpy_6random_6mtrand_11RandomState_90poisson}, {"zipf", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_5numpy_6random_6mtrand_11RandomState_93zipf, METH_VARARGS|METH_KEYWORDS, __pyx_doc_5numpy_6random_6mtrand_11RandomState_92zipf}, {"geometric", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_5numpy_6random_6mtrand_11RandomState_95geometric, METH_VARARGS|METH_KEYWORDS, __pyx_doc_5numpy_6random_6mtrand_11RandomState_94geometric}, {"hypergeometric", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_5numpy_6random_6mtrand_11RandomState_97hypergeometric, METH_VARARGS|METH_KEYWORDS, __pyx_doc_5numpy_6random_6mtrand_11RandomState_96hypergeometric}, {"logseries", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_5numpy_6random_6mtrand_11RandomState_99logseries, METH_VARARGS|METH_KEYWORDS, __pyx_doc_5numpy_6random_6mtrand_11RandomState_98logseries}, {"multivariate_normal", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_5numpy_6random_6mtrand_11RandomState_101multivariate_normal, METH_VARARGS|METH_KEYWORDS, __pyx_doc_5numpy_6random_6mtrand_11RandomState_100multivariate_normal}, {"multinomial", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_5numpy_6random_6mtrand_11RandomState_103multinomial, METH_VARARGS|METH_KEYWORDS, __pyx_doc_5numpy_6random_6mtrand_11RandomState_102multinomial}, {"dirichlet", (PyCFunction)(void*)(PyCFunctionWithKeywords)__pyx_pw_5numpy_6random_6mtrand_11RandomState_105dirichlet, METH_VARARGS|METH_KEYWORDS, __pyx_doc_5numpy_6random_6mtrand_11RandomState_104dirichlet}, {"shuffle", (PyCFunction)__pyx_pw_5numpy_6random_6mtrand_11RandomState_107shuffle, METH_O, __pyx_doc_5numpy_6random_6mtrand_11RandomState_106shuffle}, {"permutation", (PyCFunction)__pyx_pw_5numpy_6random_6mtrand_11RandomState_109permutation, METH_O, __pyx_doc_5numpy_6random_6mtrand_11RandomState_108permutation}, {0, 0, 0, 0} }; static struct PyGetSetDef __pyx_getsets_5numpy_6random_6mtrand_RandomState[] = { {(char *)"_bit_generator", __pyx_getprop_5numpy_6random_6mtrand_11RandomState__bit_generator, __pyx_setprop_5numpy_6random_6mtrand_11RandomState__bit_generator, (char *)0, 0}, {0, 0, 0, 0, 0} }; static PyTypeObject __pyx_type_5numpy_6random_6mtrand_RandomState = { PyVarObject_HEAD_INIT(0, 0) "numpy.random.mtrand.RandomState", /*tp_name*/ sizeof(struct __pyx_obj_5numpy_6random_6mtrand_RandomState), /*tp_basicsize*/ 0, /*tp_itemsize*/ __pyx_tp_dealloc_5numpy_6random_6mtrand_RandomState, /*tp_dealloc*/ #if PY_VERSION_HEX < 0x030800b4 0, /*tp_print*/ #endif #if PY_VERSION_HEX >= 0x030800b4 0, /*tp_vectorcall_offset*/ #endif 0, /*tp_getattr*/ 0, /*tp_setattr*/ #if PY_MAJOR_VERSION < 3 0, /*tp_compare*/ #endif #if PY_MAJOR_VERSION >= 3 0, /*tp_as_async*/ #endif __pyx_pw_5numpy_6random_6mtrand_11RandomState_3__repr__, /*tp_repr*/ 0, /*tp_as_number*/ 0, /*tp_as_sequence*/ 0, /*tp_as_mapping*/ 0, /*tp_hash*/ 0, /*tp_call*/ __pyx_pw_5numpy_6random_6mtrand_11RandomState_5__str__, /*tp_str*/ 0, /*tp_getattro*/ 0, /*tp_setattro*/ 0, /*tp_as_buffer*/ Py_TPFLAGS_DEFAULT|Py_TPFLAGS_HAVE_VERSION_TAG|Py_TPFLAGS_CHECKTYPES|Py_TPFLAGS_HAVE_NEWBUFFER|Py_TPFLAGS_BASETYPE|Py_TPFLAGS_HAVE_GC, /*tp_flags*/ "\n RandomState(seed=None)\n\n Container for the slow Mersenne Twister pseudo-random number generator.\n Consider using a different BitGenerator with the Generator container\n instead.\n\n `RandomState` and `Generator` expose a number of methods for generating\n random numbers drawn from a variety of probability distributions. In\n addition to the distribution-specific arguments, each method takes a\n keyword argument `size` that defaults to ``None``. If `size` is ``None``,\n then a single value is generated and returned. If `size` is an integer,\n then a 1-D array filled with generated values is returned. If `size` is a\n tuple, then an array with that shape is filled and returned.\n\n **Compatibility Guarantee**\n\n A fixed bit generator using a fixed seed and a fixed series of calls to\n 'RandomState' methods using the same parameters will always produce the\n same results up to roundoff error except when the values were incorrect.\n `RandomState` is effectively frozen and will only receive updates that\n are required by changes in the the internals of Numpy. More substantial\n changes, including algorithmic improvements, are reserved for\n `Generator`.\n\n Parameters\n ----------\n seed : {None, int, array_like, BitGenerator}, optional\n Random seed used to initialize the pseudo-random number generator or\n an instantized BitGenerator. If an integer or array, used as a seed for\n the MT19937 BitGenerator. Values can be any integer between 0 and\n 2**32 - 1 inclusive, an array (or other sequence) of such integers,\n or ``None`` (the default). If `seed` is ``None``, then the `MT19937`\n BitGenerator is initialized by reading data from ``/dev/urandom``\n (or the Windows analogue) if available or seed from the clock\n otherwise.\n\n Notes\n -----\n The Python stdlib module \"random\" also contains a Mersenne Twister\n pseudo-random n""umber generator with a number of methods that are similar\n to the ones available in `RandomState`. `RandomState`, besides being\n NumPy-aware, has the advantage that it provides a much larger number\n of probability distributions to choose from.\n\n See Also\n --------\n Generator\n MT19937\n :ref:`bit_generator`\n\n ", /*tp_doc*/ __pyx_tp_traverse_5numpy_6random_6mtrand_RandomState, /*tp_traverse*/ __pyx_tp_clear_5numpy_6random_6mtrand_RandomState, /*tp_clear*/ 0, /*tp_richcompare*/ 0, /*tp_weaklistoffset*/ 0, /*tp_iter*/ 0, /*tp_iternext*/ __pyx_methods_5numpy_6random_6mtrand_RandomState, /*tp_methods*/ 0, /*tp_members*/ __pyx_getsets_5numpy_6random_6mtrand_RandomState, /*tp_getset*/ 0, /*tp_base*/ 0, /*tp_dict*/ 0, /*tp_descr_get*/ 0, /*tp_descr_set*/ 0, /*tp_dictoffset*/ __pyx_pw_5numpy_6random_6mtrand_11RandomState_1__init__, /*tp_init*/ 0, /*tp_alloc*/ __pyx_tp_new_5numpy_6random_6mtrand_RandomState, /*tp_new*/ 0, /*tp_free*/ 0, /*tp_is_gc*/ 0, /*tp_bases*/ 0, /*tp_mro*/ 0, /*tp_cache*/ 0, /*tp_subclasses*/ 0, /*tp_weaklist*/ 0, /*tp_del*/ 0, /*tp_version_tag*/ #if PY_VERSION_HEX >= 0x030400a1 0, /*tp_finalize*/ #endif #if PY_VERSION_HEX >= 0x030800b1 0, /*tp_vectorcall*/ #endif #if PY_VERSION_HEX >= 0x030800b4 && PY_VERSION_HEX < 0x03090000 0, /*tp_print*/ #endif }; static PyMethodDef __pyx_methods[] = { {0, 0, 0, 0} }; #if PY_MAJOR_VERSION >= 3 #if CYTHON_PEP489_MULTI_PHASE_INIT static PyObject* __pyx_pymod_create(PyObject *spec, PyModuleDef *def); /*proto*/ static int __pyx_pymod_exec_mtrand(PyObject* module); /*proto*/ static PyModuleDef_Slot __pyx_moduledef_slots[] = { {Py_mod_create, (void*)__pyx_pymod_create}, {Py_mod_exec, (void*)__pyx_pymod_exec_mtrand}, {0, NULL} }; #endif static struct PyModuleDef __pyx_moduledef = { PyModuleDef_HEAD_INIT, "mtrand", 0, /* m_doc */ #if CYTHON_PEP489_MULTI_PHASE_INIT 0, /* m_size */ #else -1, /* m_size */ #endif __pyx_methods /* m_methods */, #if CYTHON_PEP489_MULTI_PHASE_INIT __pyx_moduledef_slots, /* m_slots */ #else NULL, /* m_reload */ #endif NULL, /* m_traverse */ NULL, /* m_clear */ NULL /* m_free */ }; #endif #ifndef CYTHON_SMALL_CODE #if defined(__clang__) #define CYTHON_SMALL_CODE #elif defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 3)) #define CYTHON_SMALL_CODE __attribute__((cold)) #else #define CYTHON_SMALL_CODE #endif #endif static __Pyx_StringTabEntry __pyx_string_tab[] = { {&__pyx_kp_u_Cannot_take_a_larger_sample_than, __pyx_k_Cannot_take_a_larger_sample_than, sizeof(__pyx_k_Cannot_take_a_larger_sample_than), 0, 1, 0, 0}, {&__pyx_n_s_DeprecationWarning, __pyx_k_DeprecationWarning, sizeof(__pyx_k_DeprecationWarning), 0, 0, 1, 1}, {&__pyx_kp_u_Fewer_non_zero_entries_in_p_than, __pyx_k_Fewer_non_zero_entries_in_p_than, sizeof(__pyx_k_Fewer_non_zero_entries_in_p_than), 0, 1, 0, 0}, {&__pyx_kp_u_Format_string_allocated_too_shor, __pyx_k_Format_string_allocated_too_shor, sizeof(__pyx_k_Format_string_allocated_too_shor), 0, 1, 0, 0}, {&__pyx_kp_u_Format_string_allocated_too_shor_2, __pyx_k_Format_string_allocated_too_shor_2, sizeof(__pyx_k_Format_string_allocated_too_shor_2), 0, 1, 0, 0}, {&__pyx_n_s_ImportError, __pyx_k_ImportError, sizeof(__pyx_k_ImportError), 0, 0, 1, 1}, {&__pyx_n_s_IndexError, __pyx_k_IndexError, sizeof(__pyx_k_IndexError), 0, 0, 1, 1}, {&__pyx_kp_u_Invalid_bit_generator_The_bit_ge, __pyx_k_Invalid_bit_generator_The_bit_ge, sizeof(__pyx_k_Invalid_bit_generator_The_bit_ge), 0, 1, 0, 0}, {&__pyx_n_s_MT19937, __pyx_k_MT19937, sizeof(__pyx_k_MT19937), 0, 0, 1, 1}, {&__pyx_n_s_MT19937_2, __pyx_k_MT19937_2, sizeof(__pyx_k_MT19937_2), 0, 0, 1, 1}, {&__pyx_n_u_MT19937_2, __pyx_k_MT19937_2, sizeof(__pyx_k_MT19937_2), 0, 1, 0, 1}, {&__pyx_kp_u_Non_native_byte_order_not_suppor, __pyx_k_Non_native_byte_order_not_suppor, sizeof(__pyx_k_Non_native_byte_order_not_suppor), 0, 1, 0, 0}, {&__pyx_n_s_OverflowError, __pyx_k_OverflowError, sizeof(__pyx_k_OverflowError), 0, 0, 1, 1}, {&__pyx_kp_u_Providing_a_dtype_with_a_non_nat, __pyx_k_Providing_a_dtype_with_a_non_nat, sizeof(__pyx_k_Providing_a_dtype_with_a_non_nat), 0, 1, 0, 0}, {&__pyx_n_s_RandomState, __pyx_k_RandomState, sizeof(__pyx_k_RandomState), 0, 0, 1, 1}, {&__pyx_n_u_RandomState, __pyx_k_RandomState, sizeof(__pyx_k_RandomState), 0, 1, 0, 1}, {&__pyx_kp_u_RandomState_binomial_line_2972, __pyx_k_RandomState_binomial_line_2972, sizeof(__pyx_k_RandomState_binomial_line_2972), 0, 1, 0, 0}, {&__pyx_kp_u_RandomState_bytes_line_651, __pyx_k_RandomState_bytes_line_651, sizeof(__pyx_k_RandomState_bytes_line_651), 0, 1, 0, 0}, {&__pyx_kp_u_RandomState_chisquare_line_1659, __pyx_k_RandomState_chisquare_line_1659, sizeof(__pyx_k_RandomState_chisquare_line_1659), 0, 1, 0, 0}, {&__pyx_kp_u_RandomState_choice_line_680, __pyx_k_RandomState_choice_line_680, sizeof(__pyx_k_RandomState_choice_line_680), 0, 1, 0, 0}, {&__pyx_kp_u_RandomState_dirichlet_line_3892, __pyx_k_RandomState_dirichlet_line_3892, sizeof(__pyx_k_RandomState_dirichlet_line_3892), 0, 1, 0, 0}, {&__pyx_kp_u_RandomState_f_line_1494, __pyx_k_RandomState_f_line_1494, sizeof(__pyx_k_RandomState_f_line_1494), 0, 1, 0, 0}, {&__pyx_kp_u_RandomState_gamma_line_1416, __pyx_k_RandomState_gamma_line_1416, sizeof(__pyx_k_RandomState_gamma_line_1416), 0, 1, 0, 0}, {&__pyx_kp_u_RandomState_geometric_line_3350, __pyx_k_RandomState_geometric_line_3350, sizeof(__pyx_k_RandomState_geometric_line_3350), 0, 1, 0, 0}, {&__pyx_kp_u_RandomState_gumbel_line_2428, __pyx_k_RandomState_gumbel_line_2428, sizeof(__pyx_k_RandomState_gumbel_line_2428), 0, 1, 0, 0}, {&__pyx_kp_u_RandomState_hypergeometric_line, __pyx_k_RandomState_hypergeometric_line, sizeof(__pyx_k_RandomState_hypergeometric_line), 0, 1, 0, 0}, {&__pyx_kp_u_RandomState_laplace_line_2343, __pyx_k_RandomState_laplace_line_2343, sizeof(__pyx_k_RandomState_laplace_line_2343), 0, 1, 0, 0}, {&__pyx_kp_u_RandomState_logistic_line_2546, __pyx_k_RandomState_logistic_line_2546, sizeof(__pyx_k_RandomState_logistic_line_2546), 0, 1, 0, 0}, {&__pyx_kp_u_RandomState_lognormal_line_2626, __pyx_k_RandomState_lognormal_line_2626, sizeof(__pyx_k_RandomState_lognormal_line_2626), 0, 1, 0, 0}, {&__pyx_kp_u_RandomState_logseries_line_3531, __pyx_k_RandomState_logseries_line_3531, sizeof(__pyx_k_RandomState_logseries_line_3531), 0, 1, 0, 0}, {&__pyx_kp_u_RandomState_multinomial_line_378, __pyx_k_RandomState_multinomial_line_378, sizeof(__pyx_k_RandomState_multinomial_line_378), 0, 1, 0, 0}, {&__pyx_kp_u_RandomState_multivariate_normal, __pyx_k_RandomState_multivariate_normal, sizeof(__pyx_k_RandomState_multivariate_normal), 0, 1, 0, 0}, {&__pyx_kp_u_RandomState_negative_binomial_li, __pyx_k_RandomState_negative_binomial_li, sizeof(__pyx_k_RandomState_negative_binomial_li), 0, 1, 0, 0}, {&__pyx_kp_u_RandomState_noncentral_chisquare, __pyx_k_RandomState_noncentral_chisquare, sizeof(__pyx_k_RandomState_noncentral_chisquare), 0, 1, 0, 0}, {&__pyx_kp_u_RandomState_noncentral_f_line_15, __pyx_k_RandomState_noncentral_f_line_15, sizeof(__pyx_k_RandomState_noncentral_f_line_15), 0, 1, 0, 0}, {&__pyx_kp_u_RandomState_normal_line_1239, __pyx_k_RandomState_normal_line_1239, sizeof(__pyx_k_RandomState_normal_line_1239), 0, 1, 0, 0}, {&__pyx_kp_u_RandomState_pareto_line_2048, __pyx_k_RandomState_pareto_line_2048, sizeof(__pyx_k_RandomState_pareto_line_2048), 0, 1, 0, 0}, {&__pyx_kp_u_RandomState_permutation_line_411, __pyx_k_RandomState_permutation_line_411, sizeof(__pyx_k_RandomState_permutation_line_411), 0, 1, 0, 0}, {&__pyx_kp_u_RandomState_poisson_line_3196, __pyx_k_RandomState_poisson_line_3196, sizeof(__pyx_k_RandomState_poisson_line_3196), 0, 1, 0, 0}, {&__pyx_kp_u_RandomState_power_line_2243, __pyx_k_RandomState_power_line_2243, sizeof(__pyx_k_RandomState_power_line_2243), 0, 1, 0, 0}, {&__pyx_kp_u_RandomState_rand_line_980, __pyx_k_RandomState_rand_line_980, sizeof(__pyx_k_RandomState_rand_line_980), 0, 1, 0, 0}, {&__pyx_kp_u_RandomState_randint_line_530, __pyx_k_RandomState_randint_line_530, sizeof(__pyx_k_RandomState_randint_line_530), 0, 1, 0, 0}, {&__pyx_kp_u_RandomState_randn_line_1024, __pyx_k_RandomState_randn_line_1024, sizeof(__pyx_k_RandomState_randn_line_1024), 0, 1, 0, 0}, {&__pyx_kp_u_RandomState_random_integers_line, __pyx_k_RandomState_random_integers_line, sizeof(__pyx_k_RandomState_random_integers_line), 0, 1, 0, 0}, {&__pyx_kp_u_RandomState_random_sample_line_2, __pyx_k_RandomState_random_sample_line_2, sizeof(__pyx_k_RandomState_random_sample_line_2), 0, 1, 0, 0}, {&__pyx_kp_u_RandomState_rayleigh_line_2736, __pyx_k_RandomState_rayleigh_line_2736, sizeof(__pyx_k_RandomState_rayleigh_line_2736), 0, 1, 0, 0}, {&__pyx_kp_u_RandomState_seed_line_141, __pyx_k_RandomState_seed_line_141, sizeof(__pyx_k_RandomState_seed_line_141), 0, 1, 0, 0}, {&__pyx_kp_u_RandomState_shuffle_line_4031, __pyx_k_RandomState_shuffle_line_4031, sizeof(__pyx_k_RandomState_shuffle_line_4031), 0, 1, 0, 0}, {&__pyx_kp_u_RandomState_standard_cauchy_line, __pyx_k_RandomState_standard_cauchy_line, sizeof(__pyx_k_RandomState_standard_cauchy_line), 0, 1, 0, 0}, {&__pyx_kp_u_RandomState_standard_exponential, __pyx_k_RandomState_standard_exponential, sizeof(__pyx_k_RandomState_standard_exponential), 0, 1, 0, 0}, {&__pyx_kp_u_RandomState_standard_gamma_line, __pyx_k_RandomState_standard_gamma_line, sizeof(__pyx_k_RandomState_standard_gamma_line), 0, 1, 0, 0}, {&__pyx_kp_u_RandomState_standard_normal_line, __pyx_k_RandomState_standard_normal_line, sizeof(__pyx_k_RandomState_standard_normal_line), 0, 1, 0, 0}, {&__pyx_kp_u_RandomState_standard_t_line_1871, __pyx_k_RandomState_standard_t_line_1871, sizeof(__pyx_k_RandomState_standard_t_line_1871), 0, 1, 0, 0}, {&__pyx_kp_u_RandomState_tomaxint_line_472, __pyx_k_RandomState_tomaxint_line_472, sizeof(__pyx_k_RandomState_tomaxint_line_472), 0, 1, 0, 0}, {&__pyx_kp_u_RandomState_triangular_line_2872, __pyx_k_RandomState_triangular_line_2872, sizeof(__pyx_k_RandomState_triangular_line_2872), 0, 1, 0, 0}, {&__pyx_kp_u_RandomState_uniform_line_869, __pyx_k_RandomState_uniform_line_869, sizeof(__pyx_k_RandomState_uniform_line_869), 0, 1, 0, 0}, {&__pyx_kp_u_RandomState_vonmises_line_1965, __pyx_k_RandomState_vonmises_line_1965, sizeof(__pyx_k_RandomState_vonmises_line_1965), 0, 1, 0, 0}, {&__pyx_kp_u_RandomState_wald_line_2804, __pyx_k_RandomState_wald_line_2804, sizeof(__pyx_k_RandomState_wald_line_2804), 0, 1, 0, 0}, {&__pyx_kp_u_RandomState_weibull_line_2145, __pyx_k_RandomState_weibull_line_2145, sizeof(__pyx_k_RandomState_weibull_line_2145), 0, 1, 0, 0}, {&__pyx_kp_u_RandomState_zipf_line_3269, __pyx_k_RandomState_zipf_line_3269, sizeof(__pyx_k_RandomState_zipf_line_3269), 0, 1, 0, 0}, {&__pyx_kp_u_Range_exceeds_valid_bounds, __pyx_k_Range_exceeds_valid_bounds, sizeof(__pyx_k_Range_exceeds_valid_bounds), 0, 1, 0, 0}, {&__pyx_n_s_RuntimeError, __pyx_k_RuntimeError, sizeof(__pyx_k_RuntimeError), 0, 0, 1, 1}, {&__pyx_n_s_RuntimeWarning, __pyx_k_RuntimeWarning, sizeof(__pyx_k_RuntimeWarning), 0, 0, 1, 1}, {&__pyx_n_s_T, __pyx_k_T, sizeof(__pyx_k_T), 0, 0, 1, 1}, {&__pyx_kp_u_This_function_is_deprecated_Plea, __pyx_k_This_function_is_deprecated_Plea, sizeof(__pyx_k_This_function_is_deprecated_Plea), 0, 1, 0, 0}, {&__pyx_kp_u_This_function_is_deprecated_Plea_2, __pyx_k_This_function_is_deprecated_Plea_2, sizeof(__pyx_k_This_function_is_deprecated_Plea_2), 0, 1, 0, 0}, {&__pyx_n_s_TypeError, __pyx_k_TypeError, sizeof(__pyx_k_TypeError), 0, 0, 1, 1}, {&__pyx_kp_u_Unsupported_dtype_s_for_randint, __pyx_k_Unsupported_dtype_s_for_randint, sizeof(__pyx_k_Unsupported_dtype_s_for_randint), 0, 1, 0, 0}, {&__pyx_n_s_ValueError, __pyx_k_ValueError, sizeof(__pyx_k_ValueError), 0, 0, 1, 1}, {&__pyx_kp_u__12, __pyx_k__12, sizeof(__pyx_k__12), 0, 1, 0, 0}, {&__pyx_kp_u__3, __pyx_k__3, sizeof(__pyx_k__3), 0, 1, 0, 0}, {&__pyx_kp_u__4, __pyx_k__4, sizeof(__pyx_k__4), 0, 1, 0, 0}, {&__pyx_n_s_a, __pyx_k_a, sizeof(__pyx_k_a), 0, 0, 1, 1}, {&__pyx_n_u_a, __pyx_k_a, sizeof(__pyx_k_a), 0, 1, 0, 1}, {&__pyx_kp_u_a_and_p_must_have_same_size, __pyx_k_a_and_p_must_have_same_size, sizeof(__pyx_k_a_and_p_must_have_same_size), 0, 1, 0, 0}, {&__pyx_kp_u_a_cannot_be_empty_unless_no_sam, __pyx_k_a_cannot_be_empty_unless_no_sam, sizeof(__pyx_k_a_cannot_be_empty_unless_no_sam), 0, 1, 0, 0}, {&__pyx_kp_u_a_must_be_1_dimensional, __pyx_k_a_must_be_1_dimensional, sizeof(__pyx_k_a_must_be_1_dimensional), 0, 1, 0, 0}, {&__pyx_kp_u_a_must_be_1_dimensional_or_an_in, __pyx_k_a_must_be_1_dimensional_or_an_in, sizeof(__pyx_k_a_must_be_1_dimensional_or_an_in), 0, 1, 0, 0}, {&__pyx_kp_u_a_must_be_greater_than_0_unless, __pyx_k_a_must_be_greater_than_0_unless, sizeof(__pyx_k_a_must_be_greater_than_0_unless), 0, 1, 0, 0}, {&__pyx_n_s_add, __pyx_k_add, sizeof(__pyx_k_add), 0, 0, 1, 1}, {&__pyx_n_s_all, __pyx_k_all, sizeof(__pyx_k_all), 0, 0, 1, 1}, {&__pyx_n_s_all_2, __pyx_k_all_2, sizeof(__pyx_k_all_2), 0, 0, 1, 1}, {&__pyx_n_s_allclose, __pyx_k_allclose, sizeof(__pyx_k_allclose), 0, 0, 1, 1}, {&__pyx_n_s_alpha, __pyx_k_alpha, sizeof(__pyx_k_alpha), 0, 0, 1, 1}, {&__pyx_kp_u_alpha_0, __pyx_k_alpha_0, sizeof(__pyx_k_alpha_0), 0, 1, 0, 0}, {&__pyx_n_s_any, __pyx_k_any, sizeof(__pyx_k_any), 0, 0, 1, 1}, {&__pyx_n_s_arange, __pyx_k_arange, sizeof(__pyx_k_arange), 0, 0, 1, 1}, {&__pyx_n_s_args, __pyx_k_args, sizeof(__pyx_k_args), 0, 0, 1, 1}, {&__pyx_n_s_array, __pyx_k_array, sizeof(__pyx_k_array), 0, 0, 1, 1}, {&__pyx_n_s_asarray, __pyx_k_asarray, sizeof(__pyx_k_asarray), 0, 0, 1, 1}, {&__pyx_n_s_astype, __pyx_k_astype, sizeof(__pyx_k_astype), 0, 0, 1, 1}, {&__pyx_kp_u_at_0x_X, __pyx_k_at_0x_X, sizeof(__pyx_k_at_0x_X), 0, 1, 0, 0}, {&__pyx_n_s_atol, __pyx_k_atol, sizeof(__pyx_k_atol), 0, 0, 1, 1}, {&__pyx_n_s_b, __pyx_k_b, sizeof(__pyx_k_b), 0, 0, 1, 1}, {&__pyx_n_u_b, __pyx_k_b, sizeof(__pyx_k_b), 0, 1, 0, 1}, {&__pyx_n_s_beta, __pyx_k_beta, sizeof(__pyx_k_beta), 0, 0, 1, 1}, {&__pyx_n_u_beta, __pyx_k_beta, sizeof(__pyx_k_beta), 0, 1, 0, 1}, {&__pyx_n_s_binomial, __pyx_k_binomial, sizeof(__pyx_k_binomial), 0, 0, 1, 1}, {&__pyx_n_u_binomial, __pyx_k_binomial, sizeof(__pyx_k_binomial), 0, 1, 0, 1}, {&__pyx_kp_u_binomial_n_p_size_None_Draw_sam, __pyx_k_binomial_n_p_size_None_Draw_sam, sizeof(__pyx_k_binomial_n_p_size_None_Draw_sam), 0, 1, 0, 0}, {&__pyx_n_u_bit_generator, __pyx_k_bit_generator, sizeof(__pyx_k_bit_generator), 0, 1, 0, 1}, {&__pyx_n_s_bool, __pyx_k_bool, sizeof(__pyx_k_bool), 0, 0, 1, 1}, {&__pyx_n_u_bool, __pyx_k_bool, sizeof(__pyx_k_bool), 0, 1, 0, 1}, {&__pyx_n_s_bounded_integers, __pyx_k_bounded_integers, sizeof(__pyx_k_bounded_integers), 0, 0, 1, 1}, {&__pyx_n_s_bytes, __pyx_k_bytes, sizeof(__pyx_k_bytes), 0, 0, 1, 1}, {&__pyx_n_u_bytes, __pyx_k_bytes, sizeof(__pyx_k_bytes), 0, 1, 0, 1}, {&__pyx_kp_u_bytes_length_Return_random_byte, __pyx_k_bytes_length_Return_random_byte, sizeof(__pyx_k_bytes_length_Return_random_byte), 0, 1, 0, 0}, {&__pyx_kp_u_can_only_re_seed_a_MT19937_BitGe, __pyx_k_can_only_re_seed_a_MT19937_BitGe, sizeof(__pyx_k_can_only_re_seed_a_MT19937_BitGe), 0, 1, 0, 0}, {&__pyx_n_s_capsule, __pyx_k_capsule, sizeof(__pyx_k_capsule), 0, 0, 1, 1}, {&__pyx_n_u_capsule, __pyx_k_capsule, sizeof(__pyx_k_capsule), 0, 1, 0, 1}, {&__pyx_n_s_casting, __pyx_k_casting, sizeof(__pyx_k_casting), 0, 0, 1, 1}, {&__pyx_n_s_check_valid, __pyx_k_check_valid, sizeof(__pyx_k_check_valid), 0, 0, 1, 1}, {&__pyx_kp_u_check_valid_must_equal_warn_rais, __pyx_k_check_valid_must_equal_warn_rais, sizeof(__pyx_k_check_valid_must_equal_warn_rais), 0, 1, 0, 0}, {&__pyx_n_s_chisquare, __pyx_k_chisquare, sizeof(__pyx_k_chisquare), 0, 0, 1, 1}, {&__pyx_n_u_chisquare, __pyx_k_chisquare, sizeof(__pyx_k_chisquare), 0, 1, 0, 1}, {&__pyx_kp_u_chisquare_df_size_None_Draw_sam, __pyx_k_chisquare_df_size_None_Draw_sam, sizeof(__pyx_k_chisquare_df_size_None_Draw_sam), 0, 1, 0, 0}, {&__pyx_n_s_choice, __pyx_k_choice, sizeof(__pyx_k_choice), 0, 0, 1, 1}, {&__pyx_n_u_choice, __pyx_k_choice, sizeof(__pyx_k_choice), 0, 1, 0, 1}, {&__pyx_kp_u_choice_a_size_None_replace_True, __pyx_k_choice_a_size_None_replace_True, sizeof(__pyx_k_choice_a_size_None_replace_True), 0, 1, 0, 0}, {&__pyx_n_s_class, __pyx_k_class, sizeof(__pyx_k_class), 0, 0, 1, 1}, {&__pyx_n_s_cline_in_traceback, __pyx_k_cline_in_traceback, sizeof(__pyx_k_cline_in_traceback), 0, 0, 1, 1}, {&__pyx_n_s_copy, __pyx_k_copy, sizeof(__pyx_k_copy), 0, 0, 1, 1}, {&__pyx_n_s_count_nonzero, __pyx_k_count_nonzero, sizeof(__pyx_k_count_nonzero), 0, 0, 1, 1}, {&__pyx_n_s_cov, __pyx_k_cov, sizeof(__pyx_k_cov), 0, 0, 1, 1}, {&__pyx_kp_u_cov_must_be_2_dimensional_and_sq, __pyx_k_cov_must_be_2_dimensional_and_sq, sizeof(__pyx_k_cov_must_be_2_dimensional_and_sq), 0, 1, 0, 0}, {&__pyx_kp_u_covariance_is_not_positive_semid, __pyx_k_covariance_is_not_positive_semid, sizeof(__pyx_k_covariance_is_not_positive_semid), 0, 1, 0, 0}, {&__pyx_n_s_ctypes, __pyx_k_ctypes, sizeof(__pyx_k_ctypes), 0, 0, 1, 1}, {&__pyx_n_s_cumsum, __pyx_k_cumsum, sizeof(__pyx_k_cumsum), 0, 0, 1, 1}, {&__pyx_n_s_data, __pyx_k_data, sizeof(__pyx_k_data), 0, 0, 1, 1}, {&__pyx_n_s_df, __pyx_k_df, sizeof(__pyx_k_df), 0, 0, 1, 1}, {&__pyx_n_u_df, __pyx_k_df, sizeof(__pyx_k_df), 0, 1, 0, 1}, {&__pyx_n_s_dfden, __pyx_k_dfden, sizeof(__pyx_k_dfden), 0, 0, 1, 1}, {&__pyx_n_u_dfden, __pyx_k_dfden, sizeof(__pyx_k_dfden), 0, 1, 0, 1}, {&__pyx_n_s_dfnum, __pyx_k_dfnum, sizeof(__pyx_k_dfnum), 0, 0, 1, 1}, {&__pyx_n_u_dfnum, __pyx_k_dfnum, sizeof(__pyx_k_dfnum), 0, 1, 0, 1}, {&__pyx_n_s_dirichlet, __pyx_k_dirichlet, sizeof(__pyx_k_dirichlet), 0, 0, 1, 1}, {&__pyx_n_u_dirichlet, __pyx_k_dirichlet, sizeof(__pyx_k_dirichlet), 0, 1, 0, 1}, {&__pyx_kp_u_dirichlet_alpha_size_None_Draw, __pyx_k_dirichlet_alpha_size_None_Draw, sizeof(__pyx_k_dirichlet_alpha_size_None_Draw), 0, 1, 0, 0}, {&__pyx_n_s_dot, __pyx_k_dot, sizeof(__pyx_k_dot), 0, 0, 1, 1}, {&__pyx_n_s_double, __pyx_k_double, sizeof(__pyx_k_double), 0, 0, 1, 1}, {&__pyx_n_s_dtype, __pyx_k_dtype, sizeof(__pyx_k_dtype), 0, 0, 1, 1}, {&__pyx_n_s_empty, __pyx_k_empty, sizeof(__pyx_k_empty), 0, 0, 1, 1}, {&__pyx_n_s_empty_like, __pyx_k_empty_like, sizeof(__pyx_k_empty_like), 0, 0, 1, 1}, {&__pyx_n_s_enter, __pyx_k_enter, sizeof(__pyx_k_enter), 0, 0, 1, 1}, {&__pyx_n_s_eps, __pyx_k_eps, sizeof(__pyx_k_eps), 0, 0, 1, 1}, {&__pyx_n_s_equal, __pyx_k_equal, sizeof(__pyx_k_equal), 0, 0, 1, 1}, {&__pyx_n_s_exit, __pyx_k_exit, sizeof(__pyx_k_exit), 0, 0, 1, 1}, {&__pyx_n_s_exponential, __pyx_k_exponential, sizeof(__pyx_k_exponential), 0, 0, 1, 1}, {&__pyx_n_u_exponential, __pyx_k_exponential, sizeof(__pyx_k_exponential), 0, 1, 0, 1}, {&__pyx_n_s_f, __pyx_k_f, sizeof(__pyx_k_f), 0, 0, 1, 1}, {&__pyx_n_u_f, __pyx_k_f, sizeof(__pyx_k_f), 0, 1, 0, 1}, {&__pyx_kp_u_f_dfnum_dfden_size_None_Draw_sa, __pyx_k_f_dfnum_dfden_size_None_Draw_sa, sizeof(__pyx_k_f_dfnum_dfden_size_None_Draw_sa), 0, 1, 0, 0}, {&__pyx_n_s_finfo, __pyx_k_finfo, sizeof(__pyx_k_finfo), 0, 0, 1, 1}, {&__pyx_n_s_float64, __pyx_k_float64, sizeof(__pyx_k_float64), 0, 0, 1, 1}, {&__pyx_n_s_floating, __pyx_k_floating, sizeof(__pyx_k_floating), 0, 0, 1, 1}, {&__pyx_n_s_format, __pyx_k_format, sizeof(__pyx_k_format), 0, 0, 1, 1}, {&__pyx_n_s_gamma, __pyx_k_gamma, sizeof(__pyx_k_gamma), 0, 0, 1, 1}, {&__pyx_n_u_gamma, __pyx_k_gamma, sizeof(__pyx_k_gamma), 0, 1, 0, 1}, {&__pyx_kp_u_gamma_shape_scale_1_0_size_None, __pyx_k_gamma_shape_scale_1_0_size_None, sizeof(__pyx_k_gamma_shape_scale_1_0_size_None), 0, 1, 0, 0}, {&__pyx_n_u_gauss, __pyx_k_gauss, sizeof(__pyx_k_gauss), 0, 1, 0, 1}, {&__pyx_n_s_geometric, __pyx_k_geometric, sizeof(__pyx_k_geometric), 0, 0, 1, 1}, {&__pyx_n_u_geometric, __pyx_k_geometric, sizeof(__pyx_k_geometric), 0, 1, 0, 1}, {&__pyx_kp_u_geometric_p_size_None_Draw_samp, __pyx_k_geometric_p_size_None_Draw_samp, sizeof(__pyx_k_geometric_p_size_None_Draw_samp), 0, 1, 0, 0}, {&__pyx_n_s_get, __pyx_k_get, sizeof(__pyx_k_get), 0, 0, 1, 1}, {&__pyx_n_s_get_state, __pyx_k_get_state, sizeof(__pyx_k_get_state), 0, 0, 1, 1}, {&__pyx_n_u_get_state, __pyx_k_get_state, sizeof(__pyx_k_get_state), 0, 1, 0, 1}, {&__pyx_kp_u_get_state_and_legacy_can_only_be, __pyx_k_get_state_and_legacy_can_only_be, sizeof(__pyx_k_get_state_and_legacy_can_only_be), 0, 1, 0, 0}, {&__pyx_n_s_greater, __pyx_k_greater, sizeof(__pyx_k_greater), 0, 0, 1, 1}, {&__pyx_n_s_gumbel, __pyx_k_gumbel, sizeof(__pyx_k_gumbel), 0, 0, 1, 1}, {&__pyx_n_u_gumbel, __pyx_k_gumbel, sizeof(__pyx_k_gumbel), 0, 1, 0, 1}, {&__pyx_kp_u_gumbel_loc_0_0_scale_1_0_size_N, __pyx_k_gumbel_loc_0_0_scale_1_0_size_N, sizeof(__pyx_k_gumbel_loc_0_0_scale_1_0_size_N), 0, 1, 0, 0}, {&__pyx_n_u_has_gauss, __pyx_k_has_gauss, sizeof(__pyx_k_has_gauss), 0, 1, 0, 1}, {&__pyx_n_s_high, __pyx_k_high, sizeof(__pyx_k_high), 0, 0, 1, 1}, {&__pyx_n_s_hypergeometric, __pyx_k_hypergeometric, sizeof(__pyx_k_hypergeometric), 0, 0, 1, 1}, {&__pyx_n_u_hypergeometric, __pyx_k_hypergeometric, sizeof(__pyx_k_hypergeometric), 0, 1, 0, 1}, {&__pyx_kp_u_hypergeometric_ngood_nbad_nsamp, __pyx_k_hypergeometric_ngood_nbad_nsamp, sizeof(__pyx_k_hypergeometric_ngood_nbad_nsamp), 0, 1, 0, 0}, {&__pyx_n_s_id, __pyx_k_id, sizeof(__pyx_k_id), 0, 0, 1, 1}, {&__pyx_n_u_ignore, __pyx_k_ignore, sizeof(__pyx_k_ignore), 0, 1, 0, 1}, {&__pyx_n_s_import, __pyx_k_import, sizeof(__pyx_k_import), 0, 0, 1, 1}, {&__pyx_n_s_index, __pyx_k_index, sizeof(__pyx_k_index), 0, 0, 1, 1}, {&__pyx_n_s_int, __pyx_k_int, sizeof(__pyx_k_int), 0, 0, 1, 1}, {&__pyx_n_u_int16, __pyx_k_int16, sizeof(__pyx_k_int16), 0, 1, 0, 1}, {&__pyx_n_u_int32, __pyx_k_int32, sizeof(__pyx_k_int32), 0, 1, 0, 1}, {&__pyx_n_s_int64, __pyx_k_int64, sizeof(__pyx_k_int64), 0, 0, 1, 1}, {&__pyx_n_u_int64, __pyx_k_int64, sizeof(__pyx_k_int64), 0, 1, 0, 1}, {&__pyx_n_s_int8, __pyx_k_int8, sizeof(__pyx_k_int8), 0, 0, 1, 1}, {&__pyx_n_u_int8, __pyx_k_int8, sizeof(__pyx_k_int8), 0, 1, 0, 1}, {&__pyx_n_s_integer, __pyx_k_integer, sizeof(__pyx_k_integer), 0, 0, 1, 1}, {&__pyx_n_s_integers_types, __pyx_k_integers_types, sizeof(__pyx_k_integers_types), 0, 0, 1, 1}, {&__pyx_n_s_intp, __pyx_k_intp, sizeof(__pyx_k_intp), 0, 0, 1, 1}, {&__pyx_n_s_isfinite, __pyx_k_isfinite, sizeof(__pyx_k_isfinite), 0, 0, 1, 1}, {&__pyx_n_s_isnan, __pyx_k_isnan, sizeof(__pyx_k_isnan), 0, 0, 1, 1}, {&__pyx_n_s_isnative, __pyx_k_isnative, sizeof(__pyx_k_isnative), 0, 0, 1, 1}, {&__pyx_n_s_isscalar, __pyx_k_isscalar, sizeof(__pyx_k_isscalar), 0, 0, 1, 1}, {&__pyx_n_s_issubdtype, __pyx_k_issubdtype, sizeof(__pyx_k_issubdtype), 0, 0, 1, 1}, {&__pyx_n_s_item, __pyx_k_item, sizeof(__pyx_k_item), 0, 0, 1, 1}, {&__pyx_n_s_itemsize, __pyx_k_itemsize, sizeof(__pyx_k_itemsize), 0, 0, 1, 1}, {&__pyx_n_s_kappa, __pyx_k_kappa, sizeof(__pyx_k_kappa), 0, 0, 1, 1}, {&__pyx_n_u_kappa, __pyx_k_kappa, sizeof(__pyx_k_kappa), 0, 1, 0, 1}, {&__pyx_n_u_key, __pyx_k_key, sizeof(__pyx_k_key), 0, 1, 0, 1}, {&__pyx_n_s_kwargs, __pyx_k_kwargs, sizeof(__pyx_k_kwargs), 0, 0, 1, 1}, {&__pyx_n_u_l, __pyx_k_l, sizeof(__pyx_k_l), 0, 1, 0, 1}, {&__pyx_n_s_lam, __pyx_k_lam, sizeof(__pyx_k_lam), 0, 0, 1, 1}, {&__pyx_n_u_lam, __pyx_k_lam, sizeof(__pyx_k_lam), 0, 1, 0, 1}, {&__pyx_n_s_laplace, __pyx_k_laplace, sizeof(__pyx_k_laplace), 0, 0, 1, 1}, {&__pyx_n_u_laplace, __pyx_k_laplace, sizeof(__pyx_k_laplace), 0, 1, 0, 1}, {&__pyx_kp_u_laplace_loc_0_0_scale_1_0_size, __pyx_k_laplace_loc_0_0_scale_1_0_size, sizeof(__pyx_k_laplace_loc_0_0_scale_1_0_size), 0, 1, 0, 0}, {&__pyx_n_s_left, __pyx_k_left, sizeof(__pyx_k_left), 0, 0, 1, 1}, {&__pyx_kp_u_left_mode, __pyx_k_left_mode, sizeof(__pyx_k_left_mode), 0, 1, 0, 0}, {&__pyx_kp_u_left_right, __pyx_k_left_right, sizeof(__pyx_k_left_right), 0, 1, 0, 0}, {&__pyx_n_s_legacy, __pyx_k_legacy, sizeof(__pyx_k_legacy), 0, 0, 1, 1}, {&__pyx_n_s_legacy_seeding, __pyx_k_legacy_seeding, sizeof(__pyx_k_legacy_seeding), 0, 0, 1, 1}, {&__pyx_n_s_less, __pyx_k_less, sizeof(__pyx_k_less), 0, 0, 1, 1}, {&__pyx_n_s_less_equal, __pyx_k_less_equal, sizeof(__pyx_k_less_equal), 0, 0, 1, 1}, {&__pyx_n_s_loc, __pyx_k_loc, sizeof(__pyx_k_loc), 0, 0, 1, 1}, {&__pyx_n_u_loc, __pyx_k_loc, sizeof(__pyx_k_loc), 0, 1, 0, 1}, {&__pyx_n_s_lock, __pyx_k_lock, sizeof(__pyx_k_lock), 0, 0, 1, 1}, {&__pyx_n_s_logical_or, __pyx_k_logical_or, sizeof(__pyx_k_logical_or), 0, 0, 1, 1}, {&__pyx_n_s_logistic, __pyx_k_logistic, sizeof(__pyx_k_logistic), 0, 0, 1, 1}, {&__pyx_n_u_logistic, __pyx_k_logistic, sizeof(__pyx_k_logistic), 0, 1, 0, 1}, {&__pyx_kp_u_logistic_loc_0_0_scale_1_0_size, __pyx_k_logistic_loc_0_0_scale_1_0_size, sizeof(__pyx_k_logistic_loc_0_0_scale_1_0_size), 0, 1, 0, 0}, {&__pyx_n_s_lognormal, __pyx_k_lognormal, sizeof(__pyx_k_lognormal), 0, 0, 1, 1}, {&__pyx_n_u_lognormal, __pyx_k_lognormal, sizeof(__pyx_k_lognormal), 0, 1, 0, 1}, {&__pyx_kp_u_lognormal_mean_0_0_sigma_1_0_si, __pyx_k_lognormal_mean_0_0_sigma_1_0_si, sizeof(__pyx_k_lognormal_mean_0_0_sigma_1_0_si), 0, 1, 0, 0}, {&__pyx_n_s_logseries, __pyx_k_logseries, sizeof(__pyx_k_logseries), 0, 0, 1, 1}, {&__pyx_n_u_logseries, __pyx_k_logseries, sizeof(__pyx_k_logseries), 0, 1, 0, 1}, {&__pyx_kp_u_logseries_p_size_None_Draw_samp, __pyx_k_logseries_p_size_None_Draw_samp, sizeof(__pyx_k_logseries_p_size_None_Draw_samp), 0, 1, 0, 0}, {&__pyx_n_s_long, __pyx_k_long, sizeof(__pyx_k_long), 0, 0, 1, 1}, {&__pyx_n_s_low, __pyx_k_low, sizeof(__pyx_k_low), 0, 0, 1, 1}, {&__pyx_n_s_main, __pyx_k_main, sizeof(__pyx_k_main), 0, 0, 1, 1}, {&__pyx_n_s_may_share_memory, __pyx_k_may_share_memory, sizeof(__pyx_k_may_share_memory), 0, 0, 1, 1}, {&__pyx_n_s_mean, __pyx_k_mean, sizeof(__pyx_k_mean), 0, 0, 1, 1}, {&__pyx_n_u_mean, __pyx_k_mean, sizeof(__pyx_k_mean), 0, 1, 0, 1}, {&__pyx_kp_u_mean_and_cov_must_have_same_leng, __pyx_k_mean_and_cov_must_have_same_leng, sizeof(__pyx_k_mean_and_cov_must_have_same_leng), 0, 1, 0, 0}, {&__pyx_kp_u_mean_must_be_1_dimensional, __pyx_k_mean_must_be_1_dimensional, sizeof(__pyx_k_mean_must_be_1_dimensional), 0, 1, 0, 0}, {&__pyx_n_s_mode, __pyx_k_mode, sizeof(__pyx_k_mode), 0, 0, 1, 1}, {&__pyx_kp_u_mode_right, __pyx_k_mode_right, sizeof(__pyx_k_mode_right), 0, 1, 0, 0}, {&__pyx_n_s_mt19937, __pyx_k_mt19937, sizeof(__pyx_k_mt19937), 0, 0, 1, 1}, {&__pyx_kp_s_mtrand_pyx, __pyx_k_mtrand_pyx, sizeof(__pyx_k_mtrand_pyx), 0, 0, 1, 0}, {&__pyx_n_s_mu, __pyx_k_mu, sizeof(__pyx_k_mu), 0, 0, 1, 1}, {&__pyx_n_u_mu, __pyx_k_mu, sizeof(__pyx_k_mu), 0, 1, 0, 1}, {&__pyx_n_s_multinomial, __pyx_k_multinomial, sizeof(__pyx_k_multinomial), 0, 0, 1, 1}, {&__pyx_n_u_multinomial, __pyx_k_multinomial, sizeof(__pyx_k_multinomial), 0, 1, 0, 1}, {&__pyx_kp_u_multinomial_n_pvals_size_None_D, __pyx_k_multinomial_n_pvals_size_None_D, sizeof(__pyx_k_multinomial_n_pvals_size_None_D), 0, 1, 0, 0}, {&__pyx_n_s_multivariate_normal, __pyx_k_multivariate_normal, sizeof(__pyx_k_multivariate_normal), 0, 0, 1, 1}, {&__pyx_n_u_multivariate_normal, __pyx_k_multivariate_normal, sizeof(__pyx_k_multivariate_normal), 0, 1, 0, 1}, {&__pyx_kp_u_multivariate_normal_mean_cov_si, __pyx_k_multivariate_normal_mean_cov_si, sizeof(__pyx_k_multivariate_normal_mean_cov_si), 0, 1, 0, 0}, {&__pyx_n_s_n, __pyx_k_n, sizeof(__pyx_k_n), 0, 0, 1, 1}, {&__pyx_n_u_n, __pyx_k_n, sizeof(__pyx_k_n), 0, 1, 0, 1}, {&__pyx_n_s_name, __pyx_k_name, sizeof(__pyx_k_name), 0, 0, 1, 1}, {&__pyx_n_s_name_2, __pyx_k_name_2, sizeof(__pyx_k_name_2), 0, 0, 1, 1}, {&__pyx_n_s_nbad, __pyx_k_nbad, sizeof(__pyx_k_nbad), 0, 0, 1, 1}, {&__pyx_n_u_nbad, __pyx_k_nbad, sizeof(__pyx_k_nbad), 0, 1, 0, 1}, {&__pyx_kp_u_ndarray_is_not_C_contiguous, __pyx_k_ndarray_is_not_C_contiguous, sizeof(__pyx_k_ndarray_is_not_C_contiguous), 0, 1, 0, 0}, {&__pyx_kp_u_ndarray_is_not_Fortran_contiguou, __pyx_k_ndarray_is_not_Fortran_contiguou, sizeof(__pyx_k_ndarray_is_not_Fortran_contiguou), 0, 1, 0, 0}, {&__pyx_n_s_ndim, __pyx_k_ndim, sizeof(__pyx_k_ndim), 0, 0, 1, 1}, {&__pyx_n_s_negative_binomial, __pyx_k_negative_binomial, sizeof(__pyx_k_negative_binomial), 0, 0, 1, 1}, {&__pyx_n_u_negative_binomial, __pyx_k_negative_binomial, sizeof(__pyx_k_negative_binomial), 0, 1, 0, 1}, {&__pyx_kp_u_negative_binomial_n_p_size_None, __pyx_k_negative_binomial_n_p_size_None, sizeof(__pyx_k_negative_binomial_n_p_size_None), 0, 1, 0, 0}, {&__pyx_kp_u_negative_dimensions_are_not_allo, __pyx_k_negative_dimensions_are_not_allo, sizeof(__pyx_k_negative_dimensions_are_not_allo), 0, 1, 0, 0}, {&__pyx_n_s_ngood, __pyx_k_ngood, sizeof(__pyx_k_ngood), 0, 0, 1, 1}, {&__pyx_n_u_ngood, __pyx_k_ngood, sizeof(__pyx_k_ngood), 0, 1, 0, 1}, {&__pyx_kp_u_ngood_nbad_nsample, __pyx_k_ngood_nbad_nsample, sizeof(__pyx_k_ngood_nbad_nsample), 0, 1, 0, 0}, {&__pyx_n_s_nonc, __pyx_k_nonc, sizeof(__pyx_k_nonc), 0, 0, 1, 1}, {&__pyx_n_u_nonc, __pyx_k_nonc, sizeof(__pyx_k_nonc), 0, 1, 0, 1}, {&__pyx_n_s_noncentral_chisquare, __pyx_k_noncentral_chisquare, sizeof(__pyx_k_noncentral_chisquare), 0, 0, 1, 1}, {&__pyx_n_u_noncentral_chisquare, __pyx_k_noncentral_chisquare, sizeof(__pyx_k_noncentral_chisquare), 0, 1, 0, 1}, {&__pyx_kp_u_noncentral_chisquare_df_nonc_si, __pyx_k_noncentral_chisquare_df_nonc_si, sizeof(__pyx_k_noncentral_chisquare_df_nonc_si), 0, 1, 0, 0}, {&__pyx_n_s_noncentral_f, __pyx_k_noncentral_f, sizeof(__pyx_k_noncentral_f), 0, 0, 1, 1}, {&__pyx_n_u_noncentral_f, __pyx_k_noncentral_f, sizeof(__pyx_k_noncentral_f), 0, 1, 0, 1}, {&__pyx_kp_u_noncentral_f_dfnum_dfden_nonc_s, __pyx_k_noncentral_f_dfnum_dfden_nonc_s, sizeof(__pyx_k_noncentral_f_dfnum_dfden_nonc_s), 0, 1, 0, 0}, {&__pyx_n_s_normal, __pyx_k_normal, sizeof(__pyx_k_normal), 0, 0, 1, 1}, {&__pyx_n_u_normal, __pyx_k_normal, sizeof(__pyx_k_normal), 0, 1, 0, 1}, {&__pyx_kp_u_normal_loc_0_0_scale_1_0_size_N, __pyx_k_normal_loc_0_0_scale_1_0_size_N, sizeof(__pyx_k_normal_loc_0_0_scale_1_0_size_N), 0, 1, 0, 0}, {&__pyx_n_s_np, __pyx_k_np, sizeof(__pyx_k_np), 0, 0, 1, 1}, {&__pyx_n_s_nsample, __pyx_k_nsample, sizeof(__pyx_k_nsample), 0, 0, 1, 1}, {&__pyx_n_u_nsample, __pyx_k_nsample, sizeof(__pyx_k_nsample), 0, 1, 0, 1}, {&__pyx_n_s_numpy, __pyx_k_numpy, sizeof(__pyx_k_numpy), 0, 0, 1, 1}, {&__pyx_kp_u_numpy_core_multiarray_failed_to, __pyx_k_numpy_core_multiarray_failed_to, sizeof(__pyx_k_numpy_core_multiarray_failed_to), 0, 1, 0, 0}, {&__pyx_kp_u_numpy_core_umath_failed_to_impor, __pyx_k_numpy_core_umath_failed_to_impor, sizeof(__pyx_k_numpy_core_umath_failed_to_impor), 0, 1, 0, 0}, {&__pyx_n_s_numpy_dual, __pyx_k_numpy_dual, sizeof(__pyx_k_numpy_dual), 0, 0, 1, 1}, {&__pyx_n_s_numpy_random_mtrand, __pyx_k_numpy_random_mtrand, sizeof(__pyx_k_numpy_random_mtrand), 0, 0, 1, 1}, {&__pyx_n_s_operator, __pyx_k_operator, sizeof(__pyx_k_operator), 0, 0, 1, 1}, {&__pyx_n_s_p, __pyx_k_p, sizeof(__pyx_k_p), 0, 0, 1, 1}, {&__pyx_n_u_p, __pyx_k_p, sizeof(__pyx_k_p), 0, 1, 0, 1}, {&__pyx_kp_u_p_must_be_1_dimensional, __pyx_k_p_must_be_1_dimensional, sizeof(__pyx_k_p_must_be_1_dimensional), 0, 1, 0, 0}, {&__pyx_n_s_pareto, __pyx_k_pareto, sizeof(__pyx_k_pareto), 0, 0, 1, 1}, {&__pyx_n_u_pareto, __pyx_k_pareto, sizeof(__pyx_k_pareto), 0, 1, 0, 1}, {&__pyx_kp_u_pareto_a_size_None_Draw_samples, __pyx_k_pareto_a_size_None_Draw_samples, sizeof(__pyx_k_pareto_a_size_None_Draw_samples), 0, 1, 0, 0}, {&__pyx_n_s_permutation, __pyx_k_permutation, sizeof(__pyx_k_permutation), 0, 0, 1, 1}, {&__pyx_n_u_permutation, __pyx_k_permutation, sizeof(__pyx_k_permutation), 0, 1, 0, 1}, {&__pyx_kp_u_permutation_x_Randomly_permute, __pyx_k_permutation_x_Randomly_permute, sizeof(__pyx_k_permutation_x_Randomly_permute), 0, 1, 0, 0}, {&__pyx_n_s_pickle, __pyx_k_pickle, sizeof(__pyx_k_pickle), 0, 0, 1, 1}, {&__pyx_n_s_poisson, __pyx_k_poisson, sizeof(__pyx_k_poisson), 0, 0, 1, 1}, {&__pyx_n_u_poisson, __pyx_k_poisson, sizeof(__pyx_k_poisson), 0, 1, 0, 1}, {&__pyx_kp_u_poisson_lam_1_0_size_None_Draw, __pyx_k_poisson_lam_1_0_size_None_Draw, sizeof(__pyx_k_poisson_lam_1_0_size_None_Draw), 0, 1, 0, 0}, {&__pyx_n_s_poisson_lam_max, __pyx_k_poisson_lam_max, sizeof(__pyx_k_poisson_lam_max), 0, 0, 1, 1}, {&__pyx_n_u_pos, __pyx_k_pos, sizeof(__pyx_k_pos), 0, 1, 0, 1}, {&__pyx_n_s_power, __pyx_k_power, sizeof(__pyx_k_power), 0, 0, 1, 1}, {&__pyx_n_u_power, __pyx_k_power, sizeof(__pyx_k_power), 0, 1, 0, 1}, {&__pyx_kp_u_power_a_size_None_Draws_samples, __pyx_k_power_a_size_None_Draws_samples, sizeof(__pyx_k_power_a_size_None_Draws_samples), 0, 1, 0, 0}, {&__pyx_kp_u_probabilities_are_not_non_negati, __pyx_k_probabilities_are_not_non_negati, sizeof(__pyx_k_probabilities_are_not_non_negati), 0, 1, 0, 0}, {&__pyx_kp_u_probabilities_contain_NaN, __pyx_k_probabilities_contain_NaN, sizeof(__pyx_k_probabilities_contain_NaN), 0, 1, 0, 0}, {&__pyx_kp_u_probabilities_do_not_sum_to_1, __pyx_k_probabilities_do_not_sum_to_1, sizeof(__pyx_k_probabilities_do_not_sum_to_1), 0, 1, 0, 0}, {&__pyx_n_s_prod, __pyx_k_prod, sizeof(__pyx_k_prod), 0, 0, 1, 1}, {&__pyx_n_s_pvals, __pyx_k_pvals, sizeof(__pyx_k_pvals), 0, 0, 1, 1}, {&__pyx_n_u_pvals, __pyx_k_pvals, sizeof(__pyx_k_pvals), 0, 1, 0, 1}, {&__pyx_n_s_pyx_vtable, __pyx_k_pyx_vtable, sizeof(__pyx_k_pyx_vtable), 0, 0, 1, 1}, {&__pyx_n_u_raise, __pyx_k_raise, sizeof(__pyx_k_raise), 0, 1, 0, 1}, {&__pyx_n_s_rand, __pyx_k_rand, sizeof(__pyx_k_rand), 0, 0, 1, 1}, {&__pyx_n_u_rand, __pyx_k_rand, sizeof(__pyx_k_rand), 0, 1, 0, 1}, {&__pyx_n_s_rand_2, __pyx_k_rand_2, sizeof(__pyx_k_rand_2), 0, 0, 1, 1}, {&__pyx_kp_u_rand_d0_d1_dn_Random_values_in, __pyx_k_rand_d0_d1_dn_Random_values_in, sizeof(__pyx_k_rand_d0_d1_dn_Random_values_in), 0, 1, 0, 0}, {&__pyx_n_s_randint, __pyx_k_randint, sizeof(__pyx_k_randint), 0, 0, 1, 1}, {&__pyx_n_u_randint, __pyx_k_randint, sizeof(__pyx_k_randint), 0, 1, 0, 1}, {&__pyx_kp_u_randint_low_high_None_size_None, __pyx_k_randint_low_high_None_size_None, sizeof(__pyx_k_randint_low_high_None_size_None), 0, 1, 0, 0}, {&__pyx_n_s_randn, __pyx_k_randn, sizeof(__pyx_k_randn), 0, 0, 1, 1}, {&__pyx_n_u_randn, __pyx_k_randn, sizeof(__pyx_k_randn), 0, 1, 0, 1}, {&__pyx_kp_u_randn_d0_d1_dn_Return_a_sample, __pyx_k_randn_d0_d1_dn_Return_a_sample, sizeof(__pyx_k_randn_d0_d1_dn_Return_a_sample), 0, 1, 0, 0}, {&__pyx_n_s_random, __pyx_k_random, sizeof(__pyx_k_random), 0, 0, 1, 1}, {&__pyx_n_u_random, __pyx_k_random, sizeof(__pyx_k_random), 0, 1, 0, 1}, {&__pyx_n_s_random_integers, __pyx_k_random_integers, sizeof(__pyx_k_random_integers), 0, 0, 1, 1}, {&__pyx_n_u_random_integers, __pyx_k_random_integers, sizeof(__pyx_k_random_integers), 0, 1, 0, 1}, {&__pyx_kp_u_random_integers_low_high_None_s, __pyx_k_random_integers_low_high_None_s, sizeof(__pyx_k_random_integers_low_high_None_s), 0, 1, 0, 0}, {&__pyx_n_s_random_sample, __pyx_k_random_sample, sizeof(__pyx_k_random_sample), 0, 0, 1, 1}, {&__pyx_n_u_random_sample, __pyx_k_random_sample, sizeof(__pyx_k_random_sample), 0, 1, 0, 1}, {&__pyx_kp_u_random_sample_size_None_Return, __pyx_k_random_sample_size_None_Return, sizeof(__pyx_k_random_sample_size_None_Return), 0, 1, 0, 0}, {&__pyx_n_s_randomstate_ctor, __pyx_k_randomstate_ctor, sizeof(__pyx_k_randomstate_ctor), 0, 0, 1, 1}, {&__pyx_n_s_ranf, __pyx_k_ranf, sizeof(__pyx_k_ranf), 0, 0, 1, 1}, {&__pyx_n_u_ranf, __pyx_k_ranf, sizeof(__pyx_k_ranf), 0, 1, 0, 1}, {&__pyx_n_s_range, __pyx_k_range, sizeof(__pyx_k_range), 0, 0, 1, 1}, {&__pyx_n_s_ravel, __pyx_k_ravel, sizeof(__pyx_k_ravel), 0, 0, 1, 1}, {&__pyx_n_s_rayleigh, __pyx_k_rayleigh, sizeof(__pyx_k_rayleigh), 0, 0, 1, 1}, {&__pyx_n_u_rayleigh, __pyx_k_rayleigh, sizeof(__pyx_k_rayleigh), 0, 1, 0, 1}, {&__pyx_kp_u_rayleigh_scale_1_0_size_None_Dr, __pyx_k_rayleigh_scale_1_0_size_None_Dr, sizeof(__pyx_k_rayleigh_scale_1_0_size_None_Dr), 0, 1, 0, 0}, {&__pyx_n_s_reduce, __pyx_k_reduce, sizeof(__pyx_k_reduce), 0, 0, 1, 1}, {&__pyx_n_s_replace, __pyx_k_replace, sizeof(__pyx_k_replace), 0, 0, 1, 1}, {&__pyx_n_s_reshape, __pyx_k_reshape, sizeof(__pyx_k_reshape), 0, 0, 1, 1}, {&__pyx_n_s_return_index, __pyx_k_return_index, sizeof(__pyx_k_return_index), 0, 0, 1, 1}, {&__pyx_n_s_reversed, __pyx_k_reversed, sizeof(__pyx_k_reversed), 0, 0, 1, 1}, {&__pyx_n_s_right, __pyx_k_right, sizeof(__pyx_k_right), 0, 0, 1, 1}, {&__pyx_n_u_right, __pyx_k_right, sizeof(__pyx_k_right), 0, 1, 0, 1}, {&__pyx_n_s_rtol, __pyx_k_rtol, sizeof(__pyx_k_rtol), 0, 0, 1, 1}, {&__pyx_n_s_sample, __pyx_k_sample, sizeof(__pyx_k_sample), 0, 0, 1, 1}, {&__pyx_n_u_sample, __pyx_k_sample, sizeof(__pyx_k_sample), 0, 1, 0, 1}, {&__pyx_n_s_scale, __pyx_k_scale, sizeof(__pyx_k_scale), 0, 0, 1, 1}, {&__pyx_n_u_scale, __pyx_k_scale, sizeof(__pyx_k_scale), 0, 1, 0, 1}, {&__pyx_n_s_searchsorted, __pyx_k_searchsorted, sizeof(__pyx_k_searchsorted), 0, 0, 1, 1}, {&__pyx_n_s_seed, __pyx_k_seed, sizeof(__pyx_k_seed), 0, 0, 1, 1}, {&__pyx_n_u_seed, __pyx_k_seed, sizeof(__pyx_k_seed), 0, 1, 0, 1}, {&__pyx_kp_u_seed_self_seed_None_Reseed_a_le, __pyx_k_seed_self_seed_None_Reseed_a_le, sizeof(__pyx_k_seed_self_seed_None_Reseed_a_le), 0, 1, 0, 0}, {&__pyx_n_s_set_state, __pyx_k_set_state, sizeof(__pyx_k_set_state), 0, 0, 1, 1}, {&__pyx_n_u_set_state, __pyx_k_set_state, sizeof(__pyx_k_set_state), 0, 1, 0, 1}, {&__pyx_kp_u_set_state_can_only_be_used_with, __pyx_k_set_state_can_only_be_used_with, sizeof(__pyx_k_set_state_can_only_be_used_with), 0, 1, 0, 0}, {&__pyx_n_s_shape, __pyx_k_shape, sizeof(__pyx_k_shape), 0, 0, 1, 1}, {&__pyx_n_u_shape, __pyx_k_shape, sizeof(__pyx_k_shape), 0, 1, 0, 1}, {&__pyx_n_s_shuffle, __pyx_k_shuffle, sizeof(__pyx_k_shuffle), 0, 0, 1, 1}, {&__pyx_n_u_shuffle, __pyx_k_shuffle, sizeof(__pyx_k_shuffle), 0, 1, 0, 1}, {&__pyx_kp_u_shuffle_x_Modify_a_sequence_in, __pyx_k_shuffle_x_Modify_a_sequence_in, sizeof(__pyx_k_shuffle_x_Modify_a_sequence_in), 0, 1, 0, 0}, {&__pyx_n_s_side, __pyx_k_side, sizeof(__pyx_k_side), 0, 0, 1, 1}, {&__pyx_n_s_sigma, __pyx_k_sigma, sizeof(__pyx_k_sigma), 0, 0, 1, 1}, {&__pyx_n_u_sigma, __pyx_k_sigma, sizeof(__pyx_k_sigma), 0, 1, 0, 1}, {&__pyx_n_s_size, __pyx_k_size, sizeof(__pyx_k_size), 0, 0, 1, 1}, {&__pyx_n_s_sort, __pyx_k_sort, sizeof(__pyx_k_sort), 0, 0, 1, 1}, {&__pyx_n_s_sqrt, __pyx_k_sqrt, sizeof(__pyx_k_sqrt), 0, 0, 1, 1}, {&__pyx_n_s_standard_cauchy, __pyx_k_standard_cauchy, sizeof(__pyx_k_standard_cauchy), 0, 0, 1, 1}, {&__pyx_n_u_standard_cauchy, __pyx_k_standard_cauchy, sizeof(__pyx_k_standard_cauchy), 0, 1, 0, 1}, {&__pyx_kp_u_standard_cauchy_size_None_Draw, __pyx_k_standard_cauchy_size_None_Draw, sizeof(__pyx_k_standard_cauchy_size_None_Draw), 0, 1, 0, 0}, {&__pyx_n_s_standard_exponential, __pyx_k_standard_exponential, sizeof(__pyx_k_standard_exponential), 0, 0, 1, 1}, {&__pyx_n_u_standard_exponential, __pyx_k_standard_exponential, sizeof(__pyx_k_standard_exponential), 0, 1, 0, 1}, {&__pyx_kp_u_standard_exponential_size_None, __pyx_k_standard_exponential_size_None, sizeof(__pyx_k_standard_exponential_size_None), 0, 1, 0, 0}, {&__pyx_n_s_standard_gamma, __pyx_k_standard_gamma, sizeof(__pyx_k_standard_gamma), 0, 0, 1, 1}, {&__pyx_n_u_standard_gamma, __pyx_k_standard_gamma, sizeof(__pyx_k_standard_gamma), 0, 1, 0, 1}, {&__pyx_kp_u_standard_gamma_shape_size_None, __pyx_k_standard_gamma_shape_size_None, sizeof(__pyx_k_standard_gamma_shape_size_None), 0, 1, 0, 0}, {&__pyx_n_s_standard_normal, __pyx_k_standard_normal, sizeof(__pyx_k_standard_normal), 0, 0, 1, 1}, {&__pyx_n_u_standard_normal, __pyx_k_standard_normal, sizeof(__pyx_k_standard_normal), 0, 1, 0, 1}, {&__pyx_kp_u_standard_normal_size_None_Draw, __pyx_k_standard_normal_size_None_Draw, sizeof(__pyx_k_standard_normal_size_None_Draw), 0, 1, 0, 0}, {&__pyx_n_s_standard_t, __pyx_k_standard_t, sizeof(__pyx_k_standard_t), 0, 0, 1, 1}, {&__pyx_n_u_standard_t, __pyx_k_standard_t, sizeof(__pyx_k_standard_t), 0, 1, 0, 1}, {&__pyx_kp_u_standard_t_df_size_None_Draw_sa, __pyx_k_standard_t_df_size_None_Draw_sa, sizeof(__pyx_k_standard_t_df_size_None_Draw_sa), 0, 1, 0, 0}, {&__pyx_n_s_state, __pyx_k_state, sizeof(__pyx_k_state), 0, 0, 1, 1}, {&__pyx_n_u_state, __pyx_k_state, sizeof(__pyx_k_state), 0, 1, 0, 1}, {&__pyx_kp_u_state_dictionary_is_not_valid, __pyx_k_state_dictionary_is_not_valid, sizeof(__pyx_k_state_dictionary_is_not_valid), 0, 1, 0, 0}, {&__pyx_kp_u_state_must_be_a_dict_or_a_tuple, __pyx_k_state_must_be_a_dict_or_a_tuple, sizeof(__pyx_k_state_must_be_a_dict_or_a_tuple), 0, 1, 0, 0}, {&__pyx_n_s_str, __pyx_k_str, sizeof(__pyx_k_str), 0, 0, 1, 1}, {&__pyx_n_s_strides, __pyx_k_strides, sizeof(__pyx_k_strides), 0, 0, 1, 1}, {&__pyx_n_s_subtract, __pyx_k_subtract, sizeof(__pyx_k_subtract), 0, 0, 1, 1}, {&__pyx_kp_u_sum_pvals_1_1_0, __pyx_k_sum_pvals_1_1_0, sizeof(__pyx_k_sum_pvals_1_1_0), 0, 1, 0, 0}, {&__pyx_n_s_svd, __pyx_k_svd, sizeof(__pyx_k_svd), 0, 0, 1, 1}, {&__pyx_n_s_take, __pyx_k_take, sizeof(__pyx_k_take), 0, 0, 1, 1}, {&__pyx_n_s_test, __pyx_k_test, sizeof(__pyx_k_test), 0, 0, 1, 1}, {&__pyx_n_s_tobytes, __pyx_k_tobytes, sizeof(__pyx_k_tobytes), 0, 0, 1, 1}, {&__pyx_n_s_tol, __pyx_k_tol, sizeof(__pyx_k_tol), 0, 0, 1, 1}, {&__pyx_kp_u_tomaxint_size_None_Return_a_sam, __pyx_k_tomaxint_size_None_Return_a_sam, sizeof(__pyx_k_tomaxint_size_None_Return_a_sam), 0, 1, 0, 0}, {&__pyx_n_s_triangular, __pyx_k_triangular, sizeof(__pyx_k_triangular), 0, 0, 1, 1}, {&__pyx_n_u_triangular, __pyx_k_triangular, sizeof(__pyx_k_triangular), 0, 1, 0, 1}, {&__pyx_kp_u_triangular_left_mode_right_size, __pyx_k_triangular_left_mode_right_size, sizeof(__pyx_k_triangular_left_mode_right_size), 0, 1, 0, 0}, {&__pyx_kp_u_u4, __pyx_k_u4, sizeof(__pyx_k_u4), 0, 1, 0, 0}, {&__pyx_n_u_uint16, __pyx_k_uint16, sizeof(__pyx_k_uint16), 0, 1, 0, 1}, {&__pyx_n_s_uint32, __pyx_k_uint32, sizeof(__pyx_k_uint32), 0, 0, 1, 1}, {&__pyx_n_u_uint32, __pyx_k_uint32, sizeof(__pyx_k_uint32), 0, 1, 0, 1}, {&__pyx_n_u_uint64, __pyx_k_uint64, sizeof(__pyx_k_uint64), 0, 1, 0, 1}, {&__pyx_n_u_uint8, __pyx_k_uint8, sizeof(__pyx_k_uint8), 0, 1, 0, 1}, {&__pyx_n_s_uniform, __pyx_k_uniform, sizeof(__pyx_k_uniform), 0, 0, 1, 1}, {&__pyx_n_u_uniform, __pyx_k_uniform, sizeof(__pyx_k_uniform), 0, 1, 0, 1}, {&__pyx_kp_u_uniform_low_0_0_high_1_0_size_N, __pyx_k_uniform_low_0_0_high_1_0_size_N, sizeof(__pyx_k_uniform_low_0_0_high_1_0_size_N), 0, 1, 0, 0}, {&__pyx_n_s_unique, __pyx_k_unique, sizeof(__pyx_k_unique), 0, 0, 1, 1}, {&__pyx_kp_u_unknown_dtype_code_in_numpy_pxd, __pyx_k_unknown_dtype_code_in_numpy_pxd, sizeof(__pyx_k_unknown_dtype_code_in_numpy_pxd), 0, 1, 0, 0}, {&__pyx_n_u_unsafe, __pyx_k_unsafe, sizeof(__pyx_k_unsafe), 0, 1, 0, 1}, {&__pyx_n_s_vonmises, __pyx_k_vonmises, sizeof(__pyx_k_vonmises), 0, 0, 1, 1}, {&__pyx_n_u_vonmises, __pyx_k_vonmises, sizeof(__pyx_k_vonmises), 0, 1, 0, 1}, {&__pyx_kp_u_vonmises_mu_kappa_size_None_Dra, __pyx_k_vonmises_mu_kappa_size_None_Dra, sizeof(__pyx_k_vonmises_mu_kappa_size_None_Dra), 0, 1, 0, 0}, {&__pyx_n_s_wald, __pyx_k_wald, sizeof(__pyx_k_wald), 0, 0, 1, 1}, {&__pyx_n_u_wald, __pyx_k_wald, sizeof(__pyx_k_wald), 0, 1, 0, 1}, {&__pyx_kp_u_wald_mean_scale_size_None_Draw, __pyx_k_wald_mean_scale_size_None_Draw, sizeof(__pyx_k_wald_mean_scale_size_None_Draw), 0, 1, 0, 0}, {&__pyx_n_s_warn, __pyx_k_warn, sizeof(__pyx_k_warn), 0, 0, 1, 1}, {&__pyx_n_u_warn, __pyx_k_warn, sizeof(__pyx_k_warn), 0, 1, 0, 1}, {&__pyx_n_s_warnings, __pyx_k_warnings, sizeof(__pyx_k_warnings), 0, 0, 1, 1}, {&__pyx_n_s_weibull, __pyx_k_weibull, sizeof(__pyx_k_weibull), 0, 0, 1, 1}, {&__pyx_n_u_weibull, __pyx_k_weibull, sizeof(__pyx_k_weibull), 0, 1, 0, 1}, {&__pyx_kp_u_weibull_a_size_None_Draw_sample, __pyx_k_weibull_a_size_None_Draw_sample, sizeof(__pyx_k_weibull_a_size_None_Draw_sample), 0, 1, 0, 0}, {&__pyx_kp_u_x_must_be_an_integer_or_at_least, __pyx_k_x_must_be_an_integer_or_at_least, sizeof(__pyx_k_x_must_be_an_integer_or_at_least), 0, 1, 0, 0}, {&__pyx_n_s_zeros, __pyx_k_zeros, sizeof(__pyx_k_zeros), 0, 0, 1, 1}, {&__pyx_n_s_zipf, __pyx_k_zipf, sizeof(__pyx_k_zipf), 0, 0, 1, 1}, {&__pyx_n_u_zipf, __pyx_k_zipf, sizeof(__pyx_k_zipf), 0, 1, 0, 1}, {&__pyx_kp_u_zipf_a_size_None_Draw_samples_f, __pyx_k_zipf_a_size_None_Draw_samples_f, sizeof(__pyx_k_zipf_a_size_None_Draw_samples_f), 0, 1, 0, 0}, {0, 0, 0, 0, 0, 0, 0} }; static CYTHON_SMALL_CODE int __Pyx_InitCachedBuiltins(void) { __pyx_builtin_ValueError = __Pyx_GetBuiltinName(__pyx_n_s_ValueError); if (!__pyx_builtin_ValueError) __PYX_ERR(0, 110, __pyx_L1_error) __pyx_builtin_id = __Pyx_GetBuiltinName(__pyx_n_s_id); if (!__pyx_builtin_id) __PYX_ERR(0, 118, __pyx_L1_error) __pyx_builtin_TypeError = __Pyx_GetBuiltinName(__pyx_n_s_TypeError); if (!__pyx_builtin_TypeError) __PYX_ERR(0, 162, __pyx_L1_error) __pyx_builtin_RuntimeWarning = __Pyx_GetBuiltinName(__pyx_n_s_RuntimeWarning); if (!__pyx_builtin_RuntimeWarning) __PYX_ERR(0, 207, __pyx_L1_error) __pyx_builtin_range = __Pyx_GetBuiltinName(__pyx_n_s_range); if (!__pyx_builtin_range) __PYX_ERR(0, 525, __pyx_L1_error) __pyx_builtin_DeprecationWarning = __Pyx_GetBuiltinName(__pyx_n_s_DeprecationWarning); if (!__pyx_builtin_DeprecationWarning) __PYX_ERR(0, 618, __pyx_L1_error) __pyx_builtin_OverflowError = __Pyx_GetBuiltinName(__pyx_n_s_OverflowError); if (!__pyx_builtin_OverflowError) __PYX_ERR(0, 959, __pyx_L1_error) __pyx_builtin_reversed = __Pyx_GetBuiltinName(__pyx_n_s_reversed); if (!__pyx_builtin_reversed) __PYX_ERR(0, 4096, __pyx_L1_error) __pyx_builtin_IndexError = __Pyx_GetBuiltinName(__pyx_n_s_IndexError); if (!__pyx_builtin_IndexError) __PYX_ERR(0, 4164, __pyx_L1_error) __pyx_builtin_RuntimeError = __Pyx_GetBuiltinName(__pyx_n_s_RuntimeError); if (!__pyx_builtin_RuntimeError) __PYX_ERR(1, 856, __pyx_L1_error) __pyx_builtin_ImportError = __Pyx_GetBuiltinName(__pyx_n_s_ImportError); if (!__pyx_builtin_ImportError) __PYX_ERR(1, 1038, __pyx_L1_error) return 0; __pyx_L1_error:; return -1; } static CYTHON_SMALL_CODE int __Pyx_InitCachedConstants(void) { __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__Pyx_InitCachedConstants", 0); /* "numpy/random/mtrand.pyx":34 * x64 = x * return x64 * return x.astype('l', casting='unsafe') # <<<<<<<<<<<<<< * * */ __pyx_tuple_ = PyTuple_Pack(1, __pyx_n_u_l); if (unlikely(!__pyx_tuple_)) __PYX_ERR(0, 34, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple_); __Pyx_GIVEREF(__pyx_tuple_); /* "numpy/random/mtrand.pyx":110 * cdef const char *name = "BitGenerator" * if not PyCapsule_IsValid(capsule, name): * raise ValueError("Invalid bit generator. The bit generator must " # <<<<<<<<<<<<<< * "be instantized.") * self._bitgen = ( PyCapsule_GetPointer(capsule, name))[0] */ __pyx_tuple__2 = PyTuple_Pack(1, __pyx_kp_u_Invalid_bit_generator_The_bit_ge); if (unlikely(!__pyx_tuple__2)) __PYX_ERR(0, 110, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__2); __Pyx_GIVEREF(__pyx_tuple__2); /* "numpy/random/mtrand.pyx":162 * """ * if not isinstance(self._bit_generator, _MT19937): * raise TypeError('can only re-seed a MT19937 BitGenerator') # <<<<<<<<<<<<<< * self._bit_generator._legacy_seeding(seed) * self._reset_gauss() */ __pyx_tuple__5 = PyTuple_Pack(1, __pyx_kp_u_can_only_re_seed_a_MT19937_BitGe); if (unlikely(!__pyx_tuple__5)) __PYX_ERR(0, 162, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__5); __Pyx_GIVEREF(__pyx_tuple__5); /* "numpy/random/mtrand.pyx":205 * st = self._bit_generator.state * if st['bit_generator'] != 'MT19937' and legacy: * warnings.warn('get_state and legacy can only be used with the ' # <<<<<<<<<<<<<< * 'MT19937 BitGenerator. To silence this warning, ' * 'set `legacy` to False.', RuntimeWarning) */ __pyx_tuple__6 = PyTuple_Pack(2, __pyx_kp_u_get_state_and_legacy_can_only_be, __pyx_builtin_RuntimeWarning); if (unlikely(!__pyx_tuple__6)) __PYX_ERR(0, 205, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__6); __Pyx_GIVEREF(__pyx_tuple__6); /* "numpy/random/mtrand.pyx":270 * if isinstance(state, dict): * if 'bit_generator' not in state or 'state' not in state: * raise ValueError('state dictionary is not valid.') # <<<<<<<<<<<<<< * st = state * else: */ __pyx_tuple__7 = PyTuple_Pack(1, __pyx_kp_u_state_dictionary_is_not_valid); if (unlikely(!__pyx_tuple__7)) __PYX_ERR(0, 270, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__7); __Pyx_GIVEREF(__pyx_tuple__7); /* "numpy/random/mtrand.pyx":274 * else: * if not isinstance(state, (tuple, list)): * raise TypeError('state must be a dict or a tuple.') # <<<<<<<<<<<<<< * if state[0] != 'MT19937': * raise ValueError('set_state can only be used with legacy MT19937' */ __pyx_tuple__8 = PyTuple_Pack(1, __pyx_kp_u_state_must_be_a_dict_or_a_tuple); if (unlikely(!__pyx_tuple__8)) __PYX_ERR(0, 274, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__8); __Pyx_GIVEREF(__pyx_tuple__8); /* "numpy/random/mtrand.pyx":276 * raise TypeError('state must be a dict or a tuple.') * if state[0] != 'MT19937': * raise ValueError('set_state can only be used with legacy MT19937' # <<<<<<<<<<<<<< * 'state instances.') * st = {'bit_generator': state[0], */ __pyx_tuple__9 = PyTuple_Pack(1, __pyx_kp_u_set_state_can_only_be_used_with); if (unlikely(!__pyx_tuple__9)) __PYX_ERR(0, 276, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__9); __Pyx_GIVEREF(__pyx_tuple__9); /* "numpy/random/mtrand.pyx":285 * value = st * * self._aug_state.gauss = st.get('gauss', 0.0) # <<<<<<<<<<<<<< * self._aug_state.has_gauss = st.get('has_gauss', 0) * self._bit_generator.state = st */ __pyx_tuple__10 = PyTuple_Pack(2, __pyx_n_u_gauss, __pyx_float_0_0); if (unlikely(!__pyx_tuple__10)) __PYX_ERR(0, 285, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__10); __Pyx_GIVEREF(__pyx_tuple__10); /* "numpy/random/mtrand.pyx":286 * * self._aug_state.gauss = st.get('gauss', 0.0) * self._aug_state.has_gauss = st.get('has_gauss', 0) # <<<<<<<<<<<<<< * self._bit_generator.state = st * */ __pyx_tuple__11 = PyTuple_Pack(2, __pyx_n_u_has_gauss, __pyx_int_0); if (unlikely(!__pyx_tuple__11)) __PYX_ERR(0, 286, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__11); __Pyx_GIVEREF(__pyx_tuple__11); /* "numpy/random/mtrand.pyx":518 * * if size is None: * with self.lock: # <<<<<<<<<<<<<< * return random_positive_int(&self._bitgen) * */ __pyx_tuple__13 = PyTuple_Pack(3, Py_None, Py_None, Py_None); if (unlikely(!__pyx_tuple__13)) __PYX_ERR(0, 518, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__13); __Pyx_GIVEREF(__pyx_tuple__13); /* "numpy/random/mtrand.pyx":614 * if not dt.isnative: * # numpy 1.17.0, 2019-05-28 * warnings.warn('Providing a dtype with a non-native byteorder is ' # <<<<<<<<<<<<<< * 'not supported. If you require platform-independent ' * 'byteorder, call byteswap when required.\nIn future ' */ __pyx_tuple__15 = PyTuple_Pack(2, __pyx_kp_u_Providing_a_dtype_with_a_non_nat, __pyx_builtin_DeprecationWarning); if (unlikely(!__pyx_tuple__15)) __PYX_ERR(0, 614, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__15); __Pyx_GIVEREF(__pyx_tuple__15); /* "numpy/random/mtrand.pyx":676 * # Interpret the uint32s as little-endian to convert them to bytes * # consistently. * return self.randint(0, 4294967296, size=n_uint32, # <<<<<<<<<<<<<< * dtype=np.uint32).astype(' atol: * raise ValueError("probabilities do not sum to 1") */ __pyx_tuple__24 = PyTuple_Pack(1, __pyx_kp_u_probabilities_are_not_non_negati); if (unlikely(!__pyx_tuple__24)) __PYX_ERR(0, 795, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__24); __Pyx_GIVEREF(__pyx_tuple__24); /* "numpy/random/mtrand.pyx":797 * raise ValueError("probabilities are not non-negative") * if abs(p_sum - 1.) > atol: * raise ValueError("probabilities do not sum to 1") # <<<<<<<<<<<<<< * * shape = size */ __pyx_tuple__25 = PyTuple_Pack(1, __pyx_kp_u_probabilities_do_not_sum_to_1); if (unlikely(!__pyx_tuple__25)) __PYX_ERR(0, 797, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__25); __Pyx_GIVEREF(__pyx_tuple__25); /* "numpy/random/mtrand.pyx":819 * else: * if size > pop_size: * raise ValueError("Cannot take a larger sample than " # <<<<<<<<<<<<<< * "population when 'replace=False'") * elif size < 0: */ __pyx_tuple__26 = PyTuple_Pack(1, __pyx_kp_u_Cannot_take_a_larger_sample_than); if (unlikely(!__pyx_tuple__26)) __PYX_ERR(0, 819, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__26); __Pyx_GIVEREF(__pyx_tuple__26); /* "numpy/random/mtrand.pyx":822 * "population when 'replace=False'") * elif size < 0: * raise ValueError("negative dimensions are not allowed") # <<<<<<<<<<<<<< * * if p is not None: */ __pyx_tuple__27 = PyTuple_Pack(1, __pyx_kp_u_negative_dimensions_are_not_allo); if (unlikely(!__pyx_tuple__27)) __PYX_ERR(0, 822, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__27); __Pyx_GIVEREF(__pyx_tuple__27); /* "numpy/random/mtrand.pyx":826 * if p is not None: * if np.count_nonzero(p > 0) < size: * raise ValueError("Fewer non-zero entries in p than size") # <<<<<<<<<<<<<< * n_uniq = 0 * p = p.copy() */ __pyx_tuple__28 = PyTuple_Pack(1, __pyx_kp_u_Fewer_non_zero_entries_in_p_than); if (unlikely(!__pyx_tuple__28)) __PYX_ERR(0, 826, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__28); __Pyx_GIVEREF(__pyx_tuple__28); /* "numpy/random/mtrand.pyx":863 * # array, taking into account that np.array(item) may not work * # for object arrays. * res = np.empty((), dtype=a.dtype) # <<<<<<<<<<<<<< * res[()] = a[idx] * return res */ __pyx_tuple__29 = PyTuple_Pack(1, __pyx_empty_tuple); if (unlikely(!__pyx_tuple__29)) __PYX_ERR(0, 863, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__29); __Pyx_GIVEREF(__pyx_tuple__29); /* "numpy/random/mtrand.pyx":959 * range = _high - _low * if not np.isfinite(range): * raise OverflowError('Range exceeds valid bounds') # <<<<<<<<<<<<<< * * return cont(&random_uniform, &self._bitgen, size, self.lock, 2, */ __pyx_tuple__30 = PyTuple_Pack(1, __pyx_kp_u_Range_exceeds_valid_bounds); if (unlikely(!__pyx_tuple__30)) __PYX_ERR(0, 959, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__30); __Pyx_GIVEREF(__pyx_tuple__30); /* "numpy/random/mtrand.pyx":2949 * * if fleft > fmode: * raise ValueError("left > mode") # <<<<<<<<<<<<<< * if fmode > fright: * raise ValueError("mode > right") */ __pyx_tuple__31 = PyTuple_Pack(1, __pyx_kp_u_left_mode); if (unlikely(!__pyx_tuple__31)) __PYX_ERR(0, 2949, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__31); __Pyx_GIVEREF(__pyx_tuple__31); /* "numpy/random/mtrand.pyx":2951 * raise ValueError("left > mode") * if fmode > fright: * raise ValueError("mode > right") # <<<<<<<<<<<<<< * if fleft == fright: * raise ValueError("left == right") */ __pyx_tuple__32 = PyTuple_Pack(1, __pyx_kp_u_mode_right); if (unlikely(!__pyx_tuple__32)) __PYX_ERR(0, 2951, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__32); __Pyx_GIVEREF(__pyx_tuple__32); /* "numpy/random/mtrand.pyx":2953 * raise ValueError("mode > right") * if fleft == fright: * raise ValueError("left == right") # <<<<<<<<<<<<<< * return cont(&random_triangular, &self._bitgen, size, self.lock, 3, * fleft, '', CONS_NONE, */ __pyx_tuple__33 = PyTuple_Pack(1, __pyx_kp_u_left_right); if (unlikely(!__pyx_tuple__33)) __PYX_ERR(0, 2953, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__33); __Pyx_GIVEREF(__pyx_tuple__33); /* "numpy/random/mtrand.pyx":3510 * * if lngood + lnbad < lnsample: * raise ValueError("ngood + nbad < nsample") # <<<<<<<<<<<<<< * out = disc(&legacy_random_hypergeometric, &self._bitgen, size, self.lock, 0, 3, * lngood, 'ngood', CONS_NON_NEGATIVE, */ __pyx_tuple__34 = PyTuple_Pack(1, __pyx_kp_u_ngood_nbad_nsample); if (unlikely(!__pyx_tuple__34)) __PYX_ERR(0, 3510, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__34); __Pyx_GIVEREF(__pyx_tuple__34); /* "numpy/random/mtrand.pyx":3729 * * if len(mean.shape) != 1: * raise ValueError("mean must be 1 dimensional") # <<<<<<<<<<<<<< * if (len(cov.shape) != 2) or (cov.shape[0] != cov.shape[1]): * raise ValueError("cov must be 2 dimensional and square") */ __pyx_tuple__35 = PyTuple_Pack(1, __pyx_kp_u_mean_must_be_1_dimensional); if (unlikely(!__pyx_tuple__35)) __PYX_ERR(0, 3729, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__35); __Pyx_GIVEREF(__pyx_tuple__35); /* "numpy/random/mtrand.pyx":3731 * raise ValueError("mean must be 1 dimensional") * if (len(cov.shape) != 2) or (cov.shape[0] != cov.shape[1]): * raise ValueError("cov must be 2 dimensional and square") # <<<<<<<<<<<<<< * if mean.shape[0] != cov.shape[0]: * raise ValueError("mean and cov must have same length") */ __pyx_tuple__36 = PyTuple_Pack(1, __pyx_kp_u_cov_must_be_2_dimensional_and_sq); if (unlikely(!__pyx_tuple__36)) __PYX_ERR(0, 3731, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__36); __Pyx_GIVEREF(__pyx_tuple__36); /* "numpy/random/mtrand.pyx":3733 * raise ValueError("cov must be 2 dimensional and square") * if mean.shape[0] != cov.shape[0]: * raise ValueError("mean and cov must have same length") # <<<<<<<<<<<<<< * * # Compute shape of output and create a matrix of independent */ __pyx_tuple__37 = PyTuple_Pack(1, __pyx_kp_u_mean_and_cov_must_have_same_leng); if (unlikely(!__pyx_tuple__37)) __PYX_ERR(0, 3733, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__37); __Pyx_GIVEREF(__pyx_tuple__37); /* "numpy/random/mtrand.pyx":3739 * # with the same length as mean and as many rows are necessary to * # form a matrix of shape final_shape. * final_shape = list(shape[:]) # <<<<<<<<<<<<<< * final_shape.append(mean.shape[0]) * x = self.standard_normal(final_shape).reshape(-1, mean.shape[0]) */ __pyx_slice__38 = PySlice_New(Py_None, Py_None, Py_None); if (unlikely(!__pyx_slice__38)) __PYX_ERR(0, 3739, __pyx_L1_error) __Pyx_GOTREF(__pyx_slice__38); __Pyx_GIVEREF(__pyx_slice__38); /* "numpy/random/mtrand.pyx":3763 * if check_valid != 'ignore': * if check_valid != 'warn' and check_valid != 'raise': * raise ValueError( # <<<<<<<<<<<<<< * "check_valid must equal 'warn', 'raise', or 'ignore'") * */ __pyx_tuple__39 = PyTuple_Pack(1, __pyx_kp_u_check_valid_must_equal_warn_rais); if (unlikely(!__pyx_tuple__39)) __PYX_ERR(0, 3763, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__39); __Pyx_GIVEREF(__pyx_tuple__39); /* "numpy/random/mtrand.pyx":3769 * if not psd: * if check_valid == 'warn': * warnings.warn("covariance is not positive-semidefinite.", # <<<<<<<<<<<<<< * RuntimeWarning) * else: */ __pyx_tuple__40 = PyTuple_Pack(2, __pyx_kp_u_covariance_is_not_positive_semid, __pyx_builtin_RuntimeWarning); if (unlikely(!__pyx_tuple__40)) __PYX_ERR(0, 3769, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__40); __Pyx_GIVEREF(__pyx_tuple__40); /* "numpy/random/mtrand.pyx":3772 * RuntimeWarning) * else: * raise ValueError( # <<<<<<<<<<<<<< * "covariance is not positive-semidefinite.") * */ __pyx_tuple__41 = PyTuple_Pack(1, __pyx_kp_u_covariance_is_not_positive_semid); if (unlikely(!__pyx_tuple__41)) __PYX_ERR(0, 3772, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__41); __Pyx_GIVEREF(__pyx_tuple__41); /* "numpy/random/mtrand.pyx":3775 * "covariance is not positive-semidefinite.") * * x = np.dot(x, np.sqrt(s)[:, None] * v) # <<<<<<<<<<<<<< * x += mean * x.shape = tuple(final_shape) */ __pyx_tuple__42 = PyTuple_Pack(2, __pyx_slice__38, Py_None); if (unlikely(!__pyx_tuple__42)) __PYX_ERR(0, 3775, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__42); __Pyx_GIVEREF(__pyx_tuple__42); /* "numpy/random/mtrand.pyx":3868 * check_array_constraint(parr, 'pvals', CONS_BOUNDED_0_1) * if kahan_sum(pix, d-1) > (1.0 + 1e-12): * raise ValueError("sum(pvals[:-1]) > 1.0") # <<<<<<<<<<<<<< * * if size is None: */ __pyx_tuple__43 = PyTuple_Pack(1, __pyx_kp_u_sum_pvals_1_1_0); if (unlikely(!__pyx_tuple__43)) __PYX_ERR(0, 3868, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__43); __Pyx_GIVEREF(__pyx_tuple__43); /* "numpy/random/mtrand.pyx":3999 * alpha, np.NPY_DOUBLE, np.NPY_ALIGNED | np.NPY_ARRAY_C_CONTIGUOUS) * if np.any(np.less_equal(alpha_arr, 0)): * raise ValueError('alpha <= 0') # <<<<<<<<<<<<<< * alpha_data = np.PyArray_DATA(alpha_arr) * */ __pyx_tuple__44 = PyTuple_Pack(1, __pyx_kp_u_alpha_0); if (unlikely(!__pyx_tuple__44)) __PYX_ERR(0, 3999, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__44); __Pyx_GIVEREF(__pyx_tuple__44); /* "numpy/random/mtrand.pyx":4094 * self._shuffle_raw(n, itemsize, stride, x_ptr, buf_ptr) * elif isinstance(x, np.ndarray) and x.ndim and x.size: * buf = np.empty_like(x[0, ...]) # <<<<<<<<<<<<<< * with self.lock: * for i in reversed(range(1, n)): */ __pyx_tuple__45 = PyTuple_Pack(2, __pyx_int_0, Py_Ellipsis); if (unlikely(!__pyx_tuple__45)) __PYX_ERR(0, 4094, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__45); __Pyx_GIVEREF(__pyx_tuple__45); /* "numpy/random/mtrand.pyx":4164 * arr = np.asarray(x) * if arr.ndim < 1: * raise IndexError("x must be an integer or at least 1-dimensional") # <<<<<<<<<<<<<< * * # shuffle has fast-path for 1-d */ __pyx_tuple__46 = PyTuple_Pack(1, __pyx_kp_u_x_must_be_an_integer_or_at_least); if (unlikely(!__pyx_tuple__46)) __PYX_ERR(0, 4164, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__46); __Pyx_GIVEREF(__pyx_tuple__46); /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":272 * if ((flags & pybuf.PyBUF_C_CONTIGUOUS == pybuf.PyBUF_C_CONTIGUOUS) * and not PyArray_CHKFLAGS(self, NPY_ARRAY_C_CONTIGUOUS)): * raise ValueError(u"ndarray is not C contiguous") # <<<<<<<<<<<<<< * * if ((flags & pybuf.PyBUF_F_CONTIGUOUS == pybuf.PyBUF_F_CONTIGUOUS) */ __pyx_tuple__47 = PyTuple_Pack(1, __pyx_kp_u_ndarray_is_not_C_contiguous); if (unlikely(!__pyx_tuple__47)) __PYX_ERR(1, 272, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__47); __Pyx_GIVEREF(__pyx_tuple__47); /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":276 * if ((flags & pybuf.PyBUF_F_CONTIGUOUS == pybuf.PyBUF_F_CONTIGUOUS) * and not PyArray_CHKFLAGS(self, NPY_ARRAY_F_CONTIGUOUS)): * raise ValueError(u"ndarray is not Fortran contiguous") # <<<<<<<<<<<<<< * * info.buf = PyArray_DATA(self) */ __pyx_tuple__48 = PyTuple_Pack(1, __pyx_kp_u_ndarray_is_not_Fortran_contiguou); if (unlikely(!__pyx_tuple__48)) __PYX_ERR(1, 276, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__48); __Pyx_GIVEREF(__pyx_tuple__48); /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":306 * if ((descr.byteorder == c'>' and little_endian) or * (descr.byteorder == c'<' and not little_endian)): * raise ValueError(u"Non-native byte order not supported") # <<<<<<<<<<<<<< * if t == NPY_BYTE: f = "b" * elif t == NPY_UBYTE: f = "B" */ __pyx_tuple__49 = PyTuple_Pack(1, __pyx_kp_u_Non_native_byte_order_not_suppor); if (unlikely(!__pyx_tuple__49)) __PYX_ERR(1, 306, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__49); __Pyx_GIVEREF(__pyx_tuple__49); /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":856 * * if (end - f) - (new_offset - offset[0]) < 15: * raise RuntimeError(u"Format string allocated too short, see comment in numpy.pxd") # <<<<<<<<<<<<<< * * if ((child.byteorder == c'>' and little_endian) or */ __pyx_tuple__50 = PyTuple_Pack(1, __pyx_kp_u_Format_string_allocated_too_shor); if (unlikely(!__pyx_tuple__50)) __PYX_ERR(1, 856, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__50); __Pyx_GIVEREF(__pyx_tuple__50); /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":880 * t = child.type_num * if end - f < 5: * raise RuntimeError(u"Format string allocated too short.") # <<<<<<<<<<<<<< * * # Until ticket #99 is fixed, use integers to avoid warnings */ __pyx_tuple__51 = PyTuple_Pack(1, __pyx_kp_u_Format_string_allocated_too_shor_2); if (unlikely(!__pyx_tuple__51)) __PYX_ERR(1, 880, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__51); __Pyx_GIVEREF(__pyx_tuple__51); /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1038 * _import_array() * except Exception: * raise ImportError("numpy.core.multiarray failed to import") # <<<<<<<<<<<<<< * * cdef inline int import_umath() except -1: */ __pyx_tuple__52 = PyTuple_Pack(1, __pyx_kp_u_numpy_core_multiarray_failed_to); if (unlikely(!__pyx_tuple__52)) __PYX_ERR(1, 1038, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__52); __Pyx_GIVEREF(__pyx_tuple__52); /* "../../../../.local/lib/python3.7/site-packages/Cython/Includes/numpy/__init__.pxd":1044 * _import_umath() * except Exception: * raise ImportError("numpy.core.umath failed to import") # <<<<<<<<<<<<<< * * cdef inline int import_ufunc() except -1: */ __pyx_tuple__53 = PyTuple_Pack(1, __pyx_kp_u_numpy_core_umath_failed_to_impor); if (unlikely(!__pyx_tuple__53)) __PYX_ERR(1, 1044, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__53); __Pyx_GIVEREF(__pyx_tuple__53); /* "numpy/random/mtrand.pyx":4231 * * # Old aliases that should not be removed * def sample(*args, **kwargs): # <<<<<<<<<<<<<< * """ * This is an alias of `random_sample`. See `random_sample` for the complete */ __pyx_tuple__54 = PyTuple_Pack(2, __pyx_n_s_args, __pyx_n_s_kwargs); if (unlikely(!__pyx_tuple__54)) __PYX_ERR(0, 4231, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__54); __Pyx_GIVEREF(__pyx_tuple__54); __pyx_codeobj__55 = (PyObject*)__Pyx_PyCode_New(0, 0, 2, 0, CO_OPTIMIZED|CO_NEWLOCALS|CO_VARARGS|CO_VARKEYWORDS, __pyx_empty_bytes, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_tuple__54, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_kp_s_mtrand_pyx, __pyx_n_s_sample, 4231, __pyx_empty_bytes); if (unlikely(!__pyx_codeobj__55)) __PYX_ERR(0, 4231, __pyx_L1_error) /* "numpy/random/mtrand.pyx":4238 * return _rand.random_sample(*args, **kwargs) * * def ranf(*args, **kwargs): # <<<<<<<<<<<<<< * """ * This is an alias of `random_sample`. See `random_sample` for the complete */ __pyx_tuple__56 = PyTuple_Pack(2, __pyx_n_s_args, __pyx_n_s_kwargs); if (unlikely(!__pyx_tuple__56)) __PYX_ERR(0, 4238, __pyx_L1_error) __Pyx_GOTREF(__pyx_tuple__56); __Pyx_GIVEREF(__pyx_tuple__56); __pyx_codeobj__57 = (PyObject*)__Pyx_PyCode_New(0, 0, 2, 0, CO_OPTIMIZED|CO_NEWLOCALS|CO_VARARGS|CO_VARKEYWORDS, __pyx_empty_bytes, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_tuple__56, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_kp_s_mtrand_pyx, __pyx_n_s_ranf, 4238, __pyx_empty_bytes); if (unlikely(!__pyx_codeobj__57)) __PYX_ERR(0, 4238, __pyx_L1_error) __Pyx_RefNannyFinishContext(); return 0; __pyx_L1_error:; __Pyx_RefNannyFinishContext(); return -1; } static CYTHON_SMALL_CODE int __Pyx_InitGlobals(void) { if (__Pyx_InitStrings(__pyx_string_tab) < 0) __PYX_ERR(0, 1, __pyx_L1_error); __pyx_float_0_0 = PyFloat_FromDouble(0.0); if (unlikely(!__pyx_float_0_0)) __PYX_ERR(0, 1, __pyx_L1_error) __pyx_float_1_0 = PyFloat_FromDouble(1.0); if (unlikely(!__pyx_float_1_0)) __PYX_ERR(0, 1, __pyx_L1_error) __pyx_float_1eneg_8 = PyFloat_FromDouble(1e-8); if (unlikely(!__pyx_float_1eneg_8)) __PYX_ERR(0, 1, __pyx_L1_error) __pyx_int_0 = PyInt_FromLong(0); if (unlikely(!__pyx_int_0)) __PYX_ERR(0, 1, __pyx_L1_error) __pyx_int_1 = PyInt_FromLong(1); if (unlikely(!__pyx_int_1)) __PYX_ERR(0, 1, __pyx_L1_error) __pyx_int_4294967296 = PyInt_FromString((char *)"4294967296", 0, 0); if (unlikely(!__pyx_int_4294967296)) __PYX_ERR(0, 1, __pyx_L1_error) __pyx_int_neg_1 = PyInt_FromLong(-1); if (unlikely(!__pyx_int_neg_1)) __PYX_ERR(0, 1, __pyx_L1_error) return 0; __pyx_L1_error:; return -1; } static CYTHON_SMALL_CODE int __Pyx_modinit_global_init_code(void); /*proto*/ static CYTHON_SMALL_CODE int __Pyx_modinit_variable_export_code(void); /*proto*/ static CYTHON_SMALL_CODE int __Pyx_modinit_function_export_code(void); /*proto*/ static CYTHON_SMALL_CODE int __Pyx_modinit_type_init_code(void); /*proto*/ static CYTHON_SMALL_CODE int __Pyx_modinit_type_import_code(void); /*proto*/ static CYTHON_SMALL_CODE int __Pyx_modinit_variable_import_code(void); /*proto*/ static CYTHON_SMALL_CODE int __Pyx_modinit_function_import_code(void); /*proto*/ static int __Pyx_modinit_global_init_code(void) { __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__Pyx_modinit_global_init_code", 0); /*--- Global init code ---*/ __Pyx_RefNannyFinishContext(); return 0; } static int __Pyx_modinit_variable_export_code(void) { __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__Pyx_modinit_variable_export_code", 0); /*--- Variable export code ---*/ __Pyx_RefNannyFinishContext(); return 0; } static int __Pyx_modinit_function_export_code(void) { __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__Pyx_modinit_function_export_code", 0); /*--- Function export code ---*/ __Pyx_RefNannyFinishContext(); return 0; } static int __Pyx_modinit_type_init_code(void) { __Pyx_RefNannyDeclarations __Pyx_RefNannySetupContext("__Pyx_modinit_type_init_code", 0); /*--- Type init code ---*/ __pyx_vtabptr_5numpy_6random_6mtrand_RandomState = &__pyx_vtable_5numpy_6random_6mtrand_RandomState; __pyx_vtable_5numpy_6random_6mtrand_RandomState._reset_gauss = (PyObject *(*)(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *))__pyx_f_5numpy_6random_6mtrand_11RandomState__reset_gauss; __pyx_vtable_5numpy_6random_6mtrand_RandomState._shuffle_raw = (PyObject *(*)(struct __pyx_obj_5numpy_6random_6mtrand_RandomState *, npy_intp, npy_intp, npy_intp, char *, char *))__pyx_f_5numpy_6random_6mtrand_11RandomState__shuffle_raw; if (PyType_Ready(&__pyx_type_5numpy_6random_6mtrand_RandomState) < 0) __PYX_ERR(0, 37, __pyx_L1_error) #if PY_VERSION_HEX < 0x030800B1 __pyx_type_5numpy_6random_6mtrand_RandomState.tp_print = 0; #endif if ((CYTHON_USE_TYPE_SLOTS && CYTHON_USE_PYTYPE_LOOKUP) && likely(!__pyx_type_5numpy_6random_6mtrand_RandomState.tp_dictoffset && __pyx_type_5numpy_6random_6mtrand_RandomState.tp_getattro == PyObject_GenericGetAttr)) { __pyx_type_5numpy_6random_6mtrand_RandomState.tp_getattro = __Pyx_PyObject_GenericGetAttr; } if (__Pyx_SetVtable(__pyx_type_5numpy_6random_6mtrand_RandomState.tp_dict, __pyx_vtabptr_5numpy_6random_6mtrand_RandomState) < 0) __PYX_ERR(0, 37, __pyx_L1_error) if (PyObject_SetAttr(__pyx_m, __pyx_n_s_RandomState, (PyObject *)&__pyx_type_5numpy_6random_6mtrand_RandomState) < 0) __PYX_ERR(0, 37, __pyx_L1_error) __pyx_ptype_5numpy_6random_6mtrand_RandomState = &__pyx_type_5numpy_6random_6mtrand_RandomState; __Pyx_RefNannyFinishContext(); return 0; __pyx_L1_error:; __Pyx_RefNannyFinishContext(); return -1; } static int __Pyx_modinit_type_import_code(void) { __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; __Pyx_RefNannySetupContext("__Pyx_modinit_type_import_code", 0); /*--- Type import code ---*/ __pyx_t_1 = PyImport_ImportModule(__Pyx_BUILTIN_MODULE_NAME); if (unlikely(!__pyx_t_1)) __PYX_ERR(2, 9, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_ptype_7cpython_4type_type = __Pyx_ImportType(__pyx_t_1, __Pyx_BUILTIN_MODULE_NAME, "type", #if defined(PYPY_VERSION_NUM) && PYPY_VERSION_NUM < 0x050B0000 sizeof(PyTypeObject), #else sizeof(PyHeapTypeObject), #endif __Pyx_ImportType_CheckSize_Warn); if (!__pyx_ptype_7cpython_4type_type) __PYX_ERR(2, 9, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = PyImport_ImportModule(__Pyx_BUILTIN_MODULE_NAME); if (unlikely(!__pyx_t_1)) __PYX_ERR(3, 8, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_ptype_7cpython_4bool_bool = __Pyx_ImportType(__pyx_t_1, __Pyx_BUILTIN_MODULE_NAME, "bool", sizeof(PyBoolObject), __Pyx_ImportType_CheckSize_Warn); if (!__pyx_ptype_7cpython_4bool_bool) __PYX_ERR(3, 8, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = PyImport_ImportModule(__Pyx_BUILTIN_MODULE_NAME); if (unlikely(!__pyx_t_1)) __PYX_ERR(4, 15, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_ptype_7cpython_7complex_complex = __Pyx_ImportType(__pyx_t_1, __Pyx_BUILTIN_MODULE_NAME, "complex", sizeof(PyComplexObject), __Pyx_ImportType_CheckSize_Warn); if (!__pyx_ptype_7cpython_7complex_complex) __PYX_ERR(4, 15, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = PyImport_ImportModule("numpy"); if (unlikely(!__pyx_t_1)) __PYX_ERR(1, 206, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_ptype_5numpy_dtype = __Pyx_ImportType(__pyx_t_1, "numpy", "dtype", sizeof(PyArray_Descr), __Pyx_ImportType_CheckSize_Ignore); if (!__pyx_ptype_5numpy_dtype) __PYX_ERR(1, 206, __pyx_L1_error) __pyx_ptype_5numpy_flatiter = __Pyx_ImportType(__pyx_t_1, "numpy", "flatiter", sizeof(PyArrayIterObject), __Pyx_ImportType_CheckSize_Warn); if (!__pyx_ptype_5numpy_flatiter) __PYX_ERR(1, 229, __pyx_L1_error) __pyx_ptype_5numpy_broadcast = __Pyx_ImportType(__pyx_t_1, "numpy", "broadcast", sizeof(PyArrayMultiIterObject), __Pyx_ImportType_CheckSize_Warn); if (!__pyx_ptype_5numpy_broadcast) __PYX_ERR(1, 233, __pyx_L1_error) __pyx_ptype_5numpy_ndarray = __Pyx_ImportType(__pyx_t_1, "numpy", "ndarray", sizeof(PyArrayObject), __Pyx_ImportType_CheckSize_Ignore); if (!__pyx_ptype_5numpy_ndarray) __PYX_ERR(1, 242, __pyx_L1_error) __pyx_ptype_5numpy_ufunc = __Pyx_ImportType(__pyx_t_1, "numpy", "ufunc", sizeof(PyUFuncObject), __Pyx_ImportType_CheckSize_Warn); if (!__pyx_ptype_5numpy_ufunc) __PYX_ERR(1, 918, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_RefNannyFinishContext(); return 0; __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_RefNannyFinishContext(); return -1; } static int __Pyx_modinit_variable_import_code(void) { __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; __Pyx_RefNannySetupContext("__Pyx_modinit_variable_import_code", 0); /*--- Variable import code ---*/ __pyx_t_1 = PyImport_ImportModule("numpy.random.common"); if (!__pyx_t_1) __PYX_ERR(0, 1, __pyx_L1_error) if (__Pyx_ImportVoidPtr(__pyx_t_1, "POISSON_LAM_MAX", (void **)&__pyx_vp_5numpy_6random_6common_POISSON_LAM_MAX, "double") < 0) __PYX_ERR(0, 1, __pyx_L1_error) if (__Pyx_ImportVoidPtr(__pyx_t_1, "LEGACY_POISSON_LAM_MAX", (void **)&__pyx_vp_5numpy_6random_6common_LEGACY_POISSON_LAM_MAX, "double") < 0) __PYX_ERR(0, 1, __pyx_L1_error) if (__Pyx_ImportVoidPtr(__pyx_t_1, "MAXSIZE", (void **)&__pyx_vp_5numpy_6random_6common_MAXSIZE, "uint64_t") < 0) __PYX_ERR(0, 1, __pyx_L1_error) Py_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_RefNannyFinishContext(); return 0; __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_RefNannyFinishContext(); return -1; } static int __Pyx_modinit_function_import_code(void) { __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; __Pyx_RefNannySetupContext("__Pyx_modinit_function_import_code", 0); /*--- Function import code ---*/ __pyx_t_1 = PyImport_ImportModule("numpy.random.common"); if (!__pyx_t_1) __PYX_ERR(0, 1, __pyx_L1_error) if (__Pyx_ImportFunction(__pyx_t_1, "check_constraint", (void (**)(void))&__pyx_f_5numpy_6random_6common_check_constraint, "int (double, PyObject *, __pyx_t_5numpy_6random_6common_constraint_type)") < 0) __PYX_ERR(0, 1, __pyx_L1_error) if (__Pyx_ImportFunction(__pyx_t_1, "check_array_constraint", (void (**)(void))&__pyx_f_5numpy_6random_6common_check_array_constraint, "int (PyArrayObject *, PyObject *, __pyx_t_5numpy_6random_6common_constraint_type)") < 0) __PYX_ERR(0, 1, __pyx_L1_error) if (__Pyx_ImportFunction(__pyx_t_1, "kahan_sum", (void (**)(void))&__pyx_f_5numpy_6random_6common_kahan_sum, "double (double *, npy_intp)") < 0) __PYX_ERR(0, 1, __pyx_L1_error) if (__Pyx_ImportFunction(__pyx_t_1, "double_fill", (void (**)(void))&__pyx_f_5numpy_6random_6common_double_fill, "PyObject *(void *, bitgen_t *, PyObject *, PyObject *, PyObject *)") < 0) __PYX_ERR(0, 1, __pyx_L1_error) if (__Pyx_ImportFunction(__pyx_t_1, "cont", (void (**)(void))&__pyx_f_5numpy_6random_6common_cont, "PyObject *(void *, void *, PyObject *, PyObject *, int, PyObject *, PyObject *, __pyx_t_5numpy_6random_6common_constraint_type, PyObject *, PyObject *, __pyx_t_5numpy_6random_6common_constraint_type, PyObject *, PyObject *, __pyx_t_5numpy_6random_6common_constraint_type, PyObject *)") < 0) __PYX_ERR(0, 1, __pyx_L1_error) if (__Pyx_ImportFunction(__pyx_t_1, "disc", (void (**)(void))&__pyx_f_5numpy_6random_6common_disc, "PyObject *(void *, void *, PyObject *, PyObject *, int, int, PyObject *, PyObject *, __pyx_t_5numpy_6random_6common_constraint_type, PyObject *, PyObject *, __pyx_t_5numpy_6random_6common_constraint_type, PyObject *, PyObject *, __pyx_t_5numpy_6random_6common_constraint_type)") < 0) __PYX_ERR(0, 1, __pyx_L1_error) if (__Pyx_ImportFunction(__pyx_t_1, "cont_broadcast_3", (void (**)(void))&__pyx_f_5numpy_6random_6common_cont_broadcast_3, "PyObject *(void *, void *, PyObject *, PyObject *, PyArrayObject *, PyObject *, __pyx_t_5numpy_6random_6common_constraint_type, PyArrayObject *, PyObject *, __pyx_t_5numpy_6random_6common_constraint_type, PyArrayObject *, PyObject *, __pyx_t_5numpy_6random_6common_constraint_type)") < 0) __PYX_ERR(0, 1, __pyx_L1_error) if (__Pyx_ImportFunction(__pyx_t_1, "discrete_broadcast_iii", (void (**)(void))&__pyx_f_5numpy_6random_6common_discrete_broadcast_iii, "PyObject *(void *, void *, PyObject *, PyObject *, PyArrayObject *, PyObject *, __pyx_t_5numpy_6random_6common_constraint_type, PyArrayObject *, PyObject *, __pyx_t_5numpy_6random_6common_constraint_type, PyArrayObject *, PyObject *, __pyx_t_5numpy_6random_6common_constraint_type)") < 0) __PYX_ERR(0, 1, __pyx_L1_error) Py_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_2 = PyImport_ImportModule("numpy.random.bounded_integers"); if (!__pyx_t_2) __PYX_ERR(0, 1, __pyx_L1_error) if (__Pyx_ImportFunction(__pyx_t_2, "_rand_uint64", (void (**)(void))&__pyx_f_5numpy_6random_16bounded_integers__rand_uint64, "PyObject *(PyObject *, PyObject *, PyObject *, int, int, bitgen_t *, PyObject *)") < 0) __PYX_ERR(0, 1, __pyx_L1_error) if (__Pyx_ImportFunction(__pyx_t_2, "_rand_uint32", (void (**)(void))&__pyx_f_5numpy_6random_16bounded_integers__rand_uint32, "PyObject *(PyObject *, PyObject *, PyObject *, int, int, bitgen_t *, PyObject *)") < 0) __PYX_ERR(0, 1, __pyx_L1_error) if (__Pyx_ImportFunction(__pyx_t_2, "_rand_uint16", (void (**)(void))&__pyx_f_5numpy_6random_16bounded_integers__rand_uint16, "PyObject *(PyObject *, PyObject *, PyObject *, int, int, bitgen_t *, PyObject *)") < 0) __PYX_ERR(0, 1, __pyx_L1_error) if (__Pyx_ImportFunction(__pyx_t_2, "_rand_uint8", (void (**)(void))&__pyx_f_5numpy_6random_16bounded_integers__rand_uint8, "PyObject *(PyObject *, PyObject *, PyObject *, int, int, bitgen_t *, PyObject *)") < 0) __PYX_ERR(0, 1, __pyx_L1_error) if (__Pyx_ImportFunction(__pyx_t_2, "_rand_bool", (void (**)(void))&__pyx_f_5numpy_6random_16bounded_integers__rand_bool, "PyObject *(PyObject *, PyObject *, PyObject *, int, int, bitgen_t *, PyObject *)") < 0) __PYX_ERR(0, 1, __pyx_L1_error) if (__Pyx_ImportFunction(__pyx_t_2, "_rand_int64", (void (**)(void))&__pyx_f_5numpy_6random_16bounded_integers__rand_int64, "PyObject *(PyObject *, PyObject *, PyObject *, int, int, bitgen_t *, PyObject *)") < 0) __PYX_ERR(0, 1, __pyx_L1_error) if (__Pyx_ImportFunction(__pyx_t_2, "_rand_int32", (void (**)(void))&__pyx_f_5numpy_6random_16bounded_integers__rand_int32, "PyObject *(PyObject *, PyObject *, PyObject *, int, int, bitgen_t *, PyObject *)") < 0) __PYX_ERR(0, 1, __pyx_L1_error) if (__Pyx_ImportFunction(__pyx_t_2, "_rand_int16", (void (**)(void))&__pyx_f_5numpy_6random_16bounded_integers__rand_int16, "PyObject *(PyObject *, PyObject *, PyObject *, int, int, bitgen_t *, PyObject *)") < 0) __PYX_ERR(0, 1, __pyx_L1_error) if (__Pyx_ImportFunction(__pyx_t_2, "_rand_int8", (void (**)(void))&__pyx_f_5numpy_6random_16bounded_integers__rand_int8, "PyObject *(PyObject *, PyObject *, PyObject *, int, int, bitgen_t *, PyObject *)") < 0) __PYX_ERR(0, 1, __pyx_L1_error) Py_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_RefNannyFinishContext(); return 0; __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); __Pyx_RefNannyFinishContext(); return -1; } #if PY_MAJOR_VERSION < 3 #ifdef CYTHON_NO_PYINIT_EXPORT #define __Pyx_PyMODINIT_FUNC void #else #define __Pyx_PyMODINIT_FUNC PyMODINIT_FUNC #endif #else #ifdef CYTHON_NO_PYINIT_EXPORT #define __Pyx_PyMODINIT_FUNC PyObject * #else #define __Pyx_PyMODINIT_FUNC PyMODINIT_FUNC #endif #endif #if PY_MAJOR_VERSION < 3 __Pyx_PyMODINIT_FUNC initmtrand(void) CYTHON_SMALL_CODE; /*proto*/ __Pyx_PyMODINIT_FUNC initmtrand(void) #else __Pyx_PyMODINIT_FUNC PyInit_mtrand(void) CYTHON_SMALL_CODE; /*proto*/ __Pyx_PyMODINIT_FUNC PyInit_mtrand(void) #if CYTHON_PEP489_MULTI_PHASE_INIT { return PyModuleDef_Init(&__pyx_moduledef); } static CYTHON_SMALL_CODE int __Pyx_check_single_interpreter(void) { #if PY_VERSION_HEX >= 0x030700A1 static PY_INT64_T main_interpreter_id = -1; PY_INT64_T current_id = PyInterpreterState_GetID(PyThreadState_Get()->interp); if (main_interpreter_id == -1) { main_interpreter_id = current_id; return (unlikely(current_id == -1)) ? -1 : 0; } else if (unlikely(main_interpreter_id != current_id)) #else static PyInterpreterState *main_interpreter = NULL; PyInterpreterState *current_interpreter = PyThreadState_Get()->interp; if (!main_interpreter) { main_interpreter = current_interpreter; } else if (unlikely(main_interpreter != current_interpreter)) #endif { PyErr_SetString( PyExc_ImportError, "Interpreter change detected - this module can only be loaded into one interpreter per process."); return -1; } return 0; } static CYTHON_SMALL_CODE int __Pyx_copy_spec_to_module(PyObject *spec, PyObject *moddict, const char* from_name, const char* to_name, int allow_none) { PyObject *value = PyObject_GetAttrString(spec, from_name); int result = 0; if (likely(value)) { if (allow_none || value != Py_None) { result = PyDict_SetItemString(moddict, to_name, value); } Py_DECREF(value); } else if (PyErr_ExceptionMatches(PyExc_AttributeError)) { PyErr_Clear(); } else { result = -1; } return result; } static CYTHON_SMALL_CODE PyObject* __pyx_pymod_create(PyObject *spec, CYTHON_UNUSED PyModuleDef *def) { PyObject *module = NULL, *moddict, *modname; if (__Pyx_check_single_interpreter()) return NULL; if (__pyx_m) return __Pyx_NewRef(__pyx_m); modname = PyObject_GetAttrString(spec, "name"); if (unlikely(!modname)) goto bad; module = PyModule_NewObject(modname); Py_DECREF(modname); if (unlikely(!module)) goto bad; moddict = PyModule_GetDict(module); if (unlikely(!moddict)) goto bad; if (unlikely(__Pyx_copy_spec_to_module(spec, moddict, "loader", "__loader__", 1) < 0)) goto bad; if (unlikely(__Pyx_copy_spec_to_module(spec, moddict, "origin", "__file__", 1) < 0)) goto bad; if (unlikely(__Pyx_copy_spec_to_module(spec, moddict, "parent", "__package__", 1) < 0)) goto bad; if (unlikely(__Pyx_copy_spec_to_module(spec, moddict, "submodule_search_locations", "__path__", 0) < 0)) goto bad; return module; bad: Py_XDECREF(module); return NULL; } static CYTHON_SMALL_CODE int __pyx_pymod_exec_mtrand(PyObject *__pyx_pyinit_module) #endif #endif { PyObject *__pyx_t_1 = NULL; PyObject *__pyx_t_2 = NULL; int __pyx_t_3; __Pyx_RefNannyDeclarations #if CYTHON_PEP489_MULTI_PHASE_INIT if (__pyx_m) { if (__pyx_m == __pyx_pyinit_module) return 0; PyErr_SetString(PyExc_RuntimeError, "Module 'mtrand' has already been imported. Re-initialisation is not supported."); return -1; } #elif PY_MAJOR_VERSION >= 3 if (__pyx_m) return __Pyx_NewRef(__pyx_m); #endif #if CYTHON_REFNANNY __Pyx_RefNanny = __Pyx_RefNannyImportAPI("refnanny"); if (!__Pyx_RefNanny) { PyErr_Clear(); __Pyx_RefNanny = __Pyx_RefNannyImportAPI("Cython.Runtime.refnanny"); if (!__Pyx_RefNanny) Py_FatalError("failed to import 'refnanny' module"); } #endif __Pyx_RefNannySetupContext("__Pyx_PyMODINIT_FUNC PyInit_mtrand(void)", 0); if (__Pyx_check_binary_version() < 0) __PYX_ERR(0, 1, __pyx_L1_error) #ifdef __Pxy_PyFrame_Initialize_Offsets __Pxy_PyFrame_Initialize_Offsets(); #endif __pyx_empty_tuple = PyTuple_New(0); if (unlikely(!__pyx_empty_tuple)) __PYX_ERR(0, 1, __pyx_L1_error) __pyx_empty_bytes = PyBytes_FromStringAndSize("", 0); if (unlikely(!__pyx_empty_bytes)) __PYX_ERR(0, 1, __pyx_L1_error) __pyx_empty_unicode = PyUnicode_FromStringAndSize("", 0); if (unlikely(!__pyx_empty_unicode)) __PYX_ERR(0, 1, __pyx_L1_error) #ifdef __Pyx_CyFunction_USED if (__pyx_CyFunction_init() < 0) __PYX_ERR(0, 1, __pyx_L1_error) #endif #ifdef __Pyx_FusedFunction_USED if (__pyx_FusedFunction_init() < 0) __PYX_ERR(0, 1, __pyx_L1_error) #endif #ifdef __Pyx_Coroutine_USED if (__pyx_Coroutine_init() < 0) __PYX_ERR(0, 1, __pyx_L1_error) #endif #ifdef __Pyx_Generator_USED if (__pyx_Generator_init() < 0) __PYX_ERR(0, 1, __pyx_L1_error) #endif #ifdef __Pyx_AsyncGen_USED if (__pyx_AsyncGen_init() < 0) __PYX_ERR(0, 1, __pyx_L1_error) #endif #ifdef __Pyx_StopAsyncIteration_USED if (__pyx_StopAsyncIteration_init() < 0) __PYX_ERR(0, 1, __pyx_L1_error) #endif /*--- Library function declarations ---*/ /*--- Threads initialization code ---*/ #if defined(__PYX_FORCE_INIT_THREADS) && __PYX_FORCE_INIT_THREADS #ifdef WITH_THREAD /* Python build with threading support? */ PyEval_InitThreads(); #endif #endif /*--- Module creation code ---*/ #if CYTHON_PEP489_MULTI_PHASE_INIT __pyx_m = __pyx_pyinit_module; Py_INCREF(__pyx_m); #else #if PY_MAJOR_VERSION < 3 __pyx_m = Py_InitModule4("mtrand", __pyx_methods, 0, 0, PYTHON_API_VERSION); Py_XINCREF(__pyx_m); #else __pyx_m = PyModule_Create(&__pyx_moduledef); #endif if (unlikely(!__pyx_m)) __PYX_ERR(0, 1, __pyx_L1_error) #endif __pyx_d = PyModule_GetDict(__pyx_m); if (unlikely(!__pyx_d)) __PYX_ERR(0, 1, __pyx_L1_error) Py_INCREF(__pyx_d); __pyx_b = PyImport_AddModule(__Pyx_BUILTIN_MODULE_NAME); if (unlikely(!__pyx_b)) __PYX_ERR(0, 1, __pyx_L1_error) Py_INCREF(__pyx_b); __pyx_cython_runtime = PyImport_AddModule((char *) "cython_runtime"); if (unlikely(!__pyx_cython_runtime)) __PYX_ERR(0, 1, __pyx_L1_error) Py_INCREF(__pyx_cython_runtime); if (PyObject_SetAttrString(__pyx_m, "__builtins__", __pyx_b) < 0) __PYX_ERR(0, 1, __pyx_L1_error); /*--- Initialize various global constants etc. ---*/ if (__Pyx_InitGlobals() < 0) __PYX_ERR(0, 1, __pyx_L1_error) #if PY_MAJOR_VERSION < 3 && (__PYX_DEFAULT_STRING_ENCODING_IS_ASCII || __PYX_DEFAULT_STRING_ENCODING_IS_DEFAULT) if (__Pyx_init_sys_getdefaultencoding_params() < 0) __PYX_ERR(0, 1, __pyx_L1_error) #endif if (__pyx_module_is_main_numpy__random__mtrand) { if (PyObject_SetAttr(__pyx_m, __pyx_n_s_name, __pyx_n_s_main) < 0) __PYX_ERR(0, 1, __pyx_L1_error) } #if PY_MAJOR_VERSION >= 3 { PyObject *modules = PyImport_GetModuleDict(); if (unlikely(!modules)) __PYX_ERR(0, 1, __pyx_L1_error) if (!PyDict_GetItemString(modules, "numpy.random.mtrand")) { if (unlikely(PyDict_SetItemString(modules, "numpy.random.mtrand", __pyx_m) < 0)) __PYX_ERR(0, 1, __pyx_L1_error) } } #endif /*--- Builtin init code ---*/ if (__Pyx_InitCachedBuiltins() < 0) goto __pyx_L1_error; /*--- Constants init code ---*/ if (__Pyx_InitCachedConstants() < 0) goto __pyx_L1_error; /*--- Global type/function init code ---*/ (void)__Pyx_modinit_global_init_code(); (void)__Pyx_modinit_variable_export_code(); (void)__Pyx_modinit_function_export_code(); if (unlikely(__Pyx_modinit_type_init_code() != 0)) goto __pyx_L1_error; if (unlikely(__Pyx_modinit_type_import_code() != 0)) goto __pyx_L1_error; if (unlikely(__Pyx_modinit_variable_import_code() != 0)) goto __pyx_L1_error; if (unlikely(__Pyx_modinit_function_import_code() != 0)) goto __pyx_L1_error; /*--- Execution code ---*/ #if defined(__Pyx_Generator_USED) || defined(__Pyx_Coroutine_USED) if (__Pyx_patch_abc() < 0) __PYX_ERR(0, 1, __pyx_L1_error) #endif /* "numpy/random/mtrand.pyx":3 * #!python * #cython: wraparound=False, nonecheck=False, boundscheck=False, cdivision=True, language_level=3 * import operator # <<<<<<<<<<<<<< * import warnings * */ __pyx_t_1 = __Pyx_Import(__pyx_n_s_operator, 0, 0); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 3, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); if (PyDict_SetItem(__pyx_d, __pyx_n_s_operator, __pyx_t_1) < 0) __PYX_ERR(0, 3, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "numpy/random/mtrand.pyx":4 * #cython: wraparound=False, nonecheck=False, boundscheck=False, cdivision=True, language_level=3 * import operator * import warnings # <<<<<<<<<<<<<< * * import numpy as np */ __pyx_t_1 = __Pyx_Import(__pyx_n_s_warnings, 0, 0); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 4, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); if (PyDict_SetItem(__pyx_d, __pyx_n_s_warnings, __pyx_t_1) < 0) __PYX_ERR(0, 4, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "numpy/random/mtrand.pyx":6 * import warnings * * import numpy as np # <<<<<<<<<<<<<< * * from .bounded_integers import _integers_types */ __pyx_t_1 = __Pyx_Import(__pyx_n_s_numpy, 0, 0); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 6, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); if (PyDict_SetItem(__pyx_d, __pyx_n_s_np, __pyx_t_1) < 0) __PYX_ERR(0, 6, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "numpy/random/mtrand.pyx":8 * import numpy as np * * from .bounded_integers import _integers_types # <<<<<<<<<<<<<< * from .mt19937 import MT19937 as _MT19937 * from cpython.pycapsule cimport PyCapsule_IsValid, PyCapsule_GetPointer */ __pyx_t_1 = PyList_New(1); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 8, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_INCREF(__pyx_n_s_integers_types); __Pyx_GIVEREF(__pyx_n_s_integers_types); PyList_SET_ITEM(__pyx_t_1, 0, __pyx_n_s_integers_types); __pyx_t_2 = __Pyx_Import(__pyx_n_s_bounded_integers, __pyx_t_1, 1); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 8, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __pyx_t_1 = __Pyx_ImportFrom(__pyx_t_2, __pyx_n_s_integers_types); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 8, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); if (PyDict_SetItem(__pyx_d, __pyx_n_s_integers_types, __pyx_t_1) < 0) __PYX_ERR(0, 8, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; /* "numpy/random/mtrand.pyx":9 * * from .bounded_integers import _integers_types * from .mt19937 import MT19937 as _MT19937 # <<<<<<<<<<<<<< * from cpython.pycapsule cimport PyCapsule_IsValid, PyCapsule_GetPointer * from cpython cimport (Py_INCREF, PyFloat_AsDouble) */ __pyx_t_2 = PyList_New(1); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 9, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_INCREF(__pyx_n_s_MT19937_2); __Pyx_GIVEREF(__pyx_n_s_MT19937_2); PyList_SET_ITEM(__pyx_t_2, 0, __pyx_n_s_MT19937_2); __pyx_t_1 = __Pyx_Import(__pyx_n_s_mt19937, __pyx_t_2, 1); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 9, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __pyx_t_2 = __Pyx_ImportFrom(__pyx_t_1, __pyx_n_s_MT19937_2); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 9, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); if (PyDict_SetItem(__pyx_d, __pyx_n_s_MT19937, __pyx_t_2) < 0) __PYX_ERR(0, 9, __pyx_L1_error) __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "numpy/random/mtrand.pyx":22 * from .legacy_distributions cimport * * * np.import_array() # <<<<<<<<<<<<<< * * cdef object int64_to_long(object x): */ __pyx_t_3 = __pyx_f_5numpy_import_array(); if (unlikely(__pyx_t_3 == ((int)-1))) __PYX_ERR(0, 22, __pyx_L1_error) /* "numpy/random/mtrand.pyx":95 * cdef binomial_t _binomial * cdef object lock * _poisson_lam_max = POISSON_LAM_MAX # <<<<<<<<<<<<<< * * def __init__(self, seed=None): */ __pyx_t_1 = PyFloat_FromDouble(__pyx_v_5numpy_6random_6common_POISSON_LAM_MAX); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 95, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); if (PyDict_SetItem((PyObject *)__pyx_ptype_5numpy_6random_6mtrand_RandomState->tp_dict, __pyx_n_s_poisson_lam_max, __pyx_t_1) < 0) __PYX_ERR(0, 95, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; PyType_Modified(__pyx_ptype_5numpy_6random_6mtrand_RandomState); /* "numpy/random/mtrand.pyx":530 * return randoms * * def randint(self, low, high=None, size=None, dtype=int): # <<<<<<<<<<<<<< * """ * randint(low, high=None, size=None, dtype='l') */ __Pyx_INCREF(((PyObject *)(&PyInt_Type))); __pyx_k__14 = ((PyObject *)(&PyInt_Type)); __Pyx_GIVEREF((&PyInt_Type)); /* "numpy/random/mtrand.pyx":4179 * return arr[idx] * * _rand = RandomState() # <<<<<<<<<<<<<< * * beta = _rand.beta */ __pyx_t_1 = __Pyx_PyObject_CallNoArg(((PyObject *)__pyx_ptype_5numpy_6random_6mtrand_RandomState)); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 4179, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); if (PyDict_SetItem(__pyx_d, __pyx_n_s_rand_2, __pyx_t_1) < 0) __PYX_ERR(0, 4179, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "numpy/random/mtrand.pyx":4181 * _rand = RandomState() * * beta = _rand.beta # <<<<<<<<<<<<<< * binomial = _rand.binomial * bytes = _rand.bytes */ __Pyx_GetModuleGlobalName(__pyx_t_1, __pyx_n_s_rand_2); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 4181, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_beta); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 4181, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; if (PyDict_SetItem(__pyx_d, __pyx_n_s_beta, __pyx_t_2) < 0) __PYX_ERR(0, 4181, __pyx_L1_error) __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; /* "numpy/random/mtrand.pyx":4182 * * beta = _rand.beta * binomial = _rand.binomial # <<<<<<<<<<<<<< * bytes = _rand.bytes * chisquare = _rand.chisquare */ __Pyx_GetModuleGlobalName(__pyx_t_2, __pyx_n_s_rand_2); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 4182, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_binomial); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 4182, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; if (PyDict_SetItem(__pyx_d, __pyx_n_s_binomial, __pyx_t_1) < 0) __PYX_ERR(0, 4182, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "numpy/random/mtrand.pyx":4183 * beta = _rand.beta * binomial = _rand.binomial * bytes = _rand.bytes # <<<<<<<<<<<<<< * chisquare = _rand.chisquare * choice = _rand.choice */ __Pyx_GetModuleGlobalName(__pyx_t_1, __pyx_n_s_rand_2); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 4183, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_bytes); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 4183, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; if (PyDict_SetItem(__pyx_d, __pyx_n_s_bytes, __pyx_t_2) < 0) __PYX_ERR(0, 4183, __pyx_L1_error) __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; /* "numpy/random/mtrand.pyx":4184 * binomial = _rand.binomial * bytes = _rand.bytes * chisquare = _rand.chisquare # <<<<<<<<<<<<<< * choice = _rand.choice * dirichlet = _rand.dirichlet */ __Pyx_GetModuleGlobalName(__pyx_t_2, __pyx_n_s_rand_2); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 4184, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_chisquare); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 4184, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; if (PyDict_SetItem(__pyx_d, __pyx_n_s_chisquare, __pyx_t_1) < 0) __PYX_ERR(0, 4184, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "numpy/random/mtrand.pyx":4185 * bytes = _rand.bytes * chisquare = _rand.chisquare * choice = _rand.choice # <<<<<<<<<<<<<< * dirichlet = _rand.dirichlet * exponential = _rand.exponential */ __Pyx_GetModuleGlobalName(__pyx_t_1, __pyx_n_s_rand_2); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 4185, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_choice); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 4185, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; if (PyDict_SetItem(__pyx_d, __pyx_n_s_choice, __pyx_t_2) < 0) __PYX_ERR(0, 4185, __pyx_L1_error) __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; /* "numpy/random/mtrand.pyx":4186 * chisquare = _rand.chisquare * choice = _rand.choice * dirichlet = _rand.dirichlet # <<<<<<<<<<<<<< * exponential = _rand.exponential * f = _rand.f */ __Pyx_GetModuleGlobalName(__pyx_t_2, __pyx_n_s_rand_2); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 4186, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_dirichlet); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 4186, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; if (PyDict_SetItem(__pyx_d, __pyx_n_s_dirichlet, __pyx_t_1) < 0) __PYX_ERR(0, 4186, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "numpy/random/mtrand.pyx":4187 * choice = _rand.choice * dirichlet = _rand.dirichlet * exponential = _rand.exponential # <<<<<<<<<<<<<< * f = _rand.f * gamma = _rand.gamma */ __Pyx_GetModuleGlobalName(__pyx_t_1, __pyx_n_s_rand_2); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 4187, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_exponential); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 4187, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; if (PyDict_SetItem(__pyx_d, __pyx_n_s_exponential, __pyx_t_2) < 0) __PYX_ERR(0, 4187, __pyx_L1_error) __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; /* "numpy/random/mtrand.pyx":4188 * dirichlet = _rand.dirichlet * exponential = _rand.exponential * f = _rand.f # <<<<<<<<<<<<<< * gamma = _rand.gamma * get_state = _rand.get_state */ __Pyx_GetModuleGlobalName(__pyx_t_2, __pyx_n_s_rand_2); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 4188, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_f); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 4188, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; if (PyDict_SetItem(__pyx_d, __pyx_n_s_f, __pyx_t_1) < 0) __PYX_ERR(0, 4188, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "numpy/random/mtrand.pyx":4189 * exponential = _rand.exponential * f = _rand.f * gamma = _rand.gamma # <<<<<<<<<<<<<< * get_state = _rand.get_state * geometric = _rand.geometric */ __Pyx_GetModuleGlobalName(__pyx_t_1, __pyx_n_s_rand_2); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 4189, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_gamma); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 4189, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; if (PyDict_SetItem(__pyx_d, __pyx_n_s_gamma, __pyx_t_2) < 0) __PYX_ERR(0, 4189, __pyx_L1_error) __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; /* "numpy/random/mtrand.pyx":4190 * f = _rand.f * gamma = _rand.gamma * get_state = _rand.get_state # <<<<<<<<<<<<<< * geometric = _rand.geometric * gumbel = _rand.gumbel */ __Pyx_GetModuleGlobalName(__pyx_t_2, __pyx_n_s_rand_2); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 4190, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_get_state); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 4190, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; if (PyDict_SetItem(__pyx_d, __pyx_n_s_get_state, __pyx_t_1) < 0) __PYX_ERR(0, 4190, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "numpy/random/mtrand.pyx":4191 * gamma = _rand.gamma * get_state = _rand.get_state * geometric = _rand.geometric # <<<<<<<<<<<<<< * gumbel = _rand.gumbel * hypergeometric = _rand.hypergeometric */ __Pyx_GetModuleGlobalName(__pyx_t_1, __pyx_n_s_rand_2); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 4191, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_geometric); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 4191, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; if (PyDict_SetItem(__pyx_d, __pyx_n_s_geometric, __pyx_t_2) < 0) __PYX_ERR(0, 4191, __pyx_L1_error) __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; /* "numpy/random/mtrand.pyx":4192 * get_state = _rand.get_state * geometric = _rand.geometric * gumbel = _rand.gumbel # <<<<<<<<<<<<<< * hypergeometric = _rand.hypergeometric * laplace = _rand.laplace */ __Pyx_GetModuleGlobalName(__pyx_t_2, __pyx_n_s_rand_2); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 4192, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_gumbel); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 4192, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; if (PyDict_SetItem(__pyx_d, __pyx_n_s_gumbel, __pyx_t_1) < 0) __PYX_ERR(0, 4192, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "numpy/random/mtrand.pyx":4193 * geometric = _rand.geometric * gumbel = _rand.gumbel * hypergeometric = _rand.hypergeometric # <<<<<<<<<<<<<< * laplace = _rand.laplace * logistic = _rand.logistic */ __Pyx_GetModuleGlobalName(__pyx_t_1, __pyx_n_s_rand_2); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 4193, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_hypergeometric); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 4193, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; if (PyDict_SetItem(__pyx_d, __pyx_n_s_hypergeometric, __pyx_t_2) < 0) __PYX_ERR(0, 4193, __pyx_L1_error) __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; /* "numpy/random/mtrand.pyx":4194 * gumbel = _rand.gumbel * hypergeometric = _rand.hypergeometric * laplace = _rand.laplace # <<<<<<<<<<<<<< * logistic = _rand.logistic * lognormal = _rand.lognormal */ __Pyx_GetModuleGlobalName(__pyx_t_2, __pyx_n_s_rand_2); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 4194, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_laplace); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 4194, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; if (PyDict_SetItem(__pyx_d, __pyx_n_s_laplace, __pyx_t_1) < 0) __PYX_ERR(0, 4194, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "numpy/random/mtrand.pyx":4195 * hypergeometric = _rand.hypergeometric * laplace = _rand.laplace * logistic = _rand.logistic # <<<<<<<<<<<<<< * lognormal = _rand.lognormal * logseries = _rand.logseries */ __Pyx_GetModuleGlobalName(__pyx_t_1, __pyx_n_s_rand_2); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 4195, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_logistic); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 4195, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; if (PyDict_SetItem(__pyx_d, __pyx_n_s_logistic, __pyx_t_2) < 0) __PYX_ERR(0, 4195, __pyx_L1_error) __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; /* "numpy/random/mtrand.pyx":4196 * laplace = _rand.laplace * logistic = _rand.logistic * lognormal = _rand.lognormal # <<<<<<<<<<<<<< * logseries = _rand.logseries * multinomial = _rand.multinomial */ __Pyx_GetModuleGlobalName(__pyx_t_2, __pyx_n_s_rand_2); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 4196, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_lognormal); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 4196, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; if (PyDict_SetItem(__pyx_d, __pyx_n_s_lognormal, __pyx_t_1) < 0) __PYX_ERR(0, 4196, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "numpy/random/mtrand.pyx":4197 * logistic = _rand.logistic * lognormal = _rand.lognormal * logseries = _rand.logseries # <<<<<<<<<<<<<< * multinomial = _rand.multinomial * multivariate_normal = _rand.multivariate_normal */ __Pyx_GetModuleGlobalName(__pyx_t_1, __pyx_n_s_rand_2); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 4197, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_logseries); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 4197, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; if (PyDict_SetItem(__pyx_d, __pyx_n_s_logseries, __pyx_t_2) < 0) __PYX_ERR(0, 4197, __pyx_L1_error) __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; /* "numpy/random/mtrand.pyx":4198 * lognormal = _rand.lognormal * logseries = _rand.logseries * multinomial = _rand.multinomial # <<<<<<<<<<<<<< * multivariate_normal = _rand.multivariate_normal * negative_binomial = _rand.negative_binomial */ __Pyx_GetModuleGlobalName(__pyx_t_2, __pyx_n_s_rand_2); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 4198, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_multinomial); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 4198, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; if (PyDict_SetItem(__pyx_d, __pyx_n_s_multinomial, __pyx_t_1) < 0) __PYX_ERR(0, 4198, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "numpy/random/mtrand.pyx":4199 * logseries = _rand.logseries * multinomial = _rand.multinomial * multivariate_normal = _rand.multivariate_normal # <<<<<<<<<<<<<< * negative_binomial = _rand.negative_binomial * noncentral_chisquare = _rand.noncentral_chisquare */ __Pyx_GetModuleGlobalName(__pyx_t_1, __pyx_n_s_rand_2); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 4199, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_multivariate_normal); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 4199, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; if (PyDict_SetItem(__pyx_d, __pyx_n_s_multivariate_normal, __pyx_t_2) < 0) __PYX_ERR(0, 4199, __pyx_L1_error) __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; /* "numpy/random/mtrand.pyx":4200 * multinomial = _rand.multinomial * multivariate_normal = _rand.multivariate_normal * negative_binomial = _rand.negative_binomial # <<<<<<<<<<<<<< * noncentral_chisquare = _rand.noncentral_chisquare * noncentral_f = _rand.noncentral_f */ __Pyx_GetModuleGlobalName(__pyx_t_2, __pyx_n_s_rand_2); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 4200, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_negative_binomial); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 4200, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; if (PyDict_SetItem(__pyx_d, __pyx_n_s_negative_binomial, __pyx_t_1) < 0) __PYX_ERR(0, 4200, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "numpy/random/mtrand.pyx":4201 * multivariate_normal = _rand.multivariate_normal * negative_binomial = _rand.negative_binomial * noncentral_chisquare = _rand.noncentral_chisquare # <<<<<<<<<<<<<< * noncentral_f = _rand.noncentral_f * normal = _rand.normal */ __Pyx_GetModuleGlobalName(__pyx_t_1, __pyx_n_s_rand_2); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 4201, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_noncentral_chisquare); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 4201, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; if (PyDict_SetItem(__pyx_d, __pyx_n_s_noncentral_chisquare, __pyx_t_2) < 0) __PYX_ERR(0, 4201, __pyx_L1_error) __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; /* "numpy/random/mtrand.pyx":4202 * negative_binomial = _rand.negative_binomial * noncentral_chisquare = _rand.noncentral_chisquare * noncentral_f = _rand.noncentral_f # <<<<<<<<<<<<<< * normal = _rand.normal * pareto = _rand.pareto */ __Pyx_GetModuleGlobalName(__pyx_t_2, __pyx_n_s_rand_2); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 4202, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_noncentral_f); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 4202, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; if (PyDict_SetItem(__pyx_d, __pyx_n_s_noncentral_f, __pyx_t_1) < 0) __PYX_ERR(0, 4202, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "numpy/random/mtrand.pyx":4203 * noncentral_chisquare = _rand.noncentral_chisquare * noncentral_f = _rand.noncentral_f * normal = _rand.normal # <<<<<<<<<<<<<< * pareto = _rand.pareto * permutation = _rand.permutation */ __Pyx_GetModuleGlobalName(__pyx_t_1, __pyx_n_s_rand_2); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 4203, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_normal); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 4203, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; if (PyDict_SetItem(__pyx_d, __pyx_n_s_normal, __pyx_t_2) < 0) __PYX_ERR(0, 4203, __pyx_L1_error) __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; /* "numpy/random/mtrand.pyx":4204 * noncentral_f = _rand.noncentral_f * normal = _rand.normal * pareto = _rand.pareto # <<<<<<<<<<<<<< * permutation = _rand.permutation * poisson = _rand.poisson */ __Pyx_GetModuleGlobalName(__pyx_t_2, __pyx_n_s_rand_2); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 4204, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_pareto); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 4204, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; if (PyDict_SetItem(__pyx_d, __pyx_n_s_pareto, __pyx_t_1) < 0) __PYX_ERR(0, 4204, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "numpy/random/mtrand.pyx":4205 * normal = _rand.normal * pareto = _rand.pareto * permutation = _rand.permutation # <<<<<<<<<<<<<< * poisson = _rand.poisson * power = _rand.power */ __Pyx_GetModuleGlobalName(__pyx_t_1, __pyx_n_s_rand_2); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 4205, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_permutation); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 4205, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; if (PyDict_SetItem(__pyx_d, __pyx_n_s_permutation, __pyx_t_2) < 0) __PYX_ERR(0, 4205, __pyx_L1_error) __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; /* "numpy/random/mtrand.pyx":4206 * pareto = _rand.pareto * permutation = _rand.permutation * poisson = _rand.poisson # <<<<<<<<<<<<<< * power = _rand.power * rand = _rand.rand */ __Pyx_GetModuleGlobalName(__pyx_t_2, __pyx_n_s_rand_2); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 4206, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_poisson); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 4206, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; if (PyDict_SetItem(__pyx_d, __pyx_n_s_poisson, __pyx_t_1) < 0) __PYX_ERR(0, 4206, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "numpy/random/mtrand.pyx":4207 * permutation = _rand.permutation * poisson = _rand.poisson * power = _rand.power # <<<<<<<<<<<<<< * rand = _rand.rand * randint = _rand.randint */ __Pyx_GetModuleGlobalName(__pyx_t_1, __pyx_n_s_rand_2); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 4207, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_power); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 4207, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; if (PyDict_SetItem(__pyx_d, __pyx_n_s_power, __pyx_t_2) < 0) __PYX_ERR(0, 4207, __pyx_L1_error) __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; /* "numpy/random/mtrand.pyx":4208 * poisson = _rand.poisson * power = _rand.power * rand = _rand.rand # <<<<<<<<<<<<<< * randint = _rand.randint * randn = _rand.randn */ __Pyx_GetModuleGlobalName(__pyx_t_2, __pyx_n_s_rand_2); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 4208, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_rand); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 4208, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; if (PyDict_SetItem(__pyx_d, __pyx_n_s_rand, __pyx_t_1) < 0) __PYX_ERR(0, 4208, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "numpy/random/mtrand.pyx":4209 * power = _rand.power * rand = _rand.rand * randint = _rand.randint # <<<<<<<<<<<<<< * randn = _rand.randn * random = _rand.random */ __Pyx_GetModuleGlobalName(__pyx_t_1, __pyx_n_s_rand_2); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 4209, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_randint); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 4209, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; if (PyDict_SetItem(__pyx_d, __pyx_n_s_randint, __pyx_t_2) < 0) __PYX_ERR(0, 4209, __pyx_L1_error) __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; /* "numpy/random/mtrand.pyx":4210 * rand = _rand.rand * randint = _rand.randint * randn = _rand.randn # <<<<<<<<<<<<<< * random = _rand.random * random_integers = _rand.random_integers */ __Pyx_GetModuleGlobalName(__pyx_t_2, __pyx_n_s_rand_2); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 4210, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_randn); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 4210, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; if (PyDict_SetItem(__pyx_d, __pyx_n_s_randn, __pyx_t_1) < 0) __PYX_ERR(0, 4210, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "numpy/random/mtrand.pyx":4211 * randint = _rand.randint * randn = _rand.randn * random = _rand.random # <<<<<<<<<<<<<< * random_integers = _rand.random_integers * random_sample = _rand.random_sample */ __Pyx_GetModuleGlobalName(__pyx_t_1, __pyx_n_s_rand_2); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 4211, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_random); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 4211, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; if (PyDict_SetItem(__pyx_d, __pyx_n_s_random, __pyx_t_2) < 0) __PYX_ERR(0, 4211, __pyx_L1_error) __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; /* "numpy/random/mtrand.pyx":4212 * randn = _rand.randn * random = _rand.random * random_integers = _rand.random_integers # <<<<<<<<<<<<<< * random_sample = _rand.random_sample * rayleigh = _rand.rayleigh */ __Pyx_GetModuleGlobalName(__pyx_t_2, __pyx_n_s_rand_2); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 4212, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_random_integers); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 4212, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; if (PyDict_SetItem(__pyx_d, __pyx_n_s_random_integers, __pyx_t_1) < 0) __PYX_ERR(0, 4212, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "numpy/random/mtrand.pyx":4213 * random = _rand.random * random_integers = _rand.random_integers * random_sample = _rand.random_sample # <<<<<<<<<<<<<< * rayleigh = _rand.rayleigh * seed = _rand.seed */ __Pyx_GetModuleGlobalName(__pyx_t_1, __pyx_n_s_rand_2); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 4213, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_random_sample); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 4213, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; if (PyDict_SetItem(__pyx_d, __pyx_n_s_random_sample, __pyx_t_2) < 0) __PYX_ERR(0, 4213, __pyx_L1_error) __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; /* "numpy/random/mtrand.pyx":4214 * random_integers = _rand.random_integers * random_sample = _rand.random_sample * rayleigh = _rand.rayleigh # <<<<<<<<<<<<<< * seed = _rand.seed * set_state = _rand.set_state */ __Pyx_GetModuleGlobalName(__pyx_t_2, __pyx_n_s_rand_2); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 4214, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_rayleigh); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 4214, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; if (PyDict_SetItem(__pyx_d, __pyx_n_s_rayleigh, __pyx_t_1) < 0) __PYX_ERR(0, 4214, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "numpy/random/mtrand.pyx":4215 * random_sample = _rand.random_sample * rayleigh = _rand.rayleigh * seed = _rand.seed # <<<<<<<<<<<<<< * set_state = _rand.set_state * shuffle = _rand.shuffle */ __Pyx_GetModuleGlobalName(__pyx_t_1, __pyx_n_s_rand_2); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 4215, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_seed); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 4215, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; if (PyDict_SetItem(__pyx_d, __pyx_n_s_seed, __pyx_t_2) < 0) __PYX_ERR(0, 4215, __pyx_L1_error) __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; /* "numpy/random/mtrand.pyx":4216 * rayleigh = _rand.rayleigh * seed = _rand.seed * set_state = _rand.set_state # <<<<<<<<<<<<<< * shuffle = _rand.shuffle * standard_cauchy = _rand.standard_cauchy */ __Pyx_GetModuleGlobalName(__pyx_t_2, __pyx_n_s_rand_2); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 4216, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_set_state); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 4216, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; if (PyDict_SetItem(__pyx_d, __pyx_n_s_set_state, __pyx_t_1) < 0) __PYX_ERR(0, 4216, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "numpy/random/mtrand.pyx":4217 * seed = _rand.seed * set_state = _rand.set_state * shuffle = _rand.shuffle # <<<<<<<<<<<<<< * standard_cauchy = _rand.standard_cauchy * standard_exponential = _rand.standard_exponential */ __Pyx_GetModuleGlobalName(__pyx_t_1, __pyx_n_s_rand_2); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 4217, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_shuffle); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 4217, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; if (PyDict_SetItem(__pyx_d, __pyx_n_s_shuffle, __pyx_t_2) < 0) __PYX_ERR(0, 4217, __pyx_L1_error) __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; /* "numpy/random/mtrand.pyx":4218 * set_state = _rand.set_state * shuffle = _rand.shuffle * standard_cauchy = _rand.standard_cauchy # <<<<<<<<<<<<<< * standard_exponential = _rand.standard_exponential * standard_gamma = _rand.standard_gamma */ __Pyx_GetModuleGlobalName(__pyx_t_2, __pyx_n_s_rand_2); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 4218, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_standard_cauchy); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 4218, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; if (PyDict_SetItem(__pyx_d, __pyx_n_s_standard_cauchy, __pyx_t_1) < 0) __PYX_ERR(0, 4218, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "numpy/random/mtrand.pyx":4219 * shuffle = _rand.shuffle * standard_cauchy = _rand.standard_cauchy * standard_exponential = _rand.standard_exponential # <<<<<<<<<<<<<< * standard_gamma = _rand.standard_gamma * standard_normal = _rand.standard_normal */ __Pyx_GetModuleGlobalName(__pyx_t_1, __pyx_n_s_rand_2); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 4219, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_standard_exponential); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 4219, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; if (PyDict_SetItem(__pyx_d, __pyx_n_s_standard_exponential, __pyx_t_2) < 0) __PYX_ERR(0, 4219, __pyx_L1_error) __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; /* "numpy/random/mtrand.pyx":4220 * standard_cauchy = _rand.standard_cauchy * standard_exponential = _rand.standard_exponential * standard_gamma = _rand.standard_gamma # <<<<<<<<<<<<<< * standard_normal = _rand.standard_normal * standard_t = _rand.standard_t */ __Pyx_GetModuleGlobalName(__pyx_t_2, __pyx_n_s_rand_2); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 4220, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_standard_gamma); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 4220, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; if (PyDict_SetItem(__pyx_d, __pyx_n_s_standard_gamma, __pyx_t_1) < 0) __PYX_ERR(0, 4220, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "numpy/random/mtrand.pyx":4221 * standard_exponential = _rand.standard_exponential * standard_gamma = _rand.standard_gamma * standard_normal = _rand.standard_normal # <<<<<<<<<<<<<< * standard_t = _rand.standard_t * triangular = _rand.triangular */ __Pyx_GetModuleGlobalName(__pyx_t_1, __pyx_n_s_rand_2); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 4221, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_standard_normal); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 4221, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; if (PyDict_SetItem(__pyx_d, __pyx_n_s_standard_normal, __pyx_t_2) < 0) __PYX_ERR(0, 4221, __pyx_L1_error) __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; /* "numpy/random/mtrand.pyx":4222 * standard_gamma = _rand.standard_gamma * standard_normal = _rand.standard_normal * standard_t = _rand.standard_t # <<<<<<<<<<<<<< * triangular = _rand.triangular * uniform = _rand.uniform */ __Pyx_GetModuleGlobalName(__pyx_t_2, __pyx_n_s_rand_2); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 4222, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_standard_t); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 4222, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; if (PyDict_SetItem(__pyx_d, __pyx_n_s_standard_t, __pyx_t_1) < 0) __PYX_ERR(0, 4222, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "numpy/random/mtrand.pyx":4223 * standard_normal = _rand.standard_normal * standard_t = _rand.standard_t * triangular = _rand.triangular # <<<<<<<<<<<<<< * uniform = _rand.uniform * vonmises = _rand.vonmises */ __Pyx_GetModuleGlobalName(__pyx_t_1, __pyx_n_s_rand_2); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 4223, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_triangular); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 4223, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; if (PyDict_SetItem(__pyx_d, __pyx_n_s_triangular, __pyx_t_2) < 0) __PYX_ERR(0, 4223, __pyx_L1_error) __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; /* "numpy/random/mtrand.pyx":4224 * standard_t = _rand.standard_t * triangular = _rand.triangular * uniform = _rand.uniform # <<<<<<<<<<<<<< * vonmises = _rand.vonmises * wald = _rand.wald */ __Pyx_GetModuleGlobalName(__pyx_t_2, __pyx_n_s_rand_2); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 4224, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_uniform); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 4224, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; if (PyDict_SetItem(__pyx_d, __pyx_n_s_uniform, __pyx_t_1) < 0) __PYX_ERR(0, 4224, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "numpy/random/mtrand.pyx":4225 * triangular = _rand.triangular * uniform = _rand.uniform * vonmises = _rand.vonmises # <<<<<<<<<<<<<< * wald = _rand.wald * weibull = _rand.weibull */ __Pyx_GetModuleGlobalName(__pyx_t_1, __pyx_n_s_rand_2); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 4225, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_vonmises); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 4225, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; if (PyDict_SetItem(__pyx_d, __pyx_n_s_vonmises, __pyx_t_2) < 0) __PYX_ERR(0, 4225, __pyx_L1_error) __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; /* "numpy/random/mtrand.pyx":4226 * uniform = _rand.uniform * vonmises = _rand.vonmises * wald = _rand.wald # <<<<<<<<<<<<<< * weibull = _rand.weibull * zipf = _rand.zipf */ __Pyx_GetModuleGlobalName(__pyx_t_2, __pyx_n_s_rand_2); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 4226, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_wald); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 4226, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; if (PyDict_SetItem(__pyx_d, __pyx_n_s_wald, __pyx_t_1) < 0) __PYX_ERR(0, 4226, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "numpy/random/mtrand.pyx":4227 * vonmises = _rand.vonmises * wald = _rand.wald * weibull = _rand.weibull # <<<<<<<<<<<<<< * zipf = _rand.zipf * */ __Pyx_GetModuleGlobalName(__pyx_t_1, __pyx_n_s_rand_2); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 4227, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_weibull); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 4227, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; if (PyDict_SetItem(__pyx_d, __pyx_n_s_weibull, __pyx_t_2) < 0) __PYX_ERR(0, 4227, __pyx_L1_error) __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; /* "numpy/random/mtrand.pyx":4228 * wald = _rand.wald * weibull = _rand.weibull * zipf = _rand.zipf # <<<<<<<<<<<<<< * * # Old aliases that should not be removed */ __Pyx_GetModuleGlobalName(__pyx_t_2, __pyx_n_s_rand_2); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 4228, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_2); __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_zipf); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 4228, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; if (PyDict_SetItem(__pyx_d, __pyx_n_s_zipf, __pyx_t_1) < 0) __PYX_ERR(0, 4228, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "numpy/random/mtrand.pyx":4231 * * # Old aliases that should not be removed * def sample(*args, **kwargs): # <<<<<<<<<<<<<< * """ * This is an alias of `random_sample`. See `random_sample` for the complete */ __pyx_t_1 = PyCFunction_NewEx(&__pyx_mdef_5numpy_6random_6mtrand_1sample, NULL, __pyx_n_s_numpy_random_mtrand); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 4231, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); if (PyDict_SetItem(__pyx_d, __pyx_n_s_sample, __pyx_t_1) < 0) __PYX_ERR(0, 4231, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "numpy/random/mtrand.pyx":4238 * return _rand.random_sample(*args, **kwargs) * * def ranf(*args, **kwargs): # <<<<<<<<<<<<<< * """ * This is an alias of `random_sample`. See `random_sample` for the complete */ __pyx_t_1 = PyCFunction_NewEx(&__pyx_mdef_5numpy_6random_6mtrand_3ranf, NULL, __pyx_n_s_numpy_random_mtrand); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 4238, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); if (PyDict_SetItem(__pyx_d, __pyx_n_s_ranf, __pyx_t_1) < 0) __PYX_ERR(0, 4238, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "numpy/random/mtrand.pyx":4245 * return _rand.random_sample(*args, **kwargs) * * __all__ = [ # <<<<<<<<<<<<<< * 'beta', * 'binomial', */ __pyx_t_1 = PyList_New(51); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 4245, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); __Pyx_INCREF(__pyx_n_u_beta); __Pyx_GIVEREF(__pyx_n_u_beta); PyList_SET_ITEM(__pyx_t_1, 0, __pyx_n_u_beta); __Pyx_INCREF(__pyx_n_u_binomial); __Pyx_GIVEREF(__pyx_n_u_binomial); PyList_SET_ITEM(__pyx_t_1, 1, __pyx_n_u_binomial); __Pyx_INCREF(__pyx_n_u_bytes); __Pyx_GIVEREF(__pyx_n_u_bytes); PyList_SET_ITEM(__pyx_t_1, 2, __pyx_n_u_bytes); __Pyx_INCREF(__pyx_n_u_chisquare); __Pyx_GIVEREF(__pyx_n_u_chisquare); PyList_SET_ITEM(__pyx_t_1, 3, __pyx_n_u_chisquare); __Pyx_INCREF(__pyx_n_u_choice); __Pyx_GIVEREF(__pyx_n_u_choice); PyList_SET_ITEM(__pyx_t_1, 4, __pyx_n_u_choice); __Pyx_INCREF(__pyx_n_u_dirichlet); __Pyx_GIVEREF(__pyx_n_u_dirichlet); PyList_SET_ITEM(__pyx_t_1, 5, __pyx_n_u_dirichlet); __Pyx_INCREF(__pyx_n_u_exponential); __Pyx_GIVEREF(__pyx_n_u_exponential); PyList_SET_ITEM(__pyx_t_1, 6, __pyx_n_u_exponential); __Pyx_INCREF(__pyx_n_u_f); __Pyx_GIVEREF(__pyx_n_u_f); PyList_SET_ITEM(__pyx_t_1, 7, __pyx_n_u_f); __Pyx_INCREF(__pyx_n_u_gamma); __Pyx_GIVEREF(__pyx_n_u_gamma); PyList_SET_ITEM(__pyx_t_1, 8, __pyx_n_u_gamma); __Pyx_INCREF(__pyx_n_u_geometric); __Pyx_GIVEREF(__pyx_n_u_geometric); PyList_SET_ITEM(__pyx_t_1, 9, __pyx_n_u_geometric); __Pyx_INCREF(__pyx_n_u_get_state); __Pyx_GIVEREF(__pyx_n_u_get_state); PyList_SET_ITEM(__pyx_t_1, 10, __pyx_n_u_get_state); __Pyx_INCREF(__pyx_n_u_gumbel); __Pyx_GIVEREF(__pyx_n_u_gumbel); PyList_SET_ITEM(__pyx_t_1, 11, __pyx_n_u_gumbel); __Pyx_INCREF(__pyx_n_u_hypergeometric); __Pyx_GIVEREF(__pyx_n_u_hypergeometric); PyList_SET_ITEM(__pyx_t_1, 12, __pyx_n_u_hypergeometric); __Pyx_INCREF(__pyx_n_u_laplace); __Pyx_GIVEREF(__pyx_n_u_laplace); PyList_SET_ITEM(__pyx_t_1, 13, __pyx_n_u_laplace); __Pyx_INCREF(__pyx_n_u_logistic); __Pyx_GIVEREF(__pyx_n_u_logistic); PyList_SET_ITEM(__pyx_t_1, 14, __pyx_n_u_logistic); __Pyx_INCREF(__pyx_n_u_lognormal); __Pyx_GIVEREF(__pyx_n_u_lognormal); PyList_SET_ITEM(__pyx_t_1, 15, __pyx_n_u_lognormal); __Pyx_INCREF(__pyx_n_u_logseries); __Pyx_GIVEREF(__pyx_n_u_logseries); PyList_SET_ITEM(__pyx_t_1, 16, __pyx_n_u_logseries); __Pyx_INCREF(__pyx_n_u_multinomial); __Pyx_GIVEREF(__pyx_n_u_multinomial); PyList_SET_ITEM(__pyx_t_1, 17, __pyx_n_u_multinomial); __Pyx_INCREF(__pyx_n_u_multivariate_normal); __Pyx_GIVEREF(__pyx_n_u_multivariate_normal); PyList_SET_ITEM(__pyx_t_1, 18, __pyx_n_u_multivariate_normal); __Pyx_INCREF(__pyx_n_u_negative_binomial); __Pyx_GIVEREF(__pyx_n_u_negative_binomial); PyList_SET_ITEM(__pyx_t_1, 19, __pyx_n_u_negative_binomial); __Pyx_INCREF(__pyx_n_u_noncentral_chisquare); __Pyx_GIVEREF(__pyx_n_u_noncentral_chisquare); PyList_SET_ITEM(__pyx_t_1, 20, __pyx_n_u_noncentral_chisquare); __Pyx_INCREF(__pyx_n_u_noncentral_f); __Pyx_GIVEREF(__pyx_n_u_noncentral_f); PyList_SET_ITEM(__pyx_t_1, 21, __pyx_n_u_noncentral_f); __Pyx_INCREF(__pyx_n_u_normal); __Pyx_GIVEREF(__pyx_n_u_normal); PyList_SET_ITEM(__pyx_t_1, 22, __pyx_n_u_normal); __Pyx_INCREF(__pyx_n_u_pareto); __Pyx_GIVEREF(__pyx_n_u_pareto); PyList_SET_ITEM(__pyx_t_1, 23, __pyx_n_u_pareto); __Pyx_INCREF(__pyx_n_u_permutation); __Pyx_GIVEREF(__pyx_n_u_permutation); PyList_SET_ITEM(__pyx_t_1, 24, __pyx_n_u_permutation); __Pyx_INCREF(__pyx_n_u_poisson); __Pyx_GIVEREF(__pyx_n_u_poisson); PyList_SET_ITEM(__pyx_t_1, 25, __pyx_n_u_poisson); __Pyx_INCREF(__pyx_n_u_power); __Pyx_GIVEREF(__pyx_n_u_power); PyList_SET_ITEM(__pyx_t_1, 26, __pyx_n_u_power); __Pyx_INCREF(__pyx_n_u_rand); __Pyx_GIVEREF(__pyx_n_u_rand); PyList_SET_ITEM(__pyx_t_1, 27, __pyx_n_u_rand); __Pyx_INCREF(__pyx_n_u_randint); __Pyx_GIVEREF(__pyx_n_u_randint); PyList_SET_ITEM(__pyx_t_1, 28, __pyx_n_u_randint); __Pyx_INCREF(__pyx_n_u_randn); __Pyx_GIVEREF(__pyx_n_u_randn); PyList_SET_ITEM(__pyx_t_1, 29, __pyx_n_u_randn); __Pyx_INCREF(__pyx_n_u_random); __Pyx_GIVEREF(__pyx_n_u_random); PyList_SET_ITEM(__pyx_t_1, 30, __pyx_n_u_random); __Pyx_INCREF(__pyx_n_u_random_integers); __Pyx_GIVEREF(__pyx_n_u_random_integers); PyList_SET_ITEM(__pyx_t_1, 31, __pyx_n_u_random_integers); __Pyx_INCREF(__pyx_n_u_random_sample); __Pyx_GIVEREF(__pyx_n_u_random_sample); PyList_SET_ITEM(__pyx_t_1, 32, __pyx_n_u_random_sample); __Pyx_INCREF(__pyx_n_u_ranf); __Pyx_GIVEREF(__pyx_n_u_ranf); PyList_SET_ITEM(__pyx_t_1, 33, __pyx_n_u_ranf); __Pyx_INCREF(__pyx_n_u_rayleigh); __Pyx_GIVEREF(__pyx_n_u_rayleigh); PyList_SET_ITEM(__pyx_t_1, 34, __pyx_n_u_rayleigh); __Pyx_INCREF(__pyx_n_u_sample); __Pyx_GIVEREF(__pyx_n_u_sample); PyList_SET_ITEM(__pyx_t_1, 35, __pyx_n_u_sample); __Pyx_INCREF(__pyx_n_u_seed); __Pyx_GIVEREF(__pyx_n_u_seed); PyList_SET_ITEM(__pyx_t_1, 36, __pyx_n_u_seed); __Pyx_INCREF(__pyx_n_u_set_state); __Pyx_GIVEREF(__pyx_n_u_set_state); PyList_SET_ITEM(__pyx_t_1, 37, __pyx_n_u_set_state); __Pyx_INCREF(__pyx_n_u_shuffle); __Pyx_GIVEREF(__pyx_n_u_shuffle); PyList_SET_ITEM(__pyx_t_1, 38, __pyx_n_u_shuffle); __Pyx_INCREF(__pyx_n_u_standard_cauchy); __Pyx_GIVEREF(__pyx_n_u_standard_cauchy); PyList_SET_ITEM(__pyx_t_1, 39, __pyx_n_u_standard_cauchy); __Pyx_INCREF(__pyx_n_u_standard_exponential); __Pyx_GIVEREF(__pyx_n_u_standard_exponential); PyList_SET_ITEM(__pyx_t_1, 40, __pyx_n_u_standard_exponential); __Pyx_INCREF(__pyx_n_u_standard_gamma); __Pyx_GIVEREF(__pyx_n_u_standard_gamma); PyList_SET_ITEM(__pyx_t_1, 41, __pyx_n_u_standard_gamma); __Pyx_INCREF(__pyx_n_u_standard_normal); __Pyx_GIVEREF(__pyx_n_u_standard_normal); PyList_SET_ITEM(__pyx_t_1, 42, __pyx_n_u_standard_normal); __Pyx_INCREF(__pyx_n_u_standard_t); __Pyx_GIVEREF(__pyx_n_u_standard_t); PyList_SET_ITEM(__pyx_t_1, 43, __pyx_n_u_standard_t); __Pyx_INCREF(__pyx_n_u_triangular); __Pyx_GIVEREF(__pyx_n_u_triangular); PyList_SET_ITEM(__pyx_t_1, 44, __pyx_n_u_triangular); __Pyx_INCREF(__pyx_n_u_uniform); __Pyx_GIVEREF(__pyx_n_u_uniform); PyList_SET_ITEM(__pyx_t_1, 45, __pyx_n_u_uniform); __Pyx_INCREF(__pyx_n_u_vonmises); __Pyx_GIVEREF(__pyx_n_u_vonmises); PyList_SET_ITEM(__pyx_t_1, 46, __pyx_n_u_vonmises); __Pyx_INCREF(__pyx_n_u_wald); __Pyx_GIVEREF(__pyx_n_u_wald); PyList_SET_ITEM(__pyx_t_1, 47, __pyx_n_u_wald); __Pyx_INCREF(__pyx_n_u_weibull); __Pyx_GIVEREF(__pyx_n_u_weibull); PyList_SET_ITEM(__pyx_t_1, 48, __pyx_n_u_weibull); __Pyx_INCREF(__pyx_n_u_zipf); __Pyx_GIVEREF(__pyx_n_u_zipf); PyList_SET_ITEM(__pyx_t_1, 49, __pyx_n_u_zipf); __Pyx_INCREF(__pyx_n_u_RandomState); __Pyx_GIVEREF(__pyx_n_u_RandomState); PyList_SET_ITEM(__pyx_t_1, 50, __pyx_n_u_RandomState); if (PyDict_SetItem(__pyx_d, __pyx_n_s_all_2, __pyx_t_1) < 0) __PYX_ERR(0, 4245, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "numpy/random/mtrand.pyx":1 * #!python # <<<<<<<<<<<<<< * #cython: wraparound=False, nonecheck=False, boundscheck=False, cdivision=True, language_level=3 * import operator */ __pyx_t_1 = __Pyx_PyDict_NewPresized(44); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 1, __pyx_L1_error) __Pyx_GOTREF(__pyx_t_1); if (PyDict_SetItem(__pyx_t_1, __pyx_kp_u_RandomState_seed_line_141, __pyx_kp_u_seed_self_seed_None_Reseed_a_le) < 0) __PYX_ERR(0, 1, __pyx_L1_error) if (PyDict_SetItem(__pyx_t_1, __pyx_kp_u_RandomState_random_sample_line_2, __pyx_kp_u_random_sample_size_None_Return) < 0) __PYX_ERR(0, 1, __pyx_L1_error) if (PyDict_SetItem(__pyx_t_1, __pyx_kp_u_RandomState_standard_exponential, __pyx_kp_u_standard_exponential_size_None) < 0) __PYX_ERR(0, 1, __pyx_L1_error) if (PyDict_SetItem(__pyx_t_1, __pyx_kp_u_RandomState_tomaxint_line_472, __pyx_kp_u_tomaxint_size_None_Return_a_sam) < 0) __PYX_ERR(0, 1, __pyx_L1_error) if (PyDict_SetItem(__pyx_t_1, __pyx_kp_u_RandomState_randint_line_530, __pyx_kp_u_randint_low_high_None_size_None) < 0) __PYX_ERR(0, 1, __pyx_L1_error) if (PyDict_SetItem(__pyx_t_1, __pyx_kp_u_RandomState_bytes_line_651, __pyx_kp_u_bytes_length_Return_random_byte) < 0) __PYX_ERR(0, 1, __pyx_L1_error) if (PyDict_SetItem(__pyx_t_1, __pyx_kp_u_RandomState_choice_line_680, __pyx_kp_u_choice_a_size_None_replace_True) < 0) __PYX_ERR(0, 1, __pyx_L1_error) if (PyDict_SetItem(__pyx_t_1, __pyx_kp_u_RandomState_uniform_line_869, __pyx_kp_u_uniform_low_0_0_high_1_0_size_N) < 0) __PYX_ERR(0, 1, __pyx_L1_error) if (PyDict_SetItem(__pyx_t_1, __pyx_kp_u_RandomState_rand_line_980, __pyx_kp_u_rand_d0_d1_dn_Random_values_in) < 0) __PYX_ERR(0, 1, __pyx_L1_error) if (PyDict_SetItem(__pyx_t_1, __pyx_kp_u_RandomState_randn_line_1024, __pyx_kp_u_randn_d0_d1_dn_Return_a_sample) < 0) __PYX_ERR(0, 1, __pyx_L1_error) if (PyDict_SetItem(__pyx_t_1, __pyx_kp_u_RandomState_random_integers_line, __pyx_kp_u_random_integers_low_high_None_s) < 0) __PYX_ERR(0, 1, __pyx_L1_error) if (PyDict_SetItem(__pyx_t_1, __pyx_kp_u_RandomState_standard_normal_line, __pyx_kp_u_standard_normal_size_None_Draw) < 0) __PYX_ERR(0, 1, __pyx_L1_error) if (PyDict_SetItem(__pyx_t_1, __pyx_kp_u_RandomState_normal_line_1239, __pyx_kp_u_normal_loc_0_0_scale_1_0_size_N) < 0) __PYX_ERR(0, 1, __pyx_L1_error) if (PyDict_SetItem(__pyx_t_1, __pyx_kp_u_RandomState_standard_gamma_line, __pyx_kp_u_standard_gamma_shape_size_None) < 0) __PYX_ERR(0, 1, __pyx_L1_error) if (PyDict_SetItem(__pyx_t_1, __pyx_kp_u_RandomState_gamma_line_1416, __pyx_kp_u_gamma_shape_scale_1_0_size_None) < 0) __PYX_ERR(0, 1, __pyx_L1_error) if (PyDict_SetItem(__pyx_t_1, __pyx_kp_u_RandomState_f_line_1494, __pyx_kp_u_f_dfnum_dfden_size_None_Draw_sa) < 0) __PYX_ERR(0, 1, __pyx_L1_error) if (PyDict_SetItem(__pyx_t_1, __pyx_kp_u_RandomState_noncentral_f_line_15, __pyx_kp_u_noncentral_f_dfnum_dfden_nonc_s) < 0) __PYX_ERR(0, 1, __pyx_L1_error) if (PyDict_SetItem(__pyx_t_1, __pyx_kp_u_RandomState_chisquare_line_1659, __pyx_kp_u_chisquare_df_size_None_Draw_sam) < 0) __PYX_ERR(0, 1, __pyx_L1_error) if (PyDict_SetItem(__pyx_t_1, __pyx_kp_u_RandomState_noncentral_chisquare, __pyx_kp_u_noncentral_chisquare_df_nonc_si) < 0) __PYX_ERR(0, 1, __pyx_L1_error) if (PyDict_SetItem(__pyx_t_1, __pyx_kp_u_RandomState_standard_cauchy_line, __pyx_kp_u_standard_cauchy_size_None_Draw) < 0) __PYX_ERR(0, 1, __pyx_L1_error) if (PyDict_SetItem(__pyx_t_1, __pyx_kp_u_RandomState_standard_t_line_1871, __pyx_kp_u_standard_t_df_size_None_Draw_sa) < 0) __PYX_ERR(0, 1, __pyx_L1_error) if (PyDict_SetItem(__pyx_t_1, __pyx_kp_u_RandomState_vonmises_line_1965, __pyx_kp_u_vonmises_mu_kappa_size_None_Dra) < 0) __PYX_ERR(0, 1, __pyx_L1_error) if (PyDict_SetItem(__pyx_t_1, __pyx_kp_u_RandomState_pareto_line_2048, __pyx_kp_u_pareto_a_size_None_Draw_samples) < 0) __PYX_ERR(0, 1, __pyx_L1_error) if (PyDict_SetItem(__pyx_t_1, __pyx_kp_u_RandomState_weibull_line_2145, __pyx_kp_u_weibull_a_size_None_Draw_sample) < 0) __PYX_ERR(0, 1, __pyx_L1_error) if (PyDict_SetItem(__pyx_t_1, __pyx_kp_u_RandomState_power_line_2243, __pyx_kp_u_power_a_size_None_Draws_samples) < 0) __PYX_ERR(0, 1, __pyx_L1_error) if (PyDict_SetItem(__pyx_t_1, __pyx_kp_u_RandomState_laplace_line_2343, __pyx_kp_u_laplace_loc_0_0_scale_1_0_size) < 0) __PYX_ERR(0, 1, __pyx_L1_error) if (PyDict_SetItem(__pyx_t_1, __pyx_kp_u_RandomState_gumbel_line_2428, __pyx_kp_u_gumbel_loc_0_0_scale_1_0_size_N) < 0) __PYX_ERR(0, 1, __pyx_L1_error) if (PyDict_SetItem(__pyx_t_1, __pyx_kp_u_RandomState_logistic_line_2546, __pyx_kp_u_logistic_loc_0_0_scale_1_0_size) < 0) __PYX_ERR(0, 1, __pyx_L1_error) if (PyDict_SetItem(__pyx_t_1, __pyx_kp_u_RandomState_lognormal_line_2626, __pyx_kp_u_lognormal_mean_0_0_sigma_1_0_si) < 0) __PYX_ERR(0, 1, __pyx_L1_error) if (PyDict_SetItem(__pyx_t_1, __pyx_kp_u_RandomState_rayleigh_line_2736, __pyx_kp_u_rayleigh_scale_1_0_size_None_Dr) < 0) __PYX_ERR(0, 1, __pyx_L1_error) if (PyDict_SetItem(__pyx_t_1, __pyx_kp_u_RandomState_wald_line_2804, __pyx_kp_u_wald_mean_scale_size_None_Draw) < 0) __PYX_ERR(0, 1, __pyx_L1_error) if (PyDict_SetItem(__pyx_t_1, __pyx_kp_u_RandomState_triangular_line_2872, __pyx_kp_u_triangular_left_mode_right_size) < 0) __PYX_ERR(0, 1, __pyx_L1_error) if (PyDict_SetItem(__pyx_t_1, __pyx_kp_u_RandomState_binomial_line_2972, __pyx_kp_u_binomial_n_p_size_None_Draw_sam) < 0) __PYX_ERR(0, 1, __pyx_L1_error) if (PyDict_SetItem(__pyx_t_1, __pyx_kp_u_RandomState_negative_binomial_li, __pyx_kp_u_negative_binomial_n_p_size_None) < 0) __PYX_ERR(0, 1, __pyx_L1_error) if (PyDict_SetItem(__pyx_t_1, __pyx_kp_u_RandomState_poisson_line_3196, __pyx_kp_u_poisson_lam_1_0_size_None_Draw) < 0) __PYX_ERR(0, 1, __pyx_L1_error) if (PyDict_SetItem(__pyx_t_1, __pyx_kp_u_RandomState_zipf_line_3269, __pyx_kp_u_zipf_a_size_None_Draw_samples_f) < 0) __PYX_ERR(0, 1, __pyx_L1_error) if (PyDict_SetItem(__pyx_t_1, __pyx_kp_u_RandomState_geometric_line_3350, __pyx_kp_u_geometric_p_size_None_Draw_samp) < 0) __PYX_ERR(0, 1, __pyx_L1_error) if (PyDict_SetItem(__pyx_t_1, __pyx_kp_u_RandomState_hypergeometric_line, __pyx_kp_u_hypergeometric_ngood_nbad_nsamp) < 0) __PYX_ERR(0, 1, __pyx_L1_error) if (PyDict_SetItem(__pyx_t_1, __pyx_kp_u_RandomState_logseries_line_3531, __pyx_kp_u_logseries_p_size_None_Draw_samp) < 0) __PYX_ERR(0, 1, __pyx_L1_error) if (PyDict_SetItem(__pyx_t_1, __pyx_kp_u_RandomState_multivariate_normal, __pyx_kp_u_multivariate_normal_mean_cov_si) < 0) __PYX_ERR(0, 1, __pyx_L1_error) if (PyDict_SetItem(__pyx_t_1, __pyx_kp_u_RandomState_multinomial_line_378, __pyx_kp_u_multinomial_n_pvals_size_None_D) < 0) __PYX_ERR(0, 1, __pyx_L1_error) if (PyDict_SetItem(__pyx_t_1, __pyx_kp_u_RandomState_dirichlet_line_3892, __pyx_kp_u_dirichlet_alpha_size_None_Draw) < 0) __PYX_ERR(0, 1, __pyx_L1_error) if (PyDict_SetItem(__pyx_t_1, __pyx_kp_u_RandomState_shuffle_line_4031, __pyx_kp_u_shuffle_x_Modify_a_sequence_in) < 0) __PYX_ERR(0, 1, __pyx_L1_error) if (PyDict_SetItem(__pyx_t_1, __pyx_kp_u_RandomState_permutation_line_411, __pyx_kp_u_permutation_x_Randomly_permute) < 0) __PYX_ERR(0, 1, __pyx_L1_error) if (PyDict_SetItem(__pyx_d, __pyx_n_s_test, __pyx_t_1) < 0) __PYX_ERR(0, 1, __pyx_L1_error) __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; /* "bounded_integers.pxd":9 * from .common cimport bitgen_t * * cdef inline uint64_t _gen_mask(uint64_t max_val) nogil: # <<<<<<<<<<<<<< * """Mask generator for use in bounded random numbers""" * # Smallest bit mask >= max */ /*--- Wrapped vars code ---*/ goto __pyx_L0; __pyx_L1_error:; __Pyx_XDECREF(__pyx_t_1); __Pyx_XDECREF(__pyx_t_2); if (__pyx_m) { if (__pyx_d) { __Pyx_AddTraceback("init numpy.random.mtrand", __pyx_clineno, __pyx_lineno, __pyx_filename); } Py_CLEAR(__pyx_m); } else if (!PyErr_Occurred()) { PyErr_SetString(PyExc_ImportError, "init numpy.random.mtrand"); } __pyx_L0:; __Pyx_RefNannyFinishContext(); #if CYTHON_PEP489_MULTI_PHASE_INIT return (__pyx_m != NULL) ? 0 : -1; #elif PY_MAJOR_VERSION >= 3 return __pyx_m; #else return; #endif } /* --- Runtime support code --- */ /* Refnanny */ #if CYTHON_REFNANNY static __Pyx_RefNannyAPIStruct *__Pyx_RefNannyImportAPI(const char *modname) { PyObject *m = NULL, *p = NULL; void *r = NULL; m = PyImport_ImportModule(modname); if (!m) goto end; p = PyObject_GetAttrString(m, "RefNannyAPI"); if (!p) goto end; r = PyLong_AsVoidPtr(p); end: Py_XDECREF(p); Py_XDECREF(m); return (__Pyx_RefNannyAPIStruct *)r; } #endif /* PyObjectGetAttrStr */ #if CYTHON_USE_TYPE_SLOTS static CYTHON_INLINE PyObject* __Pyx_PyObject_GetAttrStr(PyObject* obj, PyObject* attr_name) { PyTypeObject* tp = Py_TYPE(obj); if (likely(tp->tp_getattro)) return tp->tp_getattro(obj, attr_name); #if PY_MAJOR_VERSION < 3 if (likely(tp->tp_getattr)) return tp->tp_getattr(obj, PyString_AS_STRING(attr_name)); #endif return PyObject_GetAttr(obj, attr_name); } #endif /* GetBuiltinName */ static PyObject *__Pyx_GetBuiltinName(PyObject *name) { PyObject* result = __Pyx_PyObject_GetAttrStr(__pyx_b, name); if (unlikely(!result)) { PyErr_Format(PyExc_NameError, #if PY_MAJOR_VERSION >= 3 "name '%U' is not defined", name); #else "name '%.200s' is not defined", PyString_AS_STRING(name)); #endif } return result; } /* PyDictVersioning */ #if CYTHON_USE_DICT_VERSIONS && CYTHON_USE_TYPE_SLOTS static CYTHON_INLINE PY_UINT64_T __Pyx_get_tp_dict_version(PyObject *obj) { PyObject *dict = Py_TYPE(obj)->tp_dict; return likely(dict) ? __PYX_GET_DICT_VERSION(dict) : 0; } static CYTHON_INLINE PY_UINT64_T __Pyx_get_object_dict_version(PyObject *obj) { PyObject **dictptr = NULL; Py_ssize_t offset = Py_TYPE(obj)->tp_dictoffset; if (offset) { #if CYTHON_COMPILING_IN_CPYTHON dictptr = (likely(offset > 0)) ? (PyObject **) ((char *)obj + offset) : _PyObject_GetDictPtr(obj); #else dictptr = _PyObject_GetDictPtr(obj); #endif } return (dictptr && *dictptr) ? __PYX_GET_DICT_VERSION(*dictptr) : 0; } static CYTHON_INLINE int __Pyx_object_dict_version_matches(PyObject* obj, PY_UINT64_T tp_dict_version, PY_UINT64_T obj_dict_version) { PyObject *dict = Py_TYPE(obj)->tp_dict; if (unlikely(!dict) || unlikely(tp_dict_version != __PYX_GET_DICT_VERSION(dict))) return 0; return obj_dict_version == __Pyx_get_object_dict_version(obj); } #endif /* GetModuleGlobalName */ #if CYTHON_USE_DICT_VERSIONS static PyObject *__Pyx__GetModuleGlobalName(PyObject *name, PY_UINT64_T *dict_version, PyObject **dict_cached_value) #else static CYTHON_INLINE PyObject *__Pyx__GetModuleGlobalName(PyObject *name) #endif { PyObject *result; #if !CYTHON_AVOID_BORROWED_REFS #if CYTHON_COMPILING_IN_CPYTHON && PY_VERSION_HEX >= 0x030500A1 result = _PyDict_GetItem_KnownHash(__pyx_d, name, ((PyASCIIObject *) name)->hash); __PYX_UPDATE_DICT_CACHE(__pyx_d, result, *dict_cached_value, *dict_version) if (likely(result)) { return __Pyx_NewRef(result); } else if (unlikely(PyErr_Occurred())) { return NULL; } #else result = PyDict_GetItem(__pyx_d, name); __PYX_UPDATE_DICT_CACHE(__pyx_d, result, *dict_cached_value, *dict_version) if (likely(result)) { return __Pyx_NewRef(result); } #endif #else result = PyObject_GetItem(__pyx_d, name); __PYX_UPDATE_DICT_CACHE(__pyx_d, result, *dict_cached_value, *dict_version) if (likely(result)) { return __Pyx_NewRef(result); } PyErr_Clear(); #endif return __Pyx_GetBuiltinName(name); } /* PyCFunctionFastCall */ #if CYTHON_FAST_PYCCALL static CYTHON_INLINE PyObject * __Pyx_PyCFunction_FastCall(PyObject *func_obj, PyObject **args, Py_ssize_t nargs) { PyCFunctionObject *func = (PyCFunctionObject*)func_obj; PyCFunction meth = PyCFunction_GET_FUNCTION(func); PyObject *self = PyCFunction_GET_SELF(func); int flags = PyCFunction_GET_FLAGS(func); assert(PyCFunction_Check(func)); assert(METH_FASTCALL == (flags & ~(METH_CLASS | METH_STATIC | METH_COEXIST | METH_KEYWORDS | METH_STACKLESS))); assert(nargs >= 0); assert(nargs == 0 || args != NULL); /* _PyCFunction_FastCallDict() must not be called with an exception set, because it may clear it (directly or indirectly) and so the caller loses its exception */ assert(!PyErr_Occurred()); if ((PY_VERSION_HEX < 0x030700A0) || unlikely(flags & METH_KEYWORDS)) { return (*((__Pyx_PyCFunctionFastWithKeywords)(void*)meth)) (self, args, nargs, NULL); } else { return (*((__Pyx_PyCFunctionFast)(void*)meth)) (self, args, nargs); } } #endif /* PyFunctionFastCall */ #if CYTHON_FAST_PYCALL static PyObject* __Pyx_PyFunction_FastCallNoKw(PyCodeObject *co, PyObject **args, Py_ssize_t na, PyObject *globals) { PyFrameObject *f; PyThreadState *tstate = __Pyx_PyThreadState_Current; PyObject **fastlocals; Py_ssize_t i; PyObject *result; assert(globals != NULL); /* XXX Perhaps we should create a specialized PyFrame_New() that doesn't take locals, but does take builtins without sanity checking them. */ assert(tstate != NULL); f = PyFrame_New(tstate, co, globals, NULL); if (f == NULL) { return NULL; } fastlocals = __Pyx_PyFrame_GetLocalsplus(f); for (i = 0; i < na; i++) { Py_INCREF(*args); fastlocals[i] = *args++; } result = PyEval_EvalFrameEx(f,0); ++tstate->recursion_depth; Py_DECREF(f); --tstate->recursion_depth; return result; } #if 1 || PY_VERSION_HEX < 0x030600B1 static PyObject *__Pyx_PyFunction_FastCallDict(PyObject *func, PyObject **args, Py_ssize_t nargs, PyObject *kwargs) { PyCodeObject *co = (PyCodeObject *)PyFunction_GET_CODE(func); PyObject *globals = PyFunction_GET_GLOBALS(func); PyObject *argdefs = PyFunction_GET_DEFAULTS(func); PyObject *closure; #if PY_MAJOR_VERSION >= 3 PyObject *kwdefs; #endif PyObject *kwtuple, **k; PyObject **d; Py_ssize_t nd; Py_ssize_t nk; PyObject *result; assert(kwargs == NULL || PyDict_Check(kwargs)); nk = kwargs ? PyDict_Size(kwargs) : 0; if (Py_EnterRecursiveCall((char*)" while calling a Python object")) { return NULL; } if ( #if PY_MAJOR_VERSION >= 3 co->co_kwonlyargcount == 0 && #endif likely(kwargs == NULL || nk == 0) && co->co_flags == (CO_OPTIMIZED | CO_NEWLOCALS | CO_NOFREE)) { if (argdefs == NULL && co->co_argcount == nargs) { result = __Pyx_PyFunction_FastCallNoKw(co, args, nargs, globals); goto done; } else if (nargs == 0 && argdefs != NULL && co->co_argcount == Py_SIZE(argdefs)) { /* function called with no arguments, but all parameters have a default value: use default values as arguments .*/ args = &PyTuple_GET_ITEM(argdefs, 0); result =__Pyx_PyFunction_FastCallNoKw(co, args, Py_SIZE(argdefs), globals); goto done; } } if (kwargs != NULL) { Py_ssize_t pos, i; kwtuple = PyTuple_New(2 * nk); if (kwtuple == NULL) { result = NULL; goto done; } k = &PyTuple_GET_ITEM(kwtuple, 0); pos = i = 0; while (PyDict_Next(kwargs, &pos, &k[i], &k[i+1])) { Py_INCREF(k[i]); Py_INCREF(k[i+1]); i += 2; } nk = i / 2; } else { kwtuple = NULL; k = NULL; } closure = PyFunction_GET_CLOSURE(func); #if PY_MAJOR_VERSION >= 3 kwdefs = PyFunction_GET_KW_DEFAULTS(func); #endif if (argdefs != NULL) { d = &PyTuple_GET_ITEM(argdefs, 0); nd = Py_SIZE(argdefs); } else { d = NULL; nd = 0; } #if PY_MAJOR_VERSION >= 3 result = PyEval_EvalCodeEx((PyObject*)co, globals, (PyObject *)NULL, args, (int)nargs, k, (int)nk, d, (int)nd, kwdefs, closure); #else result = PyEval_EvalCodeEx(co, globals, (PyObject *)NULL, args, (int)nargs, k, (int)nk, d, (int)nd, closure); #endif Py_XDECREF(kwtuple); done: Py_LeaveRecursiveCall(); return result; } #endif #endif /* PyObjectCall */ #if CYTHON_COMPILING_IN_CPYTHON static CYTHON_INLINE PyObject* __Pyx_PyObject_Call(PyObject *func, PyObject *arg, PyObject *kw) { PyObject *result; ternaryfunc call = func->ob_type->tp_call; if (unlikely(!call)) return PyObject_Call(func, arg, kw); if (unlikely(Py_EnterRecursiveCall((char*)" while calling a Python object"))) return NULL; result = (*call)(func, arg, kw); Py_LeaveRecursiveCall(); if (unlikely(!result) && unlikely(!PyErr_Occurred())) { PyErr_SetString( PyExc_SystemError, "NULL result without error in PyObject_Call"); } return result; } #endif /* PyObjectCall2Args */ static CYTHON_UNUSED PyObject* __Pyx_PyObject_Call2Args(PyObject* function, PyObject* arg1, PyObject* arg2) { PyObject *args, *result = NULL; #if CYTHON_FAST_PYCALL if (PyFunction_Check(function)) { PyObject *args[2] = {arg1, arg2}; return __Pyx_PyFunction_FastCall(function, args, 2); } #endif #if CYTHON_FAST_PYCCALL if (__Pyx_PyFastCFunction_Check(function)) { PyObject *args[2] = {arg1, arg2}; return __Pyx_PyCFunction_FastCall(function, args, 2); } #endif args = PyTuple_New(2); if (unlikely(!args)) goto done; Py_INCREF(arg1); PyTuple_SET_ITEM(args, 0, arg1); Py_INCREF(arg2); PyTuple_SET_ITEM(args, 1, arg2); Py_INCREF(function); result = __Pyx_PyObject_Call(function, args, NULL); Py_DECREF(args); Py_DECREF(function); done: return result; } /* PyObjectCallMethO */ #if CYTHON_COMPILING_IN_CPYTHON static CYTHON_INLINE PyObject* __Pyx_PyObject_CallMethO(PyObject *func, PyObject *arg) { PyObject *self, *result; PyCFunction cfunc; cfunc = PyCFunction_GET_FUNCTION(func); self = PyCFunction_GET_SELF(func); if (unlikely(Py_EnterRecursiveCall((char*)" while calling a Python object"))) return NULL; result = cfunc(self, arg); Py_LeaveRecursiveCall(); if (unlikely(!result) && unlikely(!PyErr_Occurred())) { PyErr_SetString( PyExc_SystemError, "NULL result without error in PyObject_Call"); } return result; } #endif /* PyObjectCallOneArg */ #if CYTHON_COMPILING_IN_CPYTHON static PyObject* __Pyx__PyObject_CallOneArg(PyObject *func, PyObject *arg) { PyObject *result; PyObject *args = PyTuple_New(1); if (unlikely(!args)) return NULL; Py_INCREF(arg); PyTuple_SET_ITEM(args, 0, arg); result = __Pyx_PyObject_Call(func, args, NULL); Py_DECREF(args); return result; } static CYTHON_INLINE PyObject* __Pyx_PyObject_CallOneArg(PyObject *func, PyObject *arg) { #if CYTHON_FAST_PYCALL if (PyFunction_Check(func)) { return __Pyx_PyFunction_FastCall(func, &arg, 1); } #endif if (likely(PyCFunction_Check(func))) { if (likely(PyCFunction_GET_FLAGS(func) & METH_O)) { return __Pyx_PyObject_CallMethO(func, arg); #if CYTHON_FAST_PYCCALL } else if (PyCFunction_GET_FLAGS(func) & METH_FASTCALL) { return __Pyx_PyCFunction_FastCall(func, &arg, 1); #endif } } return __Pyx__PyObject_CallOneArg(func, arg); } #else static CYTHON_INLINE PyObject* __Pyx_PyObject_CallOneArg(PyObject *func, PyObject *arg) { PyObject *result; PyObject *args = PyTuple_Pack(1, arg); if (unlikely(!args)) return NULL; result = __Pyx_PyObject_Call(func, args, NULL); Py_DECREF(args); return result; } #endif /* RaiseDoubleKeywords */ static void __Pyx_RaiseDoubleKeywordsError( const char* func_name, PyObject* kw_name) { PyErr_Format(PyExc_TypeError, #if PY_MAJOR_VERSION >= 3 "%s() got multiple values for keyword argument '%U'", func_name, kw_name); #else "%s() got multiple values for keyword argument '%s'", func_name, PyString_AsString(kw_name)); #endif } /* ParseKeywords */ static int __Pyx_ParseOptionalKeywords( PyObject *kwds, PyObject **argnames[], PyObject *kwds2, PyObject *values[], Py_ssize_t num_pos_args, const char* function_name) { PyObject *key = 0, *value = 0; Py_ssize_t pos = 0; PyObject*** name; PyObject*** first_kw_arg = argnames + num_pos_args; while (PyDict_Next(kwds, &pos, &key, &value)) { name = first_kw_arg; while (*name && (**name != key)) name++; if (*name) { values[name-argnames] = value; continue; } name = first_kw_arg; #if PY_MAJOR_VERSION < 3 if (likely(PyString_CheckExact(key)) || likely(PyString_Check(key))) { while (*name) { if ((CYTHON_COMPILING_IN_PYPY || PyString_GET_SIZE(**name) == PyString_GET_SIZE(key)) && _PyString_Eq(**name, key)) { values[name-argnames] = value; break; } name++; } if (*name) continue; else { PyObject*** argname = argnames; while (argname != first_kw_arg) { if ((**argname == key) || ( (CYTHON_COMPILING_IN_PYPY || PyString_GET_SIZE(**argname) == PyString_GET_SIZE(key)) && _PyString_Eq(**argname, key))) { goto arg_passed_twice; } argname++; } } } else #endif if (likely(PyUnicode_Check(key))) { while (*name) { int cmp = (**name == key) ? 0 : #if !CYTHON_COMPILING_IN_PYPY && PY_MAJOR_VERSION >= 3 (PyUnicode_GET_SIZE(**name) != PyUnicode_GET_SIZE(key)) ? 1 : #endif PyUnicode_Compare(**name, key); if (cmp < 0 && unlikely(PyErr_Occurred())) goto bad; if (cmp == 0) { values[name-argnames] = value; break; } name++; } if (*name) continue; else { PyObject*** argname = argnames; while (argname != first_kw_arg) { int cmp = (**argname == key) ? 0 : #if !CYTHON_COMPILING_IN_PYPY && PY_MAJOR_VERSION >= 3 (PyUnicode_GET_SIZE(**argname) != PyUnicode_GET_SIZE(key)) ? 1 : #endif PyUnicode_Compare(**argname, key); if (cmp < 0 && unlikely(PyErr_Occurred())) goto bad; if (cmp == 0) goto arg_passed_twice; argname++; } } } else goto invalid_keyword_type; if (kwds2) { if (unlikely(PyDict_SetItem(kwds2, key, value))) goto bad; } else { goto invalid_keyword; } } return 0; arg_passed_twice: __Pyx_RaiseDoubleKeywordsError(function_name, key); goto bad; invalid_keyword_type: PyErr_Format(PyExc_TypeError, "%.200s() keywords must be strings", function_name); goto bad; invalid_keyword: PyErr_Format(PyExc_TypeError, #if PY_MAJOR_VERSION < 3 "%.200s() got an unexpected keyword argument '%.200s'", function_name, PyString_AsString(key)); #else "%s() got an unexpected keyword argument '%U'", function_name, key); #endif bad: return -1; } /* RaiseArgTupleInvalid */ static void __Pyx_RaiseArgtupleInvalid( const char* func_name, int exact, Py_ssize_t num_min, Py_ssize_t num_max, Py_ssize_t num_found) { Py_ssize_t num_expected; const char *more_or_less; if (num_found < num_min) { num_expected = num_min; more_or_less = "at least"; } else { num_expected = num_max; more_or_less = "at most"; } if (exact) { more_or_less = "exactly"; } PyErr_Format(PyExc_TypeError, "%.200s() takes %.8s %" CYTHON_FORMAT_SSIZE_T "d positional argument%.1s (%" CYTHON_FORMAT_SSIZE_T "d given)", func_name, more_or_less, num_expected, (num_expected == 1) ? "" : "s", num_found); } /* PyObjectCallNoArg */ #if CYTHON_COMPILING_IN_CPYTHON static CYTHON_INLINE PyObject* __Pyx_PyObject_CallNoArg(PyObject *func) { #if CYTHON_FAST_PYCALL if (PyFunction_Check(func)) { return __Pyx_PyFunction_FastCall(func, NULL, 0); } #endif #ifdef __Pyx_CyFunction_USED if (likely(PyCFunction_Check(func) || __Pyx_CyFunction_Check(func))) #else if (likely(PyCFunction_Check(func))) #endif { if (likely(PyCFunction_GET_FLAGS(func) & METH_NOARGS)) { return __Pyx_PyObject_CallMethO(func, NULL); } } return __Pyx_PyObject_Call(func, __pyx_empty_tuple, NULL); } #endif /* GetAttr */ static CYTHON_INLINE PyObject *__Pyx_GetAttr(PyObject *o, PyObject *n) { #if CYTHON_USE_TYPE_SLOTS #if PY_MAJOR_VERSION >= 3 if (likely(PyUnicode_Check(n))) #else if (likely(PyString_Check(n))) #endif return __Pyx_PyObject_GetAttrStr(o, n); #endif return PyObject_GetAttr(o, n); } /* HasAttr */ static CYTHON_INLINE int __Pyx_HasAttr(PyObject *o, PyObject *n) { PyObject *r; if (unlikely(!__Pyx_PyBaseString_Check(n))) { PyErr_SetString(PyExc_TypeError, "hasattr(): attribute name must be string"); return -1; } r = __Pyx_GetAttr(o, n); if (unlikely(!r)) { PyErr_Clear(); return 0; } else { Py_DECREF(r); return 1; } } /* PyErrFetchRestore */ #if CYTHON_FAST_THREAD_STATE static CYTHON_INLINE void __Pyx_ErrRestoreInState(PyThreadState *tstate, PyObject *type, PyObject *value, PyObject *tb) { PyObject *tmp_type, *tmp_value, *tmp_tb; tmp_type = tstate->curexc_type; tmp_value = tstate->curexc_value; tmp_tb = tstate->curexc_traceback; tstate->curexc_type = type; tstate->curexc_value = value; tstate->curexc_traceback = tb; Py_XDECREF(tmp_type); Py_XDECREF(tmp_value); Py_XDECREF(tmp_tb); } static CYTHON_INLINE void __Pyx_ErrFetchInState(PyThreadState *tstate, PyObject **type, PyObject **value, PyObject **tb) { *type = tstate->curexc_type; *value = tstate->curexc_value; *tb = tstate->curexc_traceback; tstate->curexc_type = 0; tstate->curexc_value = 0; tstate->curexc_traceback = 0; } #endif /* RaiseException */ #if PY_MAJOR_VERSION < 3 static void __Pyx_Raise(PyObject *type, PyObject *value, PyObject *tb, CYTHON_UNUSED PyObject *cause) { __Pyx_PyThreadState_declare Py_XINCREF(type); if (!value || value == Py_None) value = NULL; else Py_INCREF(value); if (!tb || tb == Py_None) tb = NULL; else { Py_INCREF(tb); if (!PyTraceBack_Check(tb)) { PyErr_SetString(PyExc_TypeError, "raise: arg 3 must be a traceback or None"); goto raise_error; } } if (PyType_Check(type)) { #if CYTHON_COMPILING_IN_PYPY if (!value) { Py_INCREF(Py_None); value = Py_None; } #endif PyErr_NormalizeException(&type, &value, &tb); } else { if (value) { PyErr_SetString(PyExc_TypeError, "instance exception may not have a separate value"); goto raise_error; } value = type; type = (PyObject*) Py_TYPE(type); Py_INCREF(type); if (!PyType_IsSubtype((PyTypeObject *)type, (PyTypeObject *)PyExc_BaseException)) { PyErr_SetString(PyExc_TypeError, "raise: exception class must be a subclass of BaseException"); goto raise_error; } } __Pyx_PyThreadState_assign __Pyx_ErrRestore(type, value, tb); return; raise_error: Py_XDECREF(value); Py_XDECREF(type); Py_XDECREF(tb); return; } #else static void __Pyx_Raise(PyObject *type, PyObject *value, PyObject *tb, PyObject *cause) { PyObject* owned_instance = NULL; if (tb == Py_None) { tb = 0; } else if (tb && !PyTraceBack_Check(tb)) { PyErr_SetString(PyExc_TypeError, "raise: arg 3 must be a traceback or None"); goto bad; } if (value == Py_None) value = 0; if (PyExceptionInstance_Check(type)) { if (value) { PyErr_SetString(PyExc_TypeError, "instance exception may not have a separate value"); goto bad; } value = type; type = (PyObject*) Py_TYPE(value); } else if (PyExceptionClass_Check(type)) { PyObject *instance_class = NULL; if (value && PyExceptionInstance_Check(value)) { instance_class = (PyObject*) Py_TYPE(value); if (instance_class != type) { int is_subclass = PyObject_IsSubclass(instance_class, type); if (!is_subclass) { instance_class = NULL; } else if (unlikely(is_subclass == -1)) { goto bad; } else { type = instance_class; } } } if (!instance_class) { PyObject *args; if (!value) args = PyTuple_New(0); else if (PyTuple_Check(value)) { Py_INCREF(value); args = value; } else args = PyTuple_Pack(1, value); if (!args) goto bad; owned_instance = PyObject_Call(type, args, NULL); Py_DECREF(args); if (!owned_instance) goto bad; value = owned_instance; if (!PyExceptionInstance_Check(value)) { PyErr_Format(PyExc_TypeError, "calling %R should have returned an instance of " "BaseException, not %R", type, Py_TYPE(value)); goto bad; } } } else { PyErr_SetString(PyExc_TypeError, "raise: exception class must be a subclass of BaseException"); goto bad; } if (cause) { PyObject *fixed_cause; if (cause == Py_None) { fixed_cause = NULL; } else if (PyExceptionClass_Check(cause)) { fixed_cause = PyObject_CallObject(cause, NULL); if (fixed_cause == NULL) goto bad; } else if (PyExceptionInstance_Check(cause)) { fixed_cause = cause; Py_INCREF(fixed_cause); } else { PyErr_SetString(PyExc_TypeError, "exception causes must derive from " "BaseException"); goto bad; } PyException_SetCause(value, fixed_cause); } PyErr_SetObject(type, value); if (tb) { #if CYTHON_COMPILING_IN_PYPY PyObject *tmp_type, *tmp_value, *tmp_tb; PyErr_Fetch(&tmp_type, &tmp_value, &tmp_tb); Py_INCREF(tb); PyErr_Restore(tmp_type, tmp_value, tb); Py_XDECREF(tmp_tb); #else PyThreadState *tstate = __Pyx_PyThreadState_Current; PyObject* tmp_tb = tstate->curexc_traceback; if (tb != tmp_tb) { Py_INCREF(tb); tstate->curexc_traceback = tb; Py_XDECREF(tmp_tb); } #endif } bad: Py_XDECREF(owned_instance); return; } #endif /* Import */ static PyObject *__Pyx_Import(PyObject *name, PyObject *from_list, int level) { PyObject *empty_list = 0; PyObject *module = 0; PyObject *global_dict = 0; PyObject *empty_dict = 0; PyObject *list; #if PY_MAJOR_VERSION < 3 PyObject *py_import; py_import = __Pyx_PyObject_GetAttrStr(__pyx_b, __pyx_n_s_import); if (!py_import) goto bad; #endif if (from_list) list = from_list; else { empty_list = PyList_New(0); if (!empty_list) goto bad; list = empty_list; } global_dict = PyModule_GetDict(__pyx_m); if (!global_dict) goto bad; empty_dict = PyDict_New(); if (!empty_dict) goto bad; { #if PY_MAJOR_VERSION >= 3 if (level == -1) { if (strchr(__Pyx_MODULE_NAME, '.')) { module = PyImport_ImportModuleLevelObject( name, global_dict, empty_dict, list, 1); if (!module) { if (!PyErr_ExceptionMatches(PyExc_ImportError)) goto bad; PyErr_Clear(); } } level = 0; } #endif if (!module) { #if PY_MAJOR_VERSION < 3 PyObject *py_level = PyInt_FromLong(level); if (!py_level) goto bad; module = PyObject_CallFunctionObjArgs(py_import, name, global_dict, empty_dict, list, py_level, (PyObject *)NULL); Py_DECREF(py_level); #else module = PyImport_ImportModuleLevelObject( name, global_dict, empty_dict, list, level); #endif } } bad: #if PY_MAJOR_VERSION < 3 Py_XDECREF(py_import); #endif Py_XDECREF(empty_list); Py_XDECREF(empty_dict); return module; } /* ImportFrom */ static PyObject* __Pyx_ImportFrom(PyObject* module, PyObject* name) { PyObject* value = __Pyx_PyObject_GetAttrStr(module, name); if (unlikely(!value) && PyErr_ExceptionMatches(PyExc_AttributeError)) { PyErr_Format(PyExc_ImportError, #if PY_MAJOR_VERSION < 3 "cannot import name %.230s", PyString_AS_STRING(name)); #else "cannot import name %S", name); #endif } return value; } /* DictGetItem */ #if PY_MAJOR_VERSION >= 3 && !CYTHON_COMPILING_IN_PYPY static PyObject *__Pyx_PyDict_GetItem(PyObject *d, PyObject* key) { PyObject *value; value = PyDict_GetItemWithError(d, key); if (unlikely(!value)) { if (!PyErr_Occurred()) { if (unlikely(PyTuple_Check(key))) { PyObject* args = PyTuple_Pack(1, key); if (likely(args)) { PyErr_SetObject(PyExc_KeyError, args); Py_DECREF(args); } } else { PyErr_SetObject(PyExc_KeyError, key); } } return NULL; } Py_INCREF(value); return value; } #endif /* BytesEquals */ static CYTHON_INLINE int __Pyx_PyBytes_Equals(PyObject* s1, PyObject* s2, int equals) { #if CYTHON_COMPILING_IN_PYPY return PyObject_RichCompareBool(s1, s2, equals); #else if (s1 == s2) { return (equals == Py_EQ); } else if (PyBytes_CheckExact(s1) & PyBytes_CheckExact(s2)) { const char *ps1, *ps2; Py_ssize_t length = PyBytes_GET_SIZE(s1); if (length != PyBytes_GET_SIZE(s2)) return (equals == Py_NE); ps1 = PyBytes_AS_STRING(s1); ps2 = PyBytes_AS_STRING(s2); if (ps1[0] != ps2[0]) { return (equals == Py_NE); } else if (length == 1) { return (equals == Py_EQ); } else { int result; #if CYTHON_USE_UNICODE_INTERNALS Py_hash_t hash1, hash2; hash1 = ((PyBytesObject*)s1)->ob_shash; hash2 = ((PyBytesObject*)s2)->ob_shash; if (hash1 != hash2 && hash1 != -1 && hash2 != -1) { return (equals == Py_NE); } #endif result = memcmp(ps1, ps2, (size_t)length); return (equals == Py_EQ) ? (result == 0) : (result != 0); } } else if ((s1 == Py_None) & PyBytes_CheckExact(s2)) { return (equals == Py_NE); } else if ((s2 == Py_None) & PyBytes_CheckExact(s1)) { return (equals == Py_NE); } else { int result; PyObject* py_result = PyObject_RichCompare(s1, s2, equals); if (!py_result) return -1; result = __Pyx_PyObject_IsTrue(py_result); Py_DECREF(py_result); return result; } #endif } /* UnicodeEquals */ static CYTHON_INLINE int __Pyx_PyUnicode_Equals(PyObject* s1, PyObject* s2, int equals) { #if CYTHON_COMPILING_IN_PYPY return PyObject_RichCompareBool(s1, s2, equals); #else #if PY_MAJOR_VERSION < 3 PyObject* owned_ref = NULL; #endif int s1_is_unicode, s2_is_unicode; if (s1 == s2) { goto return_eq; } s1_is_unicode = PyUnicode_CheckExact(s1); s2_is_unicode = PyUnicode_CheckExact(s2); #if PY_MAJOR_VERSION < 3 if ((s1_is_unicode & (!s2_is_unicode)) && PyString_CheckExact(s2)) { owned_ref = PyUnicode_FromObject(s2); if (unlikely(!owned_ref)) return -1; s2 = owned_ref; s2_is_unicode = 1; } else if ((s2_is_unicode & (!s1_is_unicode)) && PyString_CheckExact(s1)) { owned_ref = PyUnicode_FromObject(s1); if (unlikely(!owned_ref)) return -1; s1 = owned_ref; s1_is_unicode = 1; } else if (((!s2_is_unicode) & (!s1_is_unicode))) { return __Pyx_PyBytes_Equals(s1, s2, equals); } #endif if (s1_is_unicode & s2_is_unicode) { Py_ssize_t length; int kind; void *data1, *data2; if (unlikely(__Pyx_PyUnicode_READY(s1) < 0) || unlikely(__Pyx_PyUnicode_READY(s2) < 0)) return -1; length = __Pyx_PyUnicode_GET_LENGTH(s1); if (length != __Pyx_PyUnicode_GET_LENGTH(s2)) { goto return_ne; } #if CYTHON_USE_UNICODE_INTERNALS { Py_hash_t hash1, hash2; #if CYTHON_PEP393_ENABLED hash1 = ((PyASCIIObject*)s1)->hash; hash2 = ((PyASCIIObject*)s2)->hash; #else hash1 = ((PyUnicodeObject*)s1)->hash; hash2 = ((PyUnicodeObject*)s2)->hash; #endif if (hash1 != hash2 && hash1 != -1 && hash2 != -1) { goto return_ne; } } #endif kind = __Pyx_PyUnicode_KIND(s1); if (kind != __Pyx_PyUnicode_KIND(s2)) { goto return_ne; } data1 = __Pyx_PyUnicode_DATA(s1); data2 = __Pyx_PyUnicode_DATA(s2); if (__Pyx_PyUnicode_READ(kind, data1, 0) != __Pyx_PyUnicode_READ(kind, data2, 0)) { goto return_ne; } else if (length == 1) { goto return_eq; } else { int result = memcmp(data1, data2, (size_t)(length * kind)); #if PY_MAJOR_VERSION < 3 Py_XDECREF(owned_ref); #endif return (equals == Py_EQ) ? (result == 0) : (result != 0); } } else if ((s1 == Py_None) & s2_is_unicode) { goto return_ne; } else if ((s2 == Py_None) & s1_is_unicode) { goto return_ne; } else { int result; PyObject* py_result = PyObject_RichCompare(s1, s2, equals); #if PY_MAJOR_VERSION < 3 Py_XDECREF(owned_ref); #endif if (!py_result) return -1; result = __Pyx_PyObject_IsTrue(py_result); Py_DECREF(py_result); return result; } return_eq: #if PY_MAJOR_VERSION < 3 Py_XDECREF(owned_ref); #endif return (equals == Py_EQ); return_ne: #if PY_MAJOR_VERSION < 3 Py_XDECREF(owned_ref); #endif return (equals == Py_NE); #endif } /* GetItemInt */ static PyObject *__Pyx_GetItemInt_Generic(PyObject *o, PyObject* j) { PyObject *r; if (!j) return NULL; r = PyObject_GetItem(o, j); Py_DECREF(j); return r; } static CYTHON_INLINE PyObject *__Pyx_GetItemInt_List_Fast(PyObject *o, Py_ssize_t i, CYTHON_NCP_UNUSED int wraparound, CYTHON_NCP_UNUSED int boundscheck) { #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS Py_ssize_t wrapped_i = i; if (wraparound & unlikely(i < 0)) { wrapped_i += PyList_GET_SIZE(o); } if ((!boundscheck) || likely(__Pyx_is_valid_index(wrapped_i, PyList_GET_SIZE(o)))) { PyObject *r = PyList_GET_ITEM(o, wrapped_i); Py_INCREF(r); return r; } return __Pyx_GetItemInt_Generic(o, PyInt_FromSsize_t(i)); #else return PySequence_GetItem(o, i); #endif } static CYTHON_INLINE PyObject *__Pyx_GetItemInt_Tuple_Fast(PyObject *o, Py_ssize_t i, CYTHON_NCP_UNUSED int wraparound, CYTHON_NCP_UNUSED int boundscheck) { #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS Py_ssize_t wrapped_i = i; if (wraparound & unlikely(i < 0)) { wrapped_i += PyTuple_GET_SIZE(o); } if ((!boundscheck) || likely(__Pyx_is_valid_index(wrapped_i, PyTuple_GET_SIZE(o)))) { PyObject *r = PyTuple_GET_ITEM(o, wrapped_i); Py_INCREF(r); return r; } return __Pyx_GetItemInt_Generic(o, PyInt_FromSsize_t(i)); #else return PySequence_GetItem(o, i); #endif } static CYTHON_INLINE PyObject *__Pyx_GetItemInt_Fast(PyObject *o, Py_ssize_t i, int is_list, CYTHON_NCP_UNUSED int wraparound, CYTHON_NCP_UNUSED int boundscheck) { #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS && CYTHON_USE_TYPE_SLOTS if (is_list || PyList_CheckExact(o)) { Py_ssize_t n = ((!wraparound) | likely(i >= 0)) ? i : i + PyList_GET_SIZE(o); if ((!boundscheck) || (likely(__Pyx_is_valid_index(n, PyList_GET_SIZE(o))))) { PyObject *r = PyList_GET_ITEM(o, n); Py_INCREF(r); return r; } } else if (PyTuple_CheckExact(o)) { Py_ssize_t n = ((!wraparound) | likely(i >= 0)) ? i : i + PyTuple_GET_SIZE(o); if ((!boundscheck) || likely(__Pyx_is_valid_index(n, PyTuple_GET_SIZE(o)))) { PyObject *r = PyTuple_GET_ITEM(o, n); Py_INCREF(r); return r; } } else { PySequenceMethods *m = Py_TYPE(o)->tp_as_sequence; if (likely(m && m->sq_item)) { if (wraparound && unlikely(i < 0) && likely(m->sq_length)) { Py_ssize_t l = m->sq_length(o); if (likely(l >= 0)) { i += l; } else { if (!PyErr_ExceptionMatches(PyExc_OverflowError)) return NULL; PyErr_Clear(); } } return m->sq_item(o, i); } } #else if (is_list || PySequence_Check(o)) { return PySequence_GetItem(o, i); } #endif return __Pyx_GetItemInt_Generic(o, PyInt_FromSsize_t(i)); } /* PyObjectSetAttrStr */ #if CYTHON_USE_TYPE_SLOTS static CYTHON_INLINE int __Pyx_PyObject_SetAttrStr(PyObject* obj, PyObject* attr_name, PyObject* value) { PyTypeObject* tp = Py_TYPE(obj); if (likely(tp->tp_setattro)) return tp->tp_setattro(obj, attr_name, value); #if PY_MAJOR_VERSION < 3 if (likely(tp->tp_setattr)) return tp->tp_setattr(obj, PyString_AS_STRING(attr_name), value); #endif return PyObject_SetAttr(obj, attr_name, value); } #endif /* GetTopmostException */ #if CYTHON_USE_EXC_INFO_STACK static _PyErr_StackItem * __Pyx_PyErr_GetTopmostException(PyThreadState *tstate) { _PyErr_StackItem *exc_info = tstate->exc_info; while ((exc_info->exc_type == NULL || exc_info->exc_type == Py_None) && exc_info->previous_item != NULL) { exc_info = exc_info->previous_item; } return exc_info; } #endif /* SaveResetException */ #if CYTHON_FAST_THREAD_STATE static CYTHON_INLINE void __Pyx__ExceptionSave(PyThreadState *tstate, PyObject **type, PyObject **value, PyObject **tb) { #if CYTHON_USE_EXC_INFO_STACK _PyErr_StackItem *exc_info = __Pyx_PyErr_GetTopmostException(tstate); *type = exc_info->exc_type; *value = exc_info->exc_value; *tb = exc_info->exc_traceback; #else *type = tstate->exc_type; *value = tstate->exc_value; *tb = tstate->exc_traceback; #endif Py_XINCREF(*type); Py_XINCREF(*value); Py_XINCREF(*tb); } static CYTHON_INLINE void __Pyx__ExceptionReset(PyThreadState *tstate, PyObject *type, PyObject *value, PyObject *tb) { PyObject *tmp_type, *tmp_value, *tmp_tb; #if CYTHON_USE_EXC_INFO_STACK _PyErr_StackItem *exc_info = tstate->exc_info; tmp_type = exc_info->exc_type; tmp_value = exc_info->exc_value; tmp_tb = exc_info->exc_traceback; exc_info->exc_type = type; exc_info->exc_value = value; exc_info->exc_traceback = tb; #else tmp_type = tstate->exc_type; tmp_value = tstate->exc_value; tmp_tb = tstate->exc_traceback; tstate->exc_type = type; tstate->exc_value = value; tstate->exc_traceback = tb; #endif Py_XDECREF(tmp_type); Py_XDECREF(tmp_value); Py_XDECREF(tmp_tb); } #endif /* GetException */ #if CYTHON_FAST_THREAD_STATE static int __Pyx__GetException(PyThreadState *tstate, PyObject **type, PyObject **value, PyObject **tb) #else static int __Pyx_GetException(PyObject **type, PyObject **value, PyObject **tb) #endif { PyObject *local_type, *local_value, *local_tb; #if CYTHON_FAST_THREAD_STATE PyObject *tmp_type, *tmp_value, *tmp_tb; local_type = tstate->curexc_type; local_value = tstate->curexc_value; local_tb = tstate->curexc_traceback; tstate->curexc_type = 0; tstate->curexc_value = 0; tstate->curexc_traceback = 0; #else PyErr_Fetch(&local_type, &local_value, &local_tb); #endif PyErr_NormalizeException(&local_type, &local_value, &local_tb); #if CYTHON_FAST_THREAD_STATE if (unlikely(tstate->curexc_type)) #else if (unlikely(PyErr_Occurred())) #endif goto bad; #if PY_MAJOR_VERSION >= 3 if (local_tb) { if (unlikely(PyException_SetTraceback(local_value, local_tb) < 0)) goto bad; } #endif Py_XINCREF(local_tb); Py_XINCREF(local_type); Py_XINCREF(local_value); *type = local_type; *value = local_value; *tb = local_tb; #if CYTHON_FAST_THREAD_STATE #if CYTHON_USE_EXC_INFO_STACK { _PyErr_StackItem *exc_info = tstate->exc_info; tmp_type = exc_info->exc_type; tmp_value = exc_info->exc_value; tmp_tb = exc_info->exc_traceback; exc_info->exc_type = local_type; exc_info->exc_value = local_value; exc_info->exc_traceback = local_tb; } #else tmp_type = tstate->exc_type; tmp_value = tstate->exc_value; tmp_tb = tstate->exc_traceback; tstate->exc_type = local_type; tstate->exc_value = local_value; tstate->exc_traceback = local_tb; #endif Py_XDECREF(tmp_type); Py_XDECREF(tmp_value); Py_XDECREF(tmp_tb); #else PyErr_SetExcInfo(local_type, local_value, local_tb); #endif return 0; bad: *type = 0; *value = 0; *tb = 0; Py_XDECREF(local_type); Py_XDECREF(local_value); Py_XDECREF(local_tb); return -1; } /* None */ static CYTHON_INLINE void __Pyx_RaiseUnboundLocalError(const char *varname) { PyErr_Format(PyExc_UnboundLocalError, "local variable '%s' referenced before assignment", varname); } /* SliceObject */ static CYTHON_INLINE PyObject* __Pyx_PyObject_GetSlice(PyObject* obj, Py_ssize_t cstart, Py_ssize_t cstop, PyObject** _py_start, PyObject** _py_stop, PyObject** _py_slice, int has_cstart, int has_cstop, CYTHON_UNUSED int wraparound) { #if CYTHON_USE_TYPE_SLOTS PyMappingMethods* mp; #if PY_MAJOR_VERSION < 3 PySequenceMethods* ms = Py_TYPE(obj)->tp_as_sequence; if (likely(ms && ms->sq_slice)) { if (!has_cstart) { if (_py_start && (*_py_start != Py_None)) { cstart = __Pyx_PyIndex_AsSsize_t(*_py_start); if ((cstart == (Py_ssize_t)-1) && PyErr_Occurred()) goto bad; } else cstart = 0; } if (!has_cstop) { if (_py_stop && (*_py_stop != Py_None)) { cstop = __Pyx_PyIndex_AsSsize_t(*_py_stop); if ((cstop == (Py_ssize_t)-1) && PyErr_Occurred()) goto bad; } else cstop = PY_SSIZE_T_MAX; } if (wraparound && unlikely((cstart < 0) | (cstop < 0)) && likely(ms->sq_length)) { Py_ssize_t l = ms->sq_length(obj); if (likely(l >= 0)) { if (cstop < 0) { cstop += l; if (cstop < 0) cstop = 0; } if (cstart < 0) { cstart += l; if (cstart < 0) cstart = 0; } } else { if (!PyErr_ExceptionMatches(PyExc_OverflowError)) goto bad; PyErr_Clear(); } } return ms->sq_slice(obj, cstart, cstop); } #endif mp = Py_TYPE(obj)->tp_as_mapping; if (likely(mp && mp->mp_subscript)) #endif { PyObject* result; PyObject *py_slice, *py_start, *py_stop; if (_py_slice) { py_slice = *_py_slice; } else { PyObject* owned_start = NULL; PyObject* owned_stop = NULL; if (_py_start) { py_start = *_py_start; } else { if (has_cstart) { owned_start = py_start = PyInt_FromSsize_t(cstart); if (unlikely(!py_start)) goto bad; } else py_start = Py_None; } if (_py_stop) { py_stop = *_py_stop; } else { if (has_cstop) { owned_stop = py_stop = PyInt_FromSsize_t(cstop); if (unlikely(!py_stop)) { Py_XDECREF(owned_start); goto bad; } } else py_stop = Py_None; } py_slice = PySlice_New(py_start, py_stop, Py_None); Py_XDECREF(owned_start); Py_XDECREF(owned_stop); if (unlikely(!py_slice)) goto bad; } #if CYTHON_USE_TYPE_SLOTS result = mp->mp_subscript(obj, py_slice); #else result = PyObject_GetItem(obj, py_slice); #endif if (!_py_slice) { Py_DECREF(py_slice); } return result; } PyErr_Format(PyExc_TypeError, "'%.200s' object is unsliceable", Py_TYPE(obj)->tp_name); bad: return NULL; } /* PyIntCompare */ static CYTHON_INLINE PyObject* __Pyx_PyInt_EqObjC(PyObject *op1, PyObject *op2, CYTHON_UNUSED long intval, CYTHON_UNUSED long inplace) { if (op1 == op2) { Py_RETURN_TRUE; } #if PY_MAJOR_VERSION < 3 if (likely(PyInt_CheckExact(op1))) { const long b = intval; long a = PyInt_AS_LONG(op1); if (a == b) Py_RETURN_TRUE; else Py_RETURN_FALSE; } #endif #if CYTHON_USE_PYLONG_INTERNALS if (likely(PyLong_CheckExact(op1))) { int unequal; unsigned long uintval; Py_ssize_t size = Py_SIZE(op1); const digit* digits = ((PyLongObject*)op1)->ob_digit; if (intval == 0) { if (size == 0) Py_RETURN_TRUE; else Py_RETURN_FALSE; } else if (intval < 0) { if (size >= 0) Py_RETURN_FALSE; intval = -intval; size = -size; } else { if (size <= 0) Py_RETURN_FALSE; } uintval = (unsigned long) intval; #if PyLong_SHIFT * 4 < SIZEOF_LONG*8 if (uintval >> (PyLong_SHIFT * 4)) { unequal = (size != 5) || (digits[0] != (uintval & (unsigned long) PyLong_MASK)) | (digits[1] != ((uintval >> (1 * PyLong_SHIFT)) & (unsigned long) PyLong_MASK)) | (digits[2] != ((uintval >> (2 * PyLong_SHIFT)) & (unsigned long) PyLong_MASK)) | (digits[3] != ((uintval >> (3 * PyLong_SHIFT)) & (unsigned long) PyLong_MASK)) | (digits[4] != ((uintval >> (4 * PyLong_SHIFT)) & (unsigned long) PyLong_MASK)); } else #endif #if PyLong_SHIFT * 3 < SIZEOF_LONG*8 if (uintval >> (PyLong_SHIFT * 3)) { unequal = (size != 4) || (digits[0] != (uintval & (unsigned long) PyLong_MASK)) | (digits[1] != ((uintval >> (1 * PyLong_SHIFT)) & (unsigned long) PyLong_MASK)) | (digits[2] != ((uintval >> (2 * PyLong_SHIFT)) & (unsigned long) PyLong_MASK)) | (digits[3] != ((uintval >> (3 * PyLong_SHIFT)) & (unsigned long) PyLong_MASK)); } else #endif #if PyLong_SHIFT * 2 < SIZEOF_LONG*8 if (uintval >> (PyLong_SHIFT * 2)) { unequal = (size != 3) || (digits[0] != (uintval & (unsigned long) PyLong_MASK)) | (digits[1] != ((uintval >> (1 * PyLong_SHIFT)) & (unsigned long) PyLong_MASK)) | (digits[2] != ((uintval >> (2 * PyLong_SHIFT)) & (unsigned long) PyLong_MASK)); } else #endif #if PyLong_SHIFT * 1 < SIZEOF_LONG*8 if (uintval >> (PyLong_SHIFT * 1)) { unequal = (size != 2) || (digits[0] != (uintval & (unsigned long) PyLong_MASK)) | (digits[1] != ((uintval >> (1 * PyLong_SHIFT)) & (unsigned long) PyLong_MASK)); } else #endif unequal = (size != 1) || (((unsigned long) digits[0]) != (uintval & (unsigned long) PyLong_MASK)); if (unequal == 0) Py_RETURN_TRUE; else Py_RETURN_FALSE; } #endif if (PyFloat_CheckExact(op1)) { const long b = intval; double a = PyFloat_AS_DOUBLE(op1); if ((double)a == (double)b) Py_RETURN_TRUE; else Py_RETURN_FALSE; } return ( PyObject_RichCompare(op1, op2, Py_EQ)); } /* PyErrExceptionMatches */ #if CYTHON_FAST_THREAD_STATE static int __Pyx_PyErr_ExceptionMatchesTuple(PyObject *exc_type, PyObject *tuple) { Py_ssize_t i, n; n = PyTuple_GET_SIZE(tuple); #if PY_MAJOR_VERSION >= 3 for (i=0; icurexc_type; if (exc_type == err) return 1; if (unlikely(!exc_type)) return 0; if (unlikely(PyTuple_Check(err))) return __Pyx_PyErr_ExceptionMatchesTuple(exc_type, err); return __Pyx_PyErr_GivenExceptionMatches(exc_type, err); } #endif /* PyIntCompare */ static CYTHON_INLINE PyObject* __Pyx_PyInt_NeObjC(PyObject *op1, PyObject *op2, CYTHON_UNUSED long intval, CYTHON_UNUSED long inplace) { if (op1 == op2) { Py_RETURN_FALSE; } #if PY_MAJOR_VERSION < 3 if (likely(PyInt_CheckExact(op1))) { const long b = intval; long a = PyInt_AS_LONG(op1); if (a != b) Py_RETURN_TRUE; else Py_RETURN_FALSE; } #endif #if CYTHON_USE_PYLONG_INTERNALS if (likely(PyLong_CheckExact(op1))) { int unequal; unsigned long uintval; Py_ssize_t size = Py_SIZE(op1); const digit* digits = ((PyLongObject*)op1)->ob_digit; if (intval == 0) { if (size != 0) Py_RETURN_TRUE; else Py_RETURN_FALSE; } else if (intval < 0) { if (size >= 0) Py_RETURN_TRUE; intval = -intval; size = -size; } else { if (size <= 0) Py_RETURN_TRUE; } uintval = (unsigned long) intval; #if PyLong_SHIFT * 4 < SIZEOF_LONG*8 if (uintval >> (PyLong_SHIFT * 4)) { unequal = (size != 5) || (digits[0] != (uintval & (unsigned long) PyLong_MASK)) | (digits[1] != ((uintval >> (1 * PyLong_SHIFT)) & (unsigned long) PyLong_MASK)) | (digits[2] != ((uintval >> (2 * PyLong_SHIFT)) & (unsigned long) PyLong_MASK)) | (digits[3] != ((uintval >> (3 * PyLong_SHIFT)) & (unsigned long) PyLong_MASK)) | (digits[4] != ((uintval >> (4 * PyLong_SHIFT)) & (unsigned long) PyLong_MASK)); } else #endif #if PyLong_SHIFT * 3 < SIZEOF_LONG*8 if (uintval >> (PyLong_SHIFT * 3)) { unequal = (size != 4) || (digits[0] != (uintval & (unsigned long) PyLong_MASK)) | (digits[1] != ((uintval >> (1 * PyLong_SHIFT)) & (unsigned long) PyLong_MASK)) | (digits[2] != ((uintval >> (2 * PyLong_SHIFT)) & (unsigned long) PyLong_MASK)) | (digits[3] != ((uintval >> (3 * PyLong_SHIFT)) & (unsigned long) PyLong_MASK)); } else #endif #if PyLong_SHIFT * 2 < SIZEOF_LONG*8 if (uintval >> (PyLong_SHIFT * 2)) { unequal = (size != 3) || (digits[0] != (uintval & (unsigned long) PyLong_MASK)) | (digits[1] != ((uintval >> (1 * PyLong_SHIFT)) & (unsigned long) PyLong_MASK)) | (digits[2] != ((uintval >> (2 * PyLong_SHIFT)) & (unsigned long) PyLong_MASK)); } else #endif #if PyLong_SHIFT * 1 < SIZEOF_LONG*8 if (uintval >> (PyLong_SHIFT * 1)) { unequal = (size != 2) || (digits[0] != (uintval & (unsigned long) PyLong_MASK)) | (digits[1] != ((uintval >> (1 * PyLong_SHIFT)) & (unsigned long) PyLong_MASK)); } else #endif unequal = (size != 1) || (((unsigned long) digits[0]) != (uintval & (unsigned long) PyLong_MASK)); if (unequal != 0) Py_RETURN_TRUE; else Py_RETURN_FALSE; } #endif if (PyFloat_CheckExact(op1)) { const long b = intval; double a = PyFloat_AS_DOUBLE(op1); if ((double)a != (double)b) Py_RETURN_TRUE; else Py_RETURN_FALSE; } return ( PyObject_RichCompare(op1, op2, Py_NE)); } /* ExtTypeTest */ static CYTHON_INLINE int __Pyx_TypeTest(PyObject *obj, PyTypeObject *type) { if (unlikely(!type)) { PyErr_SetString(PyExc_SystemError, "Missing type object"); return 0; } if (likely(__Pyx_TypeCheck(obj, type))) return 1; PyErr_Format(PyExc_TypeError, "Cannot convert %.200s to %.200s", Py_TYPE(obj)->tp_name, type->tp_name); return 0; } /* RaiseTooManyValuesToUnpack */ static CYTHON_INLINE void __Pyx_RaiseTooManyValuesError(Py_ssize_t expected) { PyErr_Format(PyExc_ValueError, "too many values to unpack (expected %" CYTHON_FORMAT_SSIZE_T "d)", expected); } /* RaiseNeedMoreValuesToUnpack */ static CYTHON_INLINE void __Pyx_RaiseNeedMoreValuesError(Py_ssize_t index) { PyErr_Format(PyExc_ValueError, "need more than %" CYTHON_FORMAT_SSIZE_T "d value%.1s to unpack", index, (index == 1) ? "" : "s"); } /* IterFinish */ static CYTHON_INLINE int __Pyx_IterFinish(void) { #if CYTHON_FAST_THREAD_STATE PyThreadState *tstate = __Pyx_PyThreadState_Current; PyObject* exc_type = tstate->curexc_type; if (unlikely(exc_type)) { if (likely(__Pyx_PyErr_GivenExceptionMatches(exc_type, PyExc_StopIteration))) { PyObject *exc_value, *exc_tb; exc_value = tstate->curexc_value; exc_tb = tstate->curexc_traceback; tstate->curexc_type = 0; tstate->curexc_value = 0; tstate->curexc_traceback = 0; Py_DECREF(exc_type); Py_XDECREF(exc_value); Py_XDECREF(exc_tb); return 0; } else { return -1; } } return 0; #else if (unlikely(PyErr_Occurred())) { if (likely(PyErr_ExceptionMatches(PyExc_StopIteration))) { PyErr_Clear(); return 0; } else { return -1; } } return 0; #endif } /* UnpackItemEndCheck */ static int __Pyx_IternextUnpackEndCheck(PyObject *retval, Py_ssize_t expected) { if (unlikely(retval)) { Py_DECREF(retval); __Pyx_RaiseTooManyValuesError(expected); return -1; } else { return __Pyx_IterFinish(); } return 0; } /* SliceObject */ static CYTHON_INLINE int __Pyx_PyObject_SetSlice(PyObject* obj, PyObject* value, Py_ssize_t cstart, Py_ssize_t cstop, PyObject** _py_start, PyObject** _py_stop, PyObject** _py_slice, int has_cstart, int has_cstop, CYTHON_UNUSED int wraparound) { #if CYTHON_USE_TYPE_SLOTS PyMappingMethods* mp; #if PY_MAJOR_VERSION < 3 PySequenceMethods* ms = Py_TYPE(obj)->tp_as_sequence; if (likely(ms && ms->sq_ass_slice)) { if (!has_cstart) { if (_py_start && (*_py_start != Py_None)) { cstart = __Pyx_PyIndex_AsSsize_t(*_py_start); if ((cstart == (Py_ssize_t)-1) && PyErr_Occurred()) goto bad; } else cstart = 0; } if (!has_cstop) { if (_py_stop && (*_py_stop != Py_None)) { cstop = __Pyx_PyIndex_AsSsize_t(*_py_stop); if ((cstop == (Py_ssize_t)-1) && PyErr_Occurred()) goto bad; } else cstop = PY_SSIZE_T_MAX; } if (wraparound && unlikely((cstart < 0) | (cstop < 0)) && likely(ms->sq_length)) { Py_ssize_t l = ms->sq_length(obj); if (likely(l >= 0)) { if (cstop < 0) { cstop += l; if (cstop < 0) cstop = 0; } if (cstart < 0) { cstart += l; if (cstart < 0) cstart = 0; } } else { if (!PyErr_ExceptionMatches(PyExc_OverflowError)) goto bad; PyErr_Clear(); } } return ms->sq_ass_slice(obj, cstart, cstop, value); } #endif mp = Py_TYPE(obj)->tp_as_mapping; if (likely(mp && mp->mp_ass_subscript)) #endif { int result; PyObject *py_slice, *py_start, *py_stop; if (_py_slice) { py_slice = *_py_slice; } else { PyObject* owned_start = NULL; PyObject* owned_stop = NULL; if (_py_start) { py_start = *_py_start; } else { if (has_cstart) { owned_start = py_start = PyInt_FromSsize_t(cstart); if (unlikely(!py_start)) goto bad; } else py_start = Py_None; } if (_py_stop) { py_stop = *_py_stop; } else { if (has_cstop) { owned_stop = py_stop = PyInt_FromSsize_t(cstop); if (unlikely(!py_stop)) { Py_XDECREF(owned_start); goto bad; } } else py_stop = Py_None; } py_slice = PySlice_New(py_start, py_stop, Py_None); Py_XDECREF(owned_start); Py_XDECREF(owned_stop); if (unlikely(!py_slice)) goto bad; } #if CYTHON_USE_TYPE_SLOTS result = mp->mp_ass_subscript(obj, py_slice, value); #else result = value ? PyObject_SetItem(obj, py_slice, value) : PyObject_DelItem(obj, py_slice); #endif if (!_py_slice) { Py_DECREF(py_slice); } return result; } PyErr_Format(PyExc_TypeError, "'%.200s' object does not support slice %.10s", Py_TYPE(obj)->tp_name, value ? "assignment" : "deletion"); bad: return -1; } /* ObjectGetItem */ #if CYTHON_USE_TYPE_SLOTS static PyObject *__Pyx_PyObject_GetIndex(PyObject *obj, PyObject* index) { PyObject *runerr; Py_ssize_t key_value; PySequenceMethods *m = Py_TYPE(obj)->tp_as_sequence; if (unlikely(!(m && m->sq_item))) { PyErr_Format(PyExc_TypeError, "'%.200s' object is not subscriptable", Py_TYPE(obj)->tp_name); return NULL; } key_value = __Pyx_PyIndex_AsSsize_t(index); if (likely(key_value != -1 || !(runerr = PyErr_Occurred()))) { return __Pyx_GetItemInt_Fast(obj, key_value, 0, 1, 1); } if (PyErr_GivenExceptionMatches(runerr, PyExc_OverflowError)) { PyErr_Clear(); PyErr_Format(PyExc_IndexError, "cannot fit '%.200s' into an index-sized integer", Py_TYPE(index)->tp_name); } return NULL; } static PyObject *__Pyx_PyObject_GetItem(PyObject *obj, PyObject* key) { PyMappingMethods *m = Py_TYPE(obj)->tp_as_mapping; if (likely(m && m->mp_subscript)) { return m->mp_subscript(obj, key); } return __Pyx_PyObject_GetIndex(obj, key); } #endif /* KeywordStringCheck */ static int __Pyx_CheckKeywordStrings( PyObject *kwdict, const char* function_name, int kw_allowed) { PyObject* key = 0; Py_ssize_t pos = 0; #if CYTHON_COMPILING_IN_PYPY if (!kw_allowed && PyDict_Next(kwdict, &pos, &key, 0)) goto invalid_keyword; return 1; #else while (PyDict_Next(kwdict, &pos, &key, 0)) { #if PY_MAJOR_VERSION < 3 if (unlikely(!PyString_Check(key))) #endif if (unlikely(!PyUnicode_Check(key))) goto invalid_keyword_type; } if ((!kw_allowed) && unlikely(key)) goto invalid_keyword; return 1; invalid_keyword_type: PyErr_Format(PyExc_TypeError, "%.200s() keywords must be strings", function_name); return 0; #endif invalid_keyword: PyErr_Format(PyExc_TypeError, #if PY_MAJOR_VERSION < 3 "%.200s() got an unexpected keyword argument '%.200s'", function_name, PyString_AsString(key)); #else "%s() got an unexpected keyword argument '%U'", function_name, key); #endif return 0; } /* PyIntBinop */ #if !CYTHON_COMPILING_IN_PYPY static PyObject* __Pyx_PyInt_AddObjC(PyObject *op1, PyObject *op2, CYTHON_UNUSED long intval, int inplace, int zerodivision_check) { (void)inplace; (void)zerodivision_check; #if PY_MAJOR_VERSION < 3 if (likely(PyInt_CheckExact(op1))) { const long b = intval; long x; long a = PyInt_AS_LONG(op1); x = (long)((unsigned long)a + b); if (likely((x^a) >= 0 || (x^b) >= 0)) return PyInt_FromLong(x); return PyLong_Type.tp_as_number->nb_add(op1, op2); } #endif #if CYTHON_USE_PYLONG_INTERNALS if (likely(PyLong_CheckExact(op1))) { const long b = intval; long a, x; #ifdef HAVE_LONG_LONG const PY_LONG_LONG llb = intval; PY_LONG_LONG lla, llx; #endif const digit* digits = ((PyLongObject*)op1)->ob_digit; const Py_ssize_t size = Py_SIZE(op1); if (likely(__Pyx_sst_abs(size) <= 1)) { a = likely(size) ? digits[0] : 0; if (size == -1) a = -a; } else { switch (size) { case -2: if (8 * sizeof(long) - 1 > 2 * PyLong_SHIFT) { a = -(long) (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])); break; #ifdef HAVE_LONG_LONG } else if (8 * sizeof(PY_LONG_LONG) - 1 > 2 * PyLong_SHIFT) { lla = -(PY_LONG_LONG) (((((unsigned PY_LONG_LONG)digits[1]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[0])); goto long_long; #endif } CYTHON_FALLTHROUGH; case 2: if (8 * sizeof(long) - 1 > 2 * PyLong_SHIFT) { a = (long) (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])); break; #ifdef HAVE_LONG_LONG } else if (8 * sizeof(PY_LONG_LONG) - 1 > 2 * PyLong_SHIFT) { lla = (PY_LONG_LONG) (((((unsigned PY_LONG_LONG)digits[1]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[0])); goto long_long; #endif } CYTHON_FALLTHROUGH; case -3: if (8 * sizeof(long) - 1 > 3 * PyLong_SHIFT) { a = -(long) (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])); break; #ifdef HAVE_LONG_LONG } else if (8 * sizeof(PY_LONG_LONG) - 1 > 3 * PyLong_SHIFT) { lla = -(PY_LONG_LONG) (((((((unsigned PY_LONG_LONG)digits[2]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[1]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[0])); goto long_long; #endif } CYTHON_FALLTHROUGH; case 3: if (8 * sizeof(long) - 1 > 3 * PyLong_SHIFT) { a = (long) (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])); break; #ifdef HAVE_LONG_LONG } else if (8 * sizeof(PY_LONG_LONG) - 1 > 3 * PyLong_SHIFT) { lla = (PY_LONG_LONG) (((((((unsigned PY_LONG_LONG)digits[2]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[1]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[0])); goto long_long; #endif } CYTHON_FALLTHROUGH; case -4: if (8 * sizeof(long) - 1 > 4 * PyLong_SHIFT) { a = -(long) (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])); break; #ifdef HAVE_LONG_LONG } else if (8 * sizeof(PY_LONG_LONG) - 1 > 4 * PyLong_SHIFT) { lla = -(PY_LONG_LONG) (((((((((unsigned PY_LONG_LONG)digits[3]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[2]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[1]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[0])); goto long_long; #endif } CYTHON_FALLTHROUGH; case 4: if (8 * sizeof(long) - 1 > 4 * PyLong_SHIFT) { a = (long) (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])); break; #ifdef HAVE_LONG_LONG } else if (8 * sizeof(PY_LONG_LONG) - 1 > 4 * PyLong_SHIFT) { lla = (PY_LONG_LONG) (((((((((unsigned PY_LONG_LONG)digits[3]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[2]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[1]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[0])); goto long_long; #endif } CYTHON_FALLTHROUGH; default: return PyLong_Type.tp_as_number->nb_add(op1, op2); } } x = a + b; return PyLong_FromLong(x); #ifdef HAVE_LONG_LONG long_long: llx = lla + llb; return PyLong_FromLongLong(llx); #endif } #endif if (PyFloat_CheckExact(op1)) { const long b = intval; double a = PyFloat_AS_DOUBLE(op1); double result; PyFPE_START_PROTECT("add", return NULL) result = ((double)a) + (double)b; PyFPE_END_PROTECT(result) return PyFloat_FromDouble(result); } return (inplace ? PyNumber_InPlaceAdd : PyNumber_Add)(op1, op2); } #endif /* SetItemInt */ static int __Pyx_SetItemInt_Generic(PyObject *o, PyObject *j, PyObject *v) { int r; if (!j) return -1; r = PyObject_SetItem(o, j, v); Py_DECREF(j); return r; } static CYTHON_INLINE int __Pyx_SetItemInt_Fast(PyObject *o, Py_ssize_t i, PyObject *v, int is_list, CYTHON_NCP_UNUSED int wraparound, CYTHON_NCP_UNUSED int boundscheck) { #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS && CYTHON_USE_TYPE_SLOTS if (is_list || PyList_CheckExact(o)) { Py_ssize_t n = (!wraparound) ? i : ((likely(i >= 0)) ? i : i + PyList_GET_SIZE(o)); if ((!boundscheck) || likely(__Pyx_is_valid_index(n, PyList_GET_SIZE(o)))) { PyObject* old = PyList_GET_ITEM(o, n); Py_INCREF(v); PyList_SET_ITEM(o, n, v); Py_DECREF(old); return 1; } } else { PySequenceMethods *m = Py_TYPE(o)->tp_as_sequence; if (likely(m && m->sq_ass_item)) { if (wraparound && unlikely(i < 0) && likely(m->sq_length)) { Py_ssize_t l = m->sq_length(o); if (likely(l >= 0)) { i += l; } else { if (!PyErr_ExceptionMatches(PyExc_OverflowError)) return -1; PyErr_Clear(); } } return m->sq_ass_item(o, i, v); } } #else #if CYTHON_COMPILING_IN_PYPY if (is_list || (PySequence_Check(o) && !PyDict_Check(o))) #else if (is_list || PySequence_Check(o)) #endif { return PySequence_SetItem(o, i, v); } #endif return __Pyx_SetItemInt_Generic(o, PyInt_FromSsize_t(i), v); } /* RaiseNoneIterError */ static CYTHON_INLINE void __Pyx_RaiseNoneNotIterableError(void) { PyErr_SetString(PyExc_TypeError, "'NoneType' object is not iterable"); } /* PyObject_GenericGetAttrNoDict */ #if CYTHON_USE_TYPE_SLOTS && CYTHON_USE_PYTYPE_LOOKUP && PY_VERSION_HEX < 0x03070000 static PyObject *__Pyx_RaiseGenericGetAttributeError(PyTypeObject *tp, PyObject *attr_name) { PyErr_Format(PyExc_AttributeError, #if PY_MAJOR_VERSION >= 3 "'%.50s' object has no attribute '%U'", tp->tp_name, attr_name); #else "'%.50s' object has no attribute '%.400s'", tp->tp_name, PyString_AS_STRING(attr_name)); #endif return NULL; } static CYTHON_INLINE PyObject* __Pyx_PyObject_GenericGetAttrNoDict(PyObject* obj, PyObject* attr_name) { PyObject *descr; PyTypeObject *tp = Py_TYPE(obj); if (unlikely(!PyString_Check(attr_name))) { return PyObject_GenericGetAttr(obj, attr_name); } assert(!tp->tp_dictoffset); descr = _PyType_Lookup(tp, attr_name); if (unlikely(!descr)) { return __Pyx_RaiseGenericGetAttributeError(tp, attr_name); } Py_INCREF(descr); #if PY_MAJOR_VERSION < 3 if (likely(PyType_HasFeature(Py_TYPE(descr), Py_TPFLAGS_HAVE_CLASS))) #endif { descrgetfunc f = Py_TYPE(descr)->tp_descr_get; if (unlikely(f)) { PyObject *res = f(descr, obj, (PyObject *)tp); Py_DECREF(descr); return res; } } return descr; } #endif /* PyObject_GenericGetAttr */ #if CYTHON_USE_TYPE_SLOTS && CYTHON_USE_PYTYPE_LOOKUP && PY_VERSION_HEX < 0x03070000 static PyObject* __Pyx_PyObject_GenericGetAttr(PyObject* obj, PyObject* attr_name) { if (unlikely(Py_TYPE(obj)->tp_dictoffset)) { return PyObject_GenericGetAttr(obj, attr_name); } return __Pyx_PyObject_GenericGetAttrNoDict(obj, attr_name); } #endif /* SetVTable */ static int __Pyx_SetVtable(PyObject *dict, void *vtable) { #if PY_VERSION_HEX >= 0x02070000 PyObject *ob = PyCapsule_New(vtable, 0, 0); #else PyObject *ob = PyCObject_FromVoidPtr(vtable, 0); #endif if (!ob) goto bad; if (PyDict_SetItem(dict, __pyx_n_s_pyx_vtable, ob) < 0) goto bad; Py_DECREF(ob); return 0; bad: Py_XDECREF(ob); return -1; } /* TypeImport */ #ifndef __PYX_HAVE_RT_ImportType #define __PYX_HAVE_RT_ImportType static PyTypeObject *__Pyx_ImportType(PyObject *module, const char *module_name, const char *class_name, size_t size, enum __Pyx_ImportType_CheckSize check_size) { PyObject *result = 0; char warning[200]; Py_ssize_t basicsize; #ifdef Py_LIMITED_API PyObject *py_basicsize; #endif result = PyObject_GetAttrString(module, class_name); if (!result) goto bad; if (!PyType_Check(result)) { PyErr_Format(PyExc_TypeError, "%.200s.%.200s is not a type object", module_name, class_name); goto bad; } #ifndef Py_LIMITED_API basicsize = ((PyTypeObject *)result)->tp_basicsize; #else py_basicsize = PyObject_GetAttrString(result, "__basicsize__"); if (!py_basicsize) goto bad; basicsize = PyLong_AsSsize_t(py_basicsize); Py_DECREF(py_basicsize); py_basicsize = 0; if (basicsize == (Py_ssize_t)-1 && PyErr_Occurred()) goto bad; #endif if ((size_t)basicsize < size) { PyErr_Format(PyExc_ValueError, "%.200s.%.200s size changed, may indicate binary incompatibility. " "Expected %zd from C header, got %zd from PyObject", module_name, class_name, size, basicsize); goto bad; } if (check_size == __Pyx_ImportType_CheckSize_Error && (size_t)basicsize != size) { PyErr_Format(PyExc_ValueError, "%.200s.%.200s size changed, may indicate binary incompatibility. " "Expected %zd from C header, got %zd from PyObject", module_name, class_name, size, basicsize); goto bad; } else if (check_size == __Pyx_ImportType_CheckSize_Warn && (size_t)basicsize > size) { PyOS_snprintf(warning, sizeof(warning), "%s.%s size changed, may indicate binary incompatibility. " "Expected %zd from C header, got %zd from PyObject", module_name, class_name, size, basicsize); if (PyErr_WarnEx(NULL, warning, 0) < 0) goto bad; } return (PyTypeObject *)result; bad: Py_XDECREF(result); return NULL; } #endif /* CLineInTraceback */ #ifndef CYTHON_CLINE_IN_TRACEBACK static int __Pyx_CLineForTraceback(PyThreadState *tstate, int c_line) { PyObject *use_cline; PyObject *ptype, *pvalue, *ptraceback; #if CYTHON_COMPILING_IN_CPYTHON PyObject **cython_runtime_dict; #endif if (unlikely(!__pyx_cython_runtime)) { return c_line; } __Pyx_ErrFetchInState(tstate, &ptype, &pvalue, &ptraceback); #if CYTHON_COMPILING_IN_CPYTHON cython_runtime_dict = _PyObject_GetDictPtr(__pyx_cython_runtime); if (likely(cython_runtime_dict)) { __PYX_PY_DICT_LOOKUP_IF_MODIFIED( use_cline, *cython_runtime_dict, __Pyx_PyDict_GetItemStr(*cython_runtime_dict, __pyx_n_s_cline_in_traceback)) } else #endif { PyObject *use_cline_obj = __Pyx_PyObject_GetAttrStr(__pyx_cython_runtime, __pyx_n_s_cline_in_traceback); if (use_cline_obj) { use_cline = PyObject_Not(use_cline_obj) ? Py_False : Py_True; Py_DECREF(use_cline_obj); } else { PyErr_Clear(); use_cline = NULL; } } if (!use_cline) { c_line = 0; PyObject_SetAttr(__pyx_cython_runtime, __pyx_n_s_cline_in_traceback, Py_False); } else if (use_cline == Py_False || (use_cline != Py_True && PyObject_Not(use_cline) != 0)) { c_line = 0; } __Pyx_ErrRestoreInState(tstate, ptype, pvalue, ptraceback); return c_line; } #endif /* CodeObjectCache */ static int __pyx_bisect_code_objects(__Pyx_CodeObjectCacheEntry* entries, int count, int code_line) { int start = 0, mid = 0, end = count - 1; if (end >= 0 && code_line > entries[end].code_line) { return count; } while (start < end) { mid = start + (end - start) / 2; if (code_line < entries[mid].code_line) { end = mid; } else if (code_line > entries[mid].code_line) { start = mid + 1; } else { return mid; } } if (code_line <= entries[mid].code_line) { return mid; } else { return mid + 1; } } static PyCodeObject *__pyx_find_code_object(int code_line) { PyCodeObject* code_object; int pos; if (unlikely(!code_line) || unlikely(!__pyx_code_cache.entries)) { return NULL; } pos = __pyx_bisect_code_objects(__pyx_code_cache.entries, __pyx_code_cache.count, code_line); if (unlikely(pos >= __pyx_code_cache.count) || unlikely(__pyx_code_cache.entries[pos].code_line != code_line)) { return NULL; } code_object = __pyx_code_cache.entries[pos].code_object; Py_INCREF(code_object); return code_object; } static void __pyx_insert_code_object(int code_line, PyCodeObject* code_object) { int pos, i; __Pyx_CodeObjectCacheEntry* entries = __pyx_code_cache.entries; if (unlikely(!code_line)) { return; } if (unlikely(!entries)) { entries = (__Pyx_CodeObjectCacheEntry*)PyMem_Malloc(64*sizeof(__Pyx_CodeObjectCacheEntry)); if (likely(entries)) { __pyx_code_cache.entries = entries; __pyx_code_cache.max_count = 64; __pyx_code_cache.count = 1; entries[0].code_line = code_line; entries[0].code_object = code_object; Py_INCREF(code_object); } return; } pos = __pyx_bisect_code_objects(__pyx_code_cache.entries, __pyx_code_cache.count, code_line); if ((pos < __pyx_code_cache.count) && unlikely(__pyx_code_cache.entries[pos].code_line == code_line)) { PyCodeObject* tmp = entries[pos].code_object; entries[pos].code_object = code_object; Py_DECREF(tmp); return; } if (__pyx_code_cache.count == __pyx_code_cache.max_count) { int new_max = __pyx_code_cache.max_count + 64; entries = (__Pyx_CodeObjectCacheEntry*)PyMem_Realloc( __pyx_code_cache.entries, (size_t)new_max*sizeof(__Pyx_CodeObjectCacheEntry)); if (unlikely(!entries)) { return; } __pyx_code_cache.entries = entries; __pyx_code_cache.max_count = new_max; } for (i=__pyx_code_cache.count; i>pos; i--) { entries[i] = entries[i-1]; } entries[pos].code_line = code_line; entries[pos].code_object = code_object; __pyx_code_cache.count++; Py_INCREF(code_object); } /* AddTraceback */ #include "compile.h" #include "frameobject.h" #include "traceback.h" static PyCodeObject* __Pyx_CreateCodeObjectForTraceback( const char *funcname, int c_line, int py_line, const char *filename) { PyCodeObject *py_code = 0; PyObject *py_srcfile = 0; PyObject *py_funcname = 0; #if PY_MAJOR_VERSION < 3 py_srcfile = PyString_FromString(filename); #else py_srcfile = PyUnicode_FromString(filename); #endif if (!py_srcfile) goto bad; if (c_line) { #if PY_MAJOR_VERSION < 3 py_funcname = PyString_FromFormat( "%s (%s:%d)", funcname, __pyx_cfilenm, c_line); #else py_funcname = PyUnicode_FromFormat( "%s (%s:%d)", funcname, __pyx_cfilenm, c_line); #endif } else { #if PY_MAJOR_VERSION < 3 py_funcname = PyString_FromString(funcname); #else py_funcname = PyUnicode_FromString(funcname); #endif } if (!py_funcname) goto bad; py_code = __Pyx_PyCode_New( 0, 0, 0, 0, 0, __pyx_empty_bytes, /*PyObject *code,*/ __pyx_empty_tuple, /*PyObject *consts,*/ __pyx_empty_tuple, /*PyObject *names,*/ __pyx_empty_tuple, /*PyObject *varnames,*/ __pyx_empty_tuple, /*PyObject *freevars,*/ __pyx_empty_tuple, /*PyObject *cellvars,*/ py_srcfile, /*PyObject *filename,*/ py_funcname, /*PyObject *name,*/ py_line, __pyx_empty_bytes /*PyObject *lnotab*/ ); Py_DECREF(py_srcfile); Py_DECREF(py_funcname); return py_code; bad: Py_XDECREF(py_srcfile); Py_XDECREF(py_funcname); return NULL; } static void __Pyx_AddTraceback(const char *funcname, int c_line, int py_line, const char *filename) { PyCodeObject *py_code = 0; PyFrameObject *py_frame = 0; PyThreadState *tstate = __Pyx_PyThreadState_Current; if (c_line) { c_line = __Pyx_CLineForTraceback(tstate, c_line); } py_code = __pyx_find_code_object(c_line ? -c_line : py_line); if (!py_code) { py_code = __Pyx_CreateCodeObjectForTraceback( funcname, c_line, py_line, filename); if (!py_code) goto bad; __pyx_insert_code_object(c_line ? -c_line : py_line, py_code); } py_frame = PyFrame_New( tstate, /*PyThreadState *tstate,*/ py_code, /*PyCodeObject *code,*/ __pyx_d, /*PyObject *globals,*/ 0 /*PyObject *locals*/ ); if (!py_frame) goto bad; __Pyx_PyFrame_SetLineNumber(py_frame, py_line); PyTraceBack_Here(py_frame); bad: Py_XDECREF(py_code); Py_XDECREF(py_frame); } /* CIntFromPyVerify */ #define __PYX_VERIFY_RETURN_INT(target_type, func_type, func_value)\ __PYX__VERIFY_RETURN_INT(target_type, func_type, func_value, 0) #define __PYX_VERIFY_RETURN_INT_EXC(target_type, func_type, func_value)\ __PYX__VERIFY_RETURN_INT(target_type, func_type, func_value, 1) #define __PYX__VERIFY_RETURN_INT(target_type, func_type, func_value, exc)\ {\ func_type value = func_value;\ if (sizeof(target_type) < sizeof(func_type)) {\ if (unlikely(value != (func_type) (target_type) value)) {\ func_type zero = 0;\ if (exc && unlikely(value == (func_type)-1 && PyErr_Occurred()))\ return (target_type) -1;\ if (is_unsigned && unlikely(value < zero))\ goto raise_neg_overflow;\ else\ goto raise_overflow;\ }\ }\ return (target_type) value;\ } /* CIntToPy */ static CYTHON_INLINE PyObject* __Pyx_PyInt_From_long(long value) { const long neg_one = (long) ((long) 0 - (long) 1), const_zero = (long) 0; const int is_unsigned = neg_one > const_zero; if (is_unsigned) { if (sizeof(long) < sizeof(long)) { return PyInt_FromLong((long) value); } else if (sizeof(long) <= sizeof(unsigned long)) { return PyLong_FromUnsignedLong((unsigned long) value); #ifdef HAVE_LONG_LONG } else if (sizeof(long) <= sizeof(unsigned PY_LONG_LONG)) { return PyLong_FromUnsignedLongLong((unsigned PY_LONG_LONG) value); #endif } } else { if (sizeof(long) <= sizeof(long)) { return PyInt_FromLong((long) value); #ifdef HAVE_LONG_LONG } else if (sizeof(long) <= sizeof(PY_LONG_LONG)) { return PyLong_FromLongLong((PY_LONG_LONG) value); #endif } } { int one = 1; int little = (int)*(unsigned char *)&one; unsigned char *bytes = (unsigned char *)&value; return _PyLong_FromByteArray(bytes, sizeof(long), little, !is_unsigned); } } /* CIntToPy */ static CYTHON_INLINE PyObject* __Pyx_PyInt_From_int(int value) { const int neg_one = (int) ((int) 0 - (int) 1), const_zero = (int) 0; const int is_unsigned = neg_one > const_zero; if (is_unsigned) { if (sizeof(int) < sizeof(long)) { return PyInt_FromLong((long) value); } else if (sizeof(int) <= sizeof(unsigned long)) { return PyLong_FromUnsignedLong((unsigned long) value); #ifdef HAVE_LONG_LONG } else if (sizeof(int) <= sizeof(unsigned PY_LONG_LONG)) { return PyLong_FromUnsignedLongLong((unsigned PY_LONG_LONG) value); #endif } } else { if (sizeof(int) <= sizeof(long)) { return PyInt_FromLong((long) value); #ifdef HAVE_LONG_LONG } else if (sizeof(int) <= sizeof(PY_LONG_LONG)) { return PyLong_FromLongLong((PY_LONG_LONG) value); #endif } } { int one = 1; int little = (int)*(unsigned char *)&one; unsigned char *bytes = (unsigned char *)&value; return _PyLong_FromByteArray(bytes, sizeof(int), little, !is_unsigned); } } /* CIntToPy */ static CYTHON_INLINE PyObject* __Pyx_PyInt_From_int64_t(int64_t value) { const int64_t neg_one = (int64_t) ((int64_t) 0 - (int64_t) 1), const_zero = (int64_t) 0; const int is_unsigned = neg_one > const_zero; if (is_unsigned) { if (sizeof(int64_t) < sizeof(long)) { return PyInt_FromLong((long) value); } else if (sizeof(int64_t) <= sizeof(unsigned long)) { return PyLong_FromUnsignedLong((unsigned long) value); #ifdef HAVE_LONG_LONG } else if (sizeof(int64_t) <= sizeof(unsigned PY_LONG_LONG)) { return PyLong_FromUnsignedLongLong((unsigned PY_LONG_LONG) value); #endif } } else { if (sizeof(int64_t) <= sizeof(long)) { return PyInt_FromLong((long) value); #ifdef HAVE_LONG_LONG } else if (sizeof(int64_t) <= sizeof(PY_LONG_LONG)) { return PyLong_FromLongLong((PY_LONG_LONG) value); #endif } } { int one = 1; int little = (int)*(unsigned char *)&one; unsigned char *bytes = (unsigned char *)&value; return _PyLong_FromByteArray(bytes, sizeof(int64_t), little, !is_unsigned); } } /* CIntToPy */ static CYTHON_INLINE PyObject* __Pyx_PyInt_From_Py_intptr_t(Py_intptr_t value) { const Py_intptr_t neg_one = (Py_intptr_t) ((Py_intptr_t) 0 - (Py_intptr_t) 1), const_zero = (Py_intptr_t) 0; const int is_unsigned = neg_one > const_zero; if (is_unsigned) { if (sizeof(Py_intptr_t) < sizeof(long)) { return PyInt_FromLong((long) value); } else if (sizeof(Py_intptr_t) <= sizeof(unsigned long)) { return PyLong_FromUnsignedLong((unsigned long) value); #ifdef HAVE_LONG_LONG } else if (sizeof(Py_intptr_t) <= sizeof(unsigned PY_LONG_LONG)) { return PyLong_FromUnsignedLongLong((unsigned PY_LONG_LONG) value); #endif } } else { if (sizeof(Py_intptr_t) <= sizeof(long)) { return PyInt_FromLong((long) value); #ifdef HAVE_LONG_LONG } else if (sizeof(Py_intptr_t) <= sizeof(PY_LONG_LONG)) { return PyLong_FromLongLong((PY_LONG_LONG) value); #endif } } { int one = 1; int little = (int)*(unsigned char *)&one; unsigned char *bytes = (unsigned char *)&value; return _PyLong_FromByteArray(bytes, sizeof(Py_intptr_t), little, !is_unsigned); } } /* Declarations */ #if CYTHON_CCOMPLEX #ifdef __cplusplus static CYTHON_INLINE __pyx_t_float_complex __pyx_t_float_complex_from_parts(float x, float y) { return ::std::complex< float >(x, y); } #else static CYTHON_INLINE __pyx_t_float_complex __pyx_t_float_complex_from_parts(float x, float y) { return x + y*(__pyx_t_float_complex)_Complex_I; } #endif #else static CYTHON_INLINE __pyx_t_float_complex __pyx_t_float_complex_from_parts(float x, float y) { __pyx_t_float_complex z; z.real = x; z.imag = y; return z; } #endif /* Arithmetic */ #if CYTHON_CCOMPLEX #else static CYTHON_INLINE int __Pyx_c_eq_float(__pyx_t_float_complex a, __pyx_t_float_complex b) { return (a.real == b.real) && (a.imag == b.imag); } static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_sum_float(__pyx_t_float_complex a, __pyx_t_float_complex b) { __pyx_t_float_complex z; z.real = a.real + b.real; z.imag = a.imag + b.imag; return z; } static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_diff_float(__pyx_t_float_complex a, __pyx_t_float_complex b) { __pyx_t_float_complex z; z.real = a.real - b.real; z.imag = a.imag - b.imag; return z; } static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_prod_float(__pyx_t_float_complex a, __pyx_t_float_complex b) { __pyx_t_float_complex z; z.real = a.real * b.real - a.imag * b.imag; z.imag = a.real * b.imag + a.imag * b.real; return z; } #if 1 static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_quot_float(__pyx_t_float_complex a, __pyx_t_float_complex b) { if (b.imag == 0) { return __pyx_t_float_complex_from_parts(a.real / b.real, a.imag / b.real); } else if (fabsf(b.real) >= fabsf(b.imag)) { if (b.real == 0 && b.imag == 0) { return __pyx_t_float_complex_from_parts(a.real / b.real, a.imag / b.imag); } else { float r = b.imag / b.real; float s = (float)(1.0) / (b.real + b.imag * r); return __pyx_t_float_complex_from_parts( (a.real + a.imag * r) * s, (a.imag - a.real * r) * s); } } else { float r = b.real / b.imag; float s = (float)(1.0) / (b.imag + b.real * r); return __pyx_t_float_complex_from_parts( (a.real * r + a.imag) * s, (a.imag * r - a.real) * s); } } #else static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_quot_float(__pyx_t_float_complex a, __pyx_t_float_complex b) { if (b.imag == 0) { return __pyx_t_float_complex_from_parts(a.real / b.real, a.imag / b.real); } else { float denom = b.real * b.real + b.imag * b.imag; return __pyx_t_float_complex_from_parts( (a.real * b.real + a.imag * b.imag) / denom, (a.imag * b.real - a.real * b.imag) / denom); } } #endif static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_neg_float(__pyx_t_float_complex a) { __pyx_t_float_complex z; z.real = -a.real; z.imag = -a.imag; return z; } static CYTHON_INLINE int __Pyx_c_is_zero_float(__pyx_t_float_complex a) { return (a.real == 0) && (a.imag == 0); } static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_conj_float(__pyx_t_float_complex a) { __pyx_t_float_complex z; z.real = a.real; z.imag = -a.imag; return z; } #if 1 static CYTHON_INLINE float __Pyx_c_abs_float(__pyx_t_float_complex z) { #if !defined(HAVE_HYPOT) || defined(_MSC_VER) return sqrtf(z.real*z.real + z.imag*z.imag); #else return hypotf(z.real, z.imag); #endif } static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_pow_float(__pyx_t_float_complex a, __pyx_t_float_complex b) { __pyx_t_float_complex z; float r, lnr, theta, z_r, z_theta; if (b.imag == 0 && b.real == (int)b.real) { if (b.real < 0) { float denom = a.real * a.real + a.imag * a.imag; a.real = a.real / denom; a.imag = -a.imag / denom; b.real = -b.real; } switch ((int)b.real) { case 0: z.real = 1; z.imag = 0; return z; case 1: return a; case 2: return __Pyx_c_prod_float(a, a); case 3: z = __Pyx_c_prod_float(a, a); return __Pyx_c_prod_float(z, a); case 4: z = __Pyx_c_prod_float(a, a); return __Pyx_c_prod_float(z, z); } } if (a.imag == 0) { if (a.real == 0) { return a; } else if (b.imag == 0) { z.real = powf(a.real, b.real); z.imag = 0; return z; } else if (a.real > 0) { r = a.real; theta = 0; } else { r = -a.real; theta = atan2f(0.0, -1.0); } } else { r = __Pyx_c_abs_float(a); theta = atan2f(a.imag, a.real); } lnr = logf(r); z_r = expf(lnr * b.real - theta * b.imag); z_theta = theta * b.real + lnr * b.imag; z.real = z_r * cosf(z_theta); z.imag = z_r * sinf(z_theta); return z; } #endif #endif /* Declarations */ #if CYTHON_CCOMPLEX #ifdef __cplusplus static CYTHON_INLINE __pyx_t_double_complex __pyx_t_double_complex_from_parts(double x, double y) { return ::std::complex< double >(x, y); } #else static CYTHON_INLINE __pyx_t_double_complex __pyx_t_double_complex_from_parts(double x, double y) { return x + y*(__pyx_t_double_complex)_Complex_I; } #endif #else static CYTHON_INLINE __pyx_t_double_complex __pyx_t_double_complex_from_parts(double x, double y) { __pyx_t_double_complex z; z.real = x; z.imag = y; return z; } #endif /* Arithmetic */ #if CYTHON_CCOMPLEX #else static CYTHON_INLINE int __Pyx_c_eq_double(__pyx_t_double_complex a, __pyx_t_double_complex b) { return (a.real == b.real) && (a.imag == b.imag); } static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_sum_double(__pyx_t_double_complex a, __pyx_t_double_complex b) { __pyx_t_double_complex z; z.real = a.real + b.real; z.imag = a.imag + b.imag; return z; } static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_diff_double(__pyx_t_double_complex a, __pyx_t_double_complex b) { __pyx_t_double_complex z; z.real = a.real - b.real; z.imag = a.imag - b.imag; return z; } static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_prod_double(__pyx_t_double_complex a, __pyx_t_double_complex b) { __pyx_t_double_complex z; z.real = a.real * b.real - a.imag * b.imag; z.imag = a.real * b.imag + a.imag * b.real; return z; } #if 1 static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_quot_double(__pyx_t_double_complex a, __pyx_t_double_complex b) { if (b.imag == 0) { return __pyx_t_double_complex_from_parts(a.real / b.real, a.imag / b.real); } else if (fabs(b.real) >= fabs(b.imag)) { if (b.real == 0 && b.imag == 0) { return __pyx_t_double_complex_from_parts(a.real / b.real, a.imag / b.imag); } else { double r = b.imag / b.real; double s = (double)(1.0) / (b.real + b.imag * r); return __pyx_t_double_complex_from_parts( (a.real + a.imag * r) * s, (a.imag - a.real * r) * s); } } else { double r = b.real / b.imag; double s = (double)(1.0) / (b.imag + b.real * r); return __pyx_t_double_complex_from_parts( (a.real * r + a.imag) * s, (a.imag * r - a.real) * s); } } #else static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_quot_double(__pyx_t_double_complex a, __pyx_t_double_complex b) { if (b.imag == 0) { return __pyx_t_double_complex_from_parts(a.real / b.real, a.imag / b.real); } else { double denom = b.real * b.real + b.imag * b.imag; return __pyx_t_double_complex_from_parts( (a.real * b.real + a.imag * b.imag) / denom, (a.imag * b.real - a.real * b.imag) / denom); } } #endif static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_neg_double(__pyx_t_double_complex a) { __pyx_t_double_complex z; z.real = -a.real; z.imag = -a.imag; return z; } static CYTHON_INLINE int __Pyx_c_is_zero_double(__pyx_t_double_complex a) { return (a.real == 0) && (a.imag == 0); } static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_conj_double(__pyx_t_double_complex a) { __pyx_t_double_complex z; z.real = a.real; z.imag = -a.imag; return z; } #if 1 static CYTHON_INLINE double __Pyx_c_abs_double(__pyx_t_double_complex z) { #if !defined(HAVE_HYPOT) || defined(_MSC_VER) return sqrt(z.real*z.real + z.imag*z.imag); #else return hypot(z.real, z.imag); #endif } static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_pow_double(__pyx_t_double_complex a, __pyx_t_double_complex b) { __pyx_t_double_complex z; double r, lnr, theta, z_r, z_theta; if (b.imag == 0 && b.real == (int)b.real) { if (b.real < 0) { double denom = a.real * a.real + a.imag * a.imag; a.real = a.real / denom; a.imag = -a.imag / denom; b.real = -b.real; } switch ((int)b.real) { case 0: z.real = 1; z.imag = 0; return z; case 1: return a; case 2: return __Pyx_c_prod_double(a, a); case 3: z = __Pyx_c_prod_double(a, a); return __Pyx_c_prod_double(z, a); case 4: z = __Pyx_c_prod_double(a, a); return __Pyx_c_prod_double(z, z); } } if (a.imag == 0) { if (a.real == 0) { return a; } else if (b.imag == 0) { z.real = pow(a.real, b.real); z.imag = 0; return z; } else if (a.real > 0) { r = a.real; theta = 0; } else { r = -a.real; theta = atan2(0.0, -1.0); } } else { r = __Pyx_c_abs_double(a); theta = atan2(a.imag, a.real); } lnr = log(r); z_r = exp(lnr * b.real - theta * b.imag); z_theta = theta * b.real + lnr * b.imag; z.real = z_r * cos(z_theta); z.imag = z_r * sin(z_theta); return z; } #endif #endif /* CIntToPy */ static CYTHON_INLINE PyObject* __Pyx_PyInt_From_enum__NPY_TYPES(enum NPY_TYPES value) { const enum NPY_TYPES neg_one = (enum NPY_TYPES) ((enum NPY_TYPES) 0 - (enum NPY_TYPES) 1), const_zero = (enum NPY_TYPES) 0; const int is_unsigned = neg_one > const_zero; if (is_unsigned) { if (sizeof(enum NPY_TYPES) < sizeof(long)) { return PyInt_FromLong((long) value); } else if (sizeof(enum NPY_TYPES) <= sizeof(unsigned long)) { return PyLong_FromUnsignedLong((unsigned long) value); #ifdef HAVE_LONG_LONG } else if (sizeof(enum NPY_TYPES) <= sizeof(unsigned PY_LONG_LONG)) { return PyLong_FromUnsignedLongLong((unsigned PY_LONG_LONG) value); #endif } } else { if (sizeof(enum NPY_TYPES) <= sizeof(long)) { return PyInt_FromLong((long) value); #ifdef HAVE_LONG_LONG } else if (sizeof(enum NPY_TYPES) <= sizeof(PY_LONG_LONG)) { return PyLong_FromLongLong((PY_LONG_LONG) value); #endif } } { int one = 1; int little = (int)*(unsigned char *)&one; unsigned char *bytes = (unsigned char *)&value; return _PyLong_FromByteArray(bytes, sizeof(enum NPY_TYPES), little, !is_unsigned); } } /* CIntFromPy */ static CYTHON_INLINE Py_intptr_t __Pyx_PyInt_As_Py_intptr_t(PyObject *x) { const Py_intptr_t neg_one = (Py_intptr_t) ((Py_intptr_t) 0 - (Py_intptr_t) 1), const_zero = (Py_intptr_t) 0; const int is_unsigned = neg_one > const_zero; #if PY_MAJOR_VERSION < 3 if (likely(PyInt_Check(x))) { if (sizeof(Py_intptr_t) < sizeof(long)) { __PYX_VERIFY_RETURN_INT(Py_intptr_t, long, PyInt_AS_LONG(x)) } else { long val = PyInt_AS_LONG(x); if (is_unsigned && unlikely(val < 0)) { goto raise_neg_overflow; } return (Py_intptr_t) val; } } else #endif if (likely(PyLong_Check(x))) { if (is_unsigned) { #if CYTHON_USE_PYLONG_INTERNALS const digit* digits = ((PyLongObject*)x)->ob_digit; switch (Py_SIZE(x)) { case 0: return (Py_intptr_t) 0; case 1: __PYX_VERIFY_RETURN_INT(Py_intptr_t, digit, digits[0]) case 2: if (8 * sizeof(Py_intptr_t) > 1 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(Py_intptr_t, unsigned long, (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(Py_intptr_t) >= 2 * PyLong_SHIFT) { return (Py_intptr_t) (((((Py_intptr_t)digits[1]) << PyLong_SHIFT) | (Py_intptr_t)digits[0])); } } break; case 3: if (8 * sizeof(Py_intptr_t) > 2 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(Py_intptr_t, unsigned long, (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(Py_intptr_t) >= 3 * PyLong_SHIFT) { return (Py_intptr_t) (((((((Py_intptr_t)digits[2]) << PyLong_SHIFT) | (Py_intptr_t)digits[1]) << PyLong_SHIFT) | (Py_intptr_t)digits[0])); } } break; case 4: if (8 * sizeof(Py_intptr_t) > 3 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(Py_intptr_t, unsigned long, (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(Py_intptr_t) >= 4 * PyLong_SHIFT) { return (Py_intptr_t) (((((((((Py_intptr_t)digits[3]) << PyLong_SHIFT) | (Py_intptr_t)digits[2]) << PyLong_SHIFT) | (Py_intptr_t)digits[1]) << PyLong_SHIFT) | (Py_intptr_t)digits[0])); } } break; } #endif #if CYTHON_COMPILING_IN_CPYTHON if (unlikely(Py_SIZE(x) < 0)) { goto raise_neg_overflow; } #else { int result = PyObject_RichCompareBool(x, Py_False, Py_LT); if (unlikely(result < 0)) return (Py_intptr_t) -1; if (unlikely(result == 1)) goto raise_neg_overflow; } #endif if (sizeof(Py_intptr_t) <= sizeof(unsigned long)) { __PYX_VERIFY_RETURN_INT_EXC(Py_intptr_t, unsigned long, PyLong_AsUnsignedLong(x)) #ifdef HAVE_LONG_LONG } else if (sizeof(Py_intptr_t) <= sizeof(unsigned PY_LONG_LONG)) { __PYX_VERIFY_RETURN_INT_EXC(Py_intptr_t, unsigned PY_LONG_LONG, PyLong_AsUnsignedLongLong(x)) #endif } } else { #if CYTHON_USE_PYLONG_INTERNALS const digit* digits = ((PyLongObject*)x)->ob_digit; switch (Py_SIZE(x)) { case 0: return (Py_intptr_t) 0; case -1: __PYX_VERIFY_RETURN_INT(Py_intptr_t, sdigit, (sdigit) (-(sdigit)digits[0])) case 1: __PYX_VERIFY_RETURN_INT(Py_intptr_t, digit, +digits[0]) case -2: if (8 * sizeof(Py_intptr_t) - 1 > 1 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(Py_intptr_t, long, -(long) (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(Py_intptr_t) - 1 > 2 * PyLong_SHIFT) { return (Py_intptr_t) (((Py_intptr_t)-1)*(((((Py_intptr_t)digits[1]) << PyLong_SHIFT) | (Py_intptr_t)digits[0]))); } } break; case 2: if (8 * sizeof(Py_intptr_t) > 1 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(Py_intptr_t, unsigned long, (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(Py_intptr_t) - 1 > 2 * PyLong_SHIFT) { return (Py_intptr_t) ((((((Py_intptr_t)digits[1]) << PyLong_SHIFT) | (Py_intptr_t)digits[0]))); } } break; case -3: if (8 * sizeof(Py_intptr_t) - 1 > 2 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(Py_intptr_t, long, -(long) (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(Py_intptr_t) - 1 > 3 * PyLong_SHIFT) { return (Py_intptr_t) (((Py_intptr_t)-1)*(((((((Py_intptr_t)digits[2]) << PyLong_SHIFT) | (Py_intptr_t)digits[1]) << PyLong_SHIFT) | (Py_intptr_t)digits[0]))); } } break; case 3: if (8 * sizeof(Py_intptr_t) > 2 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(Py_intptr_t, unsigned long, (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(Py_intptr_t) - 1 > 3 * PyLong_SHIFT) { return (Py_intptr_t) ((((((((Py_intptr_t)digits[2]) << PyLong_SHIFT) | (Py_intptr_t)digits[1]) << PyLong_SHIFT) | (Py_intptr_t)digits[0]))); } } break; case -4: if (8 * sizeof(Py_intptr_t) - 1 > 3 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(Py_intptr_t, long, -(long) (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(Py_intptr_t) - 1 > 4 * PyLong_SHIFT) { return (Py_intptr_t) (((Py_intptr_t)-1)*(((((((((Py_intptr_t)digits[3]) << PyLong_SHIFT) | (Py_intptr_t)digits[2]) << PyLong_SHIFT) | (Py_intptr_t)digits[1]) << PyLong_SHIFT) | (Py_intptr_t)digits[0]))); } } break; case 4: if (8 * sizeof(Py_intptr_t) > 3 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(Py_intptr_t, unsigned long, (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(Py_intptr_t) - 1 > 4 * PyLong_SHIFT) { return (Py_intptr_t) ((((((((((Py_intptr_t)digits[3]) << PyLong_SHIFT) | (Py_intptr_t)digits[2]) << PyLong_SHIFT) | (Py_intptr_t)digits[1]) << PyLong_SHIFT) | (Py_intptr_t)digits[0]))); } } break; } #endif if (sizeof(Py_intptr_t) <= sizeof(long)) { __PYX_VERIFY_RETURN_INT_EXC(Py_intptr_t, long, PyLong_AsLong(x)) #ifdef HAVE_LONG_LONG } else if (sizeof(Py_intptr_t) <= sizeof(PY_LONG_LONG)) { __PYX_VERIFY_RETURN_INT_EXC(Py_intptr_t, PY_LONG_LONG, PyLong_AsLongLong(x)) #endif } } { #if CYTHON_COMPILING_IN_PYPY && !defined(_PyLong_AsByteArray) PyErr_SetString(PyExc_RuntimeError, "_PyLong_AsByteArray() not available in PyPy, cannot convert large numbers"); #else Py_intptr_t val; PyObject *v = __Pyx_PyNumber_IntOrLong(x); #if PY_MAJOR_VERSION < 3 if (likely(v) && !PyLong_Check(v)) { PyObject *tmp = v; v = PyNumber_Long(tmp); Py_DECREF(tmp); } #endif if (likely(v)) { int one = 1; int is_little = (int)*(unsigned char *)&one; unsigned char *bytes = (unsigned char *)&val; int ret = _PyLong_AsByteArray((PyLongObject *)v, bytes, sizeof(val), is_little, !is_unsigned); Py_DECREF(v); if (likely(!ret)) return val; } #endif return (Py_intptr_t) -1; } } else { Py_intptr_t val; PyObject *tmp = __Pyx_PyNumber_IntOrLong(x); if (!tmp) return (Py_intptr_t) -1; val = __Pyx_PyInt_As_Py_intptr_t(tmp); Py_DECREF(tmp); return val; } raise_overflow: PyErr_SetString(PyExc_OverflowError, "value too large to convert to Py_intptr_t"); return (Py_intptr_t) -1; raise_neg_overflow: PyErr_SetString(PyExc_OverflowError, "can't convert negative value to Py_intptr_t"); return (Py_intptr_t) -1; } /* CIntFromPy */ static CYTHON_INLINE int64_t __Pyx_PyInt_As_int64_t(PyObject *x) { const int64_t neg_one = (int64_t) ((int64_t) 0 - (int64_t) 1), const_zero = (int64_t) 0; const int is_unsigned = neg_one > const_zero; #if PY_MAJOR_VERSION < 3 if (likely(PyInt_Check(x))) { if (sizeof(int64_t) < sizeof(long)) { __PYX_VERIFY_RETURN_INT(int64_t, long, PyInt_AS_LONG(x)) } else { long val = PyInt_AS_LONG(x); if (is_unsigned && unlikely(val < 0)) { goto raise_neg_overflow; } return (int64_t) val; } } else #endif if (likely(PyLong_Check(x))) { if (is_unsigned) { #if CYTHON_USE_PYLONG_INTERNALS const digit* digits = ((PyLongObject*)x)->ob_digit; switch (Py_SIZE(x)) { case 0: return (int64_t) 0; case 1: __PYX_VERIFY_RETURN_INT(int64_t, digit, digits[0]) case 2: if (8 * sizeof(int64_t) > 1 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(int64_t, unsigned long, (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(int64_t) >= 2 * PyLong_SHIFT) { return (int64_t) (((((int64_t)digits[1]) << PyLong_SHIFT) | (int64_t)digits[0])); } } break; case 3: if (8 * sizeof(int64_t) > 2 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(int64_t, unsigned long, (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(int64_t) >= 3 * PyLong_SHIFT) { return (int64_t) (((((((int64_t)digits[2]) << PyLong_SHIFT) | (int64_t)digits[1]) << PyLong_SHIFT) | (int64_t)digits[0])); } } break; case 4: if (8 * sizeof(int64_t) > 3 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(int64_t, unsigned long, (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(int64_t) >= 4 * PyLong_SHIFT) { return (int64_t) (((((((((int64_t)digits[3]) << PyLong_SHIFT) | (int64_t)digits[2]) << PyLong_SHIFT) | (int64_t)digits[1]) << PyLong_SHIFT) | (int64_t)digits[0])); } } break; } #endif #if CYTHON_COMPILING_IN_CPYTHON if (unlikely(Py_SIZE(x) < 0)) { goto raise_neg_overflow; } #else { int result = PyObject_RichCompareBool(x, Py_False, Py_LT); if (unlikely(result < 0)) return (int64_t) -1; if (unlikely(result == 1)) goto raise_neg_overflow; } #endif if (sizeof(int64_t) <= sizeof(unsigned long)) { __PYX_VERIFY_RETURN_INT_EXC(int64_t, unsigned long, PyLong_AsUnsignedLong(x)) #ifdef HAVE_LONG_LONG } else if (sizeof(int64_t) <= sizeof(unsigned PY_LONG_LONG)) { __PYX_VERIFY_RETURN_INT_EXC(int64_t, unsigned PY_LONG_LONG, PyLong_AsUnsignedLongLong(x)) #endif } } else { #if CYTHON_USE_PYLONG_INTERNALS const digit* digits = ((PyLongObject*)x)->ob_digit; switch (Py_SIZE(x)) { case 0: return (int64_t) 0; case -1: __PYX_VERIFY_RETURN_INT(int64_t, sdigit, (sdigit) (-(sdigit)digits[0])) case 1: __PYX_VERIFY_RETURN_INT(int64_t, digit, +digits[0]) case -2: if (8 * sizeof(int64_t) - 1 > 1 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(int64_t, long, -(long) (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(int64_t) - 1 > 2 * PyLong_SHIFT) { return (int64_t) (((int64_t)-1)*(((((int64_t)digits[1]) << PyLong_SHIFT) | (int64_t)digits[0]))); } } break; case 2: if (8 * sizeof(int64_t) > 1 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(int64_t, unsigned long, (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(int64_t) - 1 > 2 * PyLong_SHIFT) { return (int64_t) ((((((int64_t)digits[1]) << PyLong_SHIFT) | (int64_t)digits[0]))); } } break; case -3: if (8 * sizeof(int64_t) - 1 > 2 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(int64_t, long, -(long) (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(int64_t) - 1 > 3 * PyLong_SHIFT) { return (int64_t) (((int64_t)-1)*(((((((int64_t)digits[2]) << PyLong_SHIFT) | (int64_t)digits[1]) << PyLong_SHIFT) | (int64_t)digits[0]))); } } break; case 3: if (8 * sizeof(int64_t) > 2 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(int64_t, unsigned long, (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(int64_t) - 1 > 3 * PyLong_SHIFT) { return (int64_t) ((((((((int64_t)digits[2]) << PyLong_SHIFT) | (int64_t)digits[1]) << PyLong_SHIFT) | (int64_t)digits[0]))); } } break; case -4: if (8 * sizeof(int64_t) - 1 > 3 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(int64_t, long, -(long) (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(int64_t) - 1 > 4 * PyLong_SHIFT) { return (int64_t) (((int64_t)-1)*(((((((((int64_t)digits[3]) << PyLong_SHIFT) | (int64_t)digits[2]) << PyLong_SHIFT) | (int64_t)digits[1]) << PyLong_SHIFT) | (int64_t)digits[0]))); } } break; case 4: if (8 * sizeof(int64_t) > 3 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(int64_t, unsigned long, (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(int64_t) - 1 > 4 * PyLong_SHIFT) { return (int64_t) ((((((((((int64_t)digits[3]) << PyLong_SHIFT) | (int64_t)digits[2]) << PyLong_SHIFT) | (int64_t)digits[1]) << PyLong_SHIFT) | (int64_t)digits[0]))); } } break; } #endif if (sizeof(int64_t) <= sizeof(long)) { __PYX_VERIFY_RETURN_INT_EXC(int64_t, long, PyLong_AsLong(x)) #ifdef HAVE_LONG_LONG } else if (sizeof(int64_t) <= sizeof(PY_LONG_LONG)) { __PYX_VERIFY_RETURN_INT_EXC(int64_t, PY_LONG_LONG, PyLong_AsLongLong(x)) #endif } } { #if CYTHON_COMPILING_IN_PYPY && !defined(_PyLong_AsByteArray) PyErr_SetString(PyExc_RuntimeError, "_PyLong_AsByteArray() not available in PyPy, cannot convert large numbers"); #else int64_t val; PyObject *v = __Pyx_PyNumber_IntOrLong(x); #if PY_MAJOR_VERSION < 3 if (likely(v) && !PyLong_Check(v)) { PyObject *tmp = v; v = PyNumber_Long(tmp); Py_DECREF(tmp); } #endif if (likely(v)) { int one = 1; int is_little = (int)*(unsigned char *)&one; unsigned char *bytes = (unsigned char *)&val; int ret = _PyLong_AsByteArray((PyLongObject *)v, bytes, sizeof(val), is_little, !is_unsigned); Py_DECREF(v); if (likely(!ret)) return val; } #endif return (int64_t) -1; } } else { int64_t val; PyObject *tmp = __Pyx_PyNumber_IntOrLong(x); if (!tmp) return (int64_t) -1; val = __Pyx_PyInt_As_int64_t(tmp); Py_DECREF(tmp); return val; } raise_overflow: PyErr_SetString(PyExc_OverflowError, "value too large to convert to int64_t"); return (int64_t) -1; raise_neg_overflow: PyErr_SetString(PyExc_OverflowError, "can't convert negative value to int64_t"); return (int64_t) -1; } /* CIntFromPy */ static CYTHON_INLINE int __Pyx_PyInt_As_int(PyObject *x) { const int neg_one = (int) ((int) 0 - (int) 1), const_zero = (int) 0; const int is_unsigned = neg_one > const_zero; #if PY_MAJOR_VERSION < 3 if (likely(PyInt_Check(x))) { if (sizeof(int) < sizeof(long)) { __PYX_VERIFY_RETURN_INT(int, long, PyInt_AS_LONG(x)) } else { long val = PyInt_AS_LONG(x); if (is_unsigned && unlikely(val < 0)) { goto raise_neg_overflow; } return (int) val; } } else #endif if (likely(PyLong_Check(x))) { if (is_unsigned) { #if CYTHON_USE_PYLONG_INTERNALS const digit* digits = ((PyLongObject*)x)->ob_digit; switch (Py_SIZE(x)) { case 0: return (int) 0; case 1: __PYX_VERIFY_RETURN_INT(int, digit, digits[0]) case 2: if (8 * sizeof(int) > 1 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(int, unsigned long, (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(int) >= 2 * PyLong_SHIFT) { return (int) (((((int)digits[1]) << PyLong_SHIFT) | (int)digits[0])); } } break; case 3: if (8 * sizeof(int) > 2 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(int, unsigned long, (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(int) >= 3 * PyLong_SHIFT) { return (int) (((((((int)digits[2]) << PyLong_SHIFT) | (int)digits[1]) << PyLong_SHIFT) | (int)digits[0])); } } break; case 4: if (8 * sizeof(int) > 3 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(int, unsigned long, (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(int) >= 4 * PyLong_SHIFT) { return (int) (((((((((int)digits[3]) << PyLong_SHIFT) | (int)digits[2]) << PyLong_SHIFT) | (int)digits[1]) << PyLong_SHIFT) | (int)digits[0])); } } break; } #endif #if CYTHON_COMPILING_IN_CPYTHON if (unlikely(Py_SIZE(x) < 0)) { goto raise_neg_overflow; } #else { int result = PyObject_RichCompareBool(x, Py_False, Py_LT); if (unlikely(result < 0)) return (int) -1; if (unlikely(result == 1)) goto raise_neg_overflow; } #endif if (sizeof(int) <= sizeof(unsigned long)) { __PYX_VERIFY_RETURN_INT_EXC(int, unsigned long, PyLong_AsUnsignedLong(x)) #ifdef HAVE_LONG_LONG } else if (sizeof(int) <= sizeof(unsigned PY_LONG_LONG)) { __PYX_VERIFY_RETURN_INT_EXC(int, unsigned PY_LONG_LONG, PyLong_AsUnsignedLongLong(x)) #endif } } else { #if CYTHON_USE_PYLONG_INTERNALS const digit* digits = ((PyLongObject*)x)->ob_digit; switch (Py_SIZE(x)) { case 0: return (int) 0; case -1: __PYX_VERIFY_RETURN_INT(int, sdigit, (sdigit) (-(sdigit)digits[0])) case 1: __PYX_VERIFY_RETURN_INT(int, digit, +digits[0]) case -2: if (8 * sizeof(int) - 1 > 1 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(int, long, -(long) (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(int) - 1 > 2 * PyLong_SHIFT) { return (int) (((int)-1)*(((((int)digits[1]) << PyLong_SHIFT) | (int)digits[0]))); } } break; case 2: if (8 * sizeof(int) > 1 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(int, unsigned long, (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(int) - 1 > 2 * PyLong_SHIFT) { return (int) ((((((int)digits[1]) << PyLong_SHIFT) | (int)digits[0]))); } } break; case -3: if (8 * sizeof(int) - 1 > 2 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(int, long, -(long) (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(int) - 1 > 3 * PyLong_SHIFT) { return (int) (((int)-1)*(((((((int)digits[2]) << PyLong_SHIFT) | (int)digits[1]) << PyLong_SHIFT) | (int)digits[0]))); } } break; case 3: if (8 * sizeof(int) > 2 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(int, unsigned long, (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(int) - 1 > 3 * PyLong_SHIFT) { return (int) ((((((((int)digits[2]) << PyLong_SHIFT) | (int)digits[1]) << PyLong_SHIFT) | (int)digits[0]))); } } break; case -4: if (8 * sizeof(int) - 1 > 3 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(int, long, -(long) (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(int) - 1 > 4 * PyLong_SHIFT) { return (int) (((int)-1)*(((((((((int)digits[3]) << PyLong_SHIFT) | (int)digits[2]) << PyLong_SHIFT) | (int)digits[1]) << PyLong_SHIFT) | (int)digits[0]))); } } break; case 4: if (8 * sizeof(int) > 3 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(int, unsigned long, (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(int) - 1 > 4 * PyLong_SHIFT) { return (int) ((((((((((int)digits[3]) << PyLong_SHIFT) | (int)digits[2]) << PyLong_SHIFT) | (int)digits[1]) << PyLong_SHIFT) | (int)digits[0]))); } } break; } #endif if (sizeof(int) <= sizeof(long)) { __PYX_VERIFY_RETURN_INT_EXC(int, long, PyLong_AsLong(x)) #ifdef HAVE_LONG_LONG } else if (sizeof(int) <= sizeof(PY_LONG_LONG)) { __PYX_VERIFY_RETURN_INT_EXC(int, PY_LONG_LONG, PyLong_AsLongLong(x)) #endif } } { #if CYTHON_COMPILING_IN_PYPY && !defined(_PyLong_AsByteArray) PyErr_SetString(PyExc_RuntimeError, "_PyLong_AsByteArray() not available in PyPy, cannot convert large numbers"); #else int val; PyObject *v = __Pyx_PyNumber_IntOrLong(x); #if PY_MAJOR_VERSION < 3 if (likely(v) && !PyLong_Check(v)) { PyObject *tmp = v; v = PyNumber_Long(tmp); Py_DECREF(tmp); } #endif if (likely(v)) { int one = 1; int is_little = (int)*(unsigned char *)&one; unsigned char *bytes = (unsigned char *)&val; int ret = _PyLong_AsByteArray((PyLongObject *)v, bytes, sizeof(val), is_little, !is_unsigned); Py_DECREF(v); if (likely(!ret)) return val; } #endif return (int) -1; } } else { int val; PyObject *tmp = __Pyx_PyNumber_IntOrLong(x); if (!tmp) return (int) -1; val = __Pyx_PyInt_As_int(tmp); Py_DECREF(tmp); return val; } raise_overflow: PyErr_SetString(PyExc_OverflowError, "value too large to convert to int"); return (int) -1; raise_neg_overflow: PyErr_SetString(PyExc_OverflowError, "can't convert negative value to int"); return (int) -1; } /* CIntFromPy */ static CYTHON_INLINE long __Pyx_PyInt_As_long(PyObject *x) { const long neg_one = (long) ((long) 0 - (long) 1), const_zero = (long) 0; const int is_unsigned = neg_one > const_zero; #if PY_MAJOR_VERSION < 3 if (likely(PyInt_Check(x))) { if (sizeof(long) < sizeof(long)) { __PYX_VERIFY_RETURN_INT(long, long, PyInt_AS_LONG(x)) } else { long val = PyInt_AS_LONG(x); if (is_unsigned && unlikely(val < 0)) { goto raise_neg_overflow; } return (long) val; } } else #endif if (likely(PyLong_Check(x))) { if (is_unsigned) { #if CYTHON_USE_PYLONG_INTERNALS const digit* digits = ((PyLongObject*)x)->ob_digit; switch (Py_SIZE(x)) { case 0: return (long) 0; case 1: __PYX_VERIFY_RETURN_INT(long, digit, digits[0]) case 2: if (8 * sizeof(long) > 1 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(long, unsigned long, (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(long) >= 2 * PyLong_SHIFT) { return (long) (((((long)digits[1]) << PyLong_SHIFT) | (long)digits[0])); } } break; case 3: if (8 * sizeof(long) > 2 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(long, unsigned long, (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(long) >= 3 * PyLong_SHIFT) { return (long) (((((((long)digits[2]) << PyLong_SHIFT) | (long)digits[1]) << PyLong_SHIFT) | (long)digits[0])); } } break; case 4: if (8 * sizeof(long) > 3 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(long, unsigned long, (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(long) >= 4 * PyLong_SHIFT) { return (long) (((((((((long)digits[3]) << PyLong_SHIFT) | (long)digits[2]) << PyLong_SHIFT) | (long)digits[1]) << PyLong_SHIFT) | (long)digits[0])); } } break; } #endif #if CYTHON_COMPILING_IN_CPYTHON if (unlikely(Py_SIZE(x) < 0)) { goto raise_neg_overflow; } #else { int result = PyObject_RichCompareBool(x, Py_False, Py_LT); if (unlikely(result < 0)) return (long) -1; if (unlikely(result == 1)) goto raise_neg_overflow; } #endif if (sizeof(long) <= sizeof(unsigned long)) { __PYX_VERIFY_RETURN_INT_EXC(long, unsigned long, PyLong_AsUnsignedLong(x)) #ifdef HAVE_LONG_LONG } else if (sizeof(long) <= sizeof(unsigned PY_LONG_LONG)) { __PYX_VERIFY_RETURN_INT_EXC(long, unsigned PY_LONG_LONG, PyLong_AsUnsignedLongLong(x)) #endif } } else { #if CYTHON_USE_PYLONG_INTERNALS const digit* digits = ((PyLongObject*)x)->ob_digit; switch (Py_SIZE(x)) { case 0: return (long) 0; case -1: __PYX_VERIFY_RETURN_INT(long, sdigit, (sdigit) (-(sdigit)digits[0])) case 1: __PYX_VERIFY_RETURN_INT(long, digit, +digits[0]) case -2: if (8 * sizeof(long) - 1 > 1 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(long, long, -(long) (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(long) - 1 > 2 * PyLong_SHIFT) { return (long) (((long)-1)*(((((long)digits[1]) << PyLong_SHIFT) | (long)digits[0]))); } } break; case 2: if (8 * sizeof(long) > 1 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(long, unsigned long, (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(long) - 1 > 2 * PyLong_SHIFT) { return (long) ((((((long)digits[1]) << PyLong_SHIFT) | (long)digits[0]))); } } break; case -3: if (8 * sizeof(long) - 1 > 2 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(long, long, -(long) (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(long) - 1 > 3 * PyLong_SHIFT) { return (long) (((long)-1)*(((((((long)digits[2]) << PyLong_SHIFT) | (long)digits[1]) << PyLong_SHIFT) | (long)digits[0]))); } } break; case 3: if (8 * sizeof(long) > 2 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(long, unsigned long, (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(long) - 1 > 3 * PyLong_SHIFT) { return (long) ((((((((long)digits[2]) << PyLong_SHIFT) | (long)digits[1]) << PyLong_SHIFT) | (long)digits[0]))); } } break; case -4: if (8 * sizeof(long) - 1 > 3 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(long, long, -(long) (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(long) - 1 > 4 * PyLong_SHIFT) { return (long) (((long)-1)*(((((((((long)digits[3]) << PyLong_SHIFT) | (long)digits[2]) << PyLong_SHIFT) | (long)digits[1]) << PyLong_SHIFT) | (long)digits[0]))); } } break; case 4: if (8 * sizeof(long) > 3 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(long, unsigned long, (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(long) - 1 > 4 * PyLong_SHIFT) { return (long) ((((((((((long)digits[3]) << PyLong_SHIFT) | (long)digits[2]) << PyLong_SHIFT) | (long)digits[1]) << PyLong_SHIFT) | (long)digits[0]))); } } break; } #endif if (sizeof(long) <= sizeof(long)) { __PYX_VERIFY_RETURN_INT_EXC(long, long, PyLong_AsLong(x)) #ifdef HAVE_LONG_LONG } else if (sizeof(long) <= sizeof(PY_LONG_LONG)) { __PYX_VERIFY_RETURN_INT_EXC(long, PY_LONG_LONG, PyLong_AsLongLong(x)) #endif } } { #if CYTHON_COMPILING_IN_PYPY && !defined(_PyLong_AsByteArray) PyErr_SetString(PyExc_RuntimeError, "_PyLong_AsByteArray() not available in PyPy, cannot convert large numbers"); #else long val; PyObject *v = __Pyx_PyNumber_IntOrLong(x); #if PY_MAJOR_VERSION < 3 if (likely(v) && !PyLong_Check(v)) { PyObject *tmp = v; v = PyNumber_Long(tmp); Py_DECREF(tmp); } #endif if (likely(v)) { int one = 1; int is_little = (int)*(unsigned char *)&one; unsigned char *bytes = (unsigned char *)&val; int ret = _PyLong_AsByteArray((PyLongObject *)v, bytes, sizeof(val), is_little, !is_unsigned); Py_DECREF(v); if (likely(!ret)) return val; } #endif return (long) -1; } } else { long val; PyObject *tmp = __Pyx_PyNumber_IntOrLong(x); if (!tmp) return (long) -1; val = __Pyx_PyInt_As_long(tmp); Py_DECREF(tmp); return val; } raise_overflow: PyErr_SetString(PyExc_OverflowError, "value too large to convert to long"); return (long) -1; raise_neg_overflow: PyErr_SetString(PyExc_OverflowError, "can't convert negative value to long"); return (long) -1; } /* CIntFromPy */ static CYTHON_INLINE size_t __Pyx_PyInt_As_size_t(PyObject *x) { const size_t neg_one = (size_t) ((size_t) 0 - (size_t) 1), const_zero = (size_t) 0; const int is_unsigned = neg_one > const_zero; #if PY_MAJOR_VERSION < 3 if (likely(PyInt_Check(x))) { if (sizeof(size_t) < sizeof(long)) { __PYX_VERIFY_RETURN_INT(size_t, long, PyInt_AS_LONG(x)) } else { long val = PyInt_AS_LONG(x); if (is_unsigned && unlikely(val < 0)) { goto raise_neg_overflow; } return (size_t) val; } } else #endif if (likely(PyLong_Check(x))) { if (is_unsigned) { #if CYTHON_USE_PYLONG_INTERNALS const digit* digits = ((PyLongObject*)x)->ob_digit; switch (Py_SIZE(x)) { case 0: return (size_t) 0; case 1: __PYX_VERIFY_RETURN_INT(size_t, digit, digits[0]) case 2: if (8 * sizeof(size_t) > 1 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(size_t, unsigned long, (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(size_t) >= 2 * PyLong_SHIFT) { return (size_t) (((((size_t)digits[1]) << PyLong_SHIFT) | (size_t)digits[0])); } } break; case 3: if (8 * sizeof(size_t) > 2 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(size_t, unsigned long, (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(size_t) >= 3 * PyLong_SHIFT) { return (size_t) (((((((size_t)digits[2]) << PyLong_SHIFT) | (size_t)digits[1]) << PyLong_SHIFT) | (size_t)digits[0])); } } break; case 4: if (8 * sizeof(size_t) > 3 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(size_t, unsigned long, (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(size_t) >= 4 * PyLong_SHIFT) { return (size_t) (((((((((size_t)digits[3]) << PyLong_SHIFT) | (size_t)digits[2]) << PyLong_SHIFT) | (size_t)digits[1]) << PyLong_SHIFT) | (size_t)digits[0])); } } break; } #endif #if CYTHON_COMPILING_IN_CPYTHON if (unlikely(Py_SIZE(x) < 0)) { goto raise_neg_overflow; } #else { int result = PyObject_RichCompareBool(x, Py_False, Py_LT); if (unlikely(result < 0)) return (size_t) -1; if (unlikely(result == 1)) goto raise_neg_overflow; } #endif if (sizeof(size_t) <= sizeof(unsigned long)) { __PYX_VERIFY_RETURN_INT_EXC(size_t, unsigned long, PyLong_AsUnsignedLong(x)) #ifdef HAVE_LONG_LONG } else if (sizeof(size_t) <= sizeof(unsigned PY_LONG_LONG)) { __PYX_VERIFY_RETURN_INT_EXC(size_t, unsigned PY_LONG_LONG, PyLong_AsUnsignedLongLong(x)) #endif } } else { #if CYTHON_USE_PYLONG_INTERNALS const digit* digits = ((PyLongObject*)x)->ob_digit; switch (Py_SIZE(x)) { case 0: return (size_t) 0; case -1: __PYX_VERIFY_RETURN_INT(size_t, sdigit, (sdigit) (-(sdigit)digits[0])) case 1: __PYX_VERIFY_RETURN_INT(size_t, digit, +digits[0]) case -2: if (8 * sizeof(size_t) - 1 > 1 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(size_t, long, -(long) (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(size_t) - 1 > 2 * PyLong_SHIFT) { return (size_t) (((size_t)-1)*(((((size_t)digits[1]) << PyLong_SHIFT) | (size_t)digits[0]))); } } break; case 2: if (8 * sizeof(size_t) > 1 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 2 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(size_t, unsigned long, (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(size_t) - 1 > 2 * PyLong_SHIFT) { return (size_t) ((((((size_t)digits[1]) << PyLong_SHIFT) | (size_t)digits[0]))); } } break; case -3: if (8 * sizeof(size_t) - 1 > 2 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(size_t, long, -(long) (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(size_t) - 1 > 3 * PyLong_SHIFT) { return (size_t) (((size_t)-1)*(((((((size_t)digits[2]) << PyLong_SHIFT) | (size_t)digits[1]) << PyLong_SHIFT) | (size_t)digits[0]))); } } break; case 3: if (8 * sizeof(size_t) > 2 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 3 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(size_t, unsigned long, (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(size_t) - 1 > 3 * PyLong_SHIFT) { return (size_t) ((((((((size_t)digits[2]) << PyLong_SHIFT) | (size_t)digits[1]) << PyLong_SHIFT) | (size_t)digits[0]))); } } break; case -4: if (8 * sizeof(size_t) - 1 > 3 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(size_t, long, -(long) (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(size_t) - 1 > 4 * PyLong_SHIFT) { return (size_t) (((size_t)-1)*(((((((((size_t)digits[3]) << PyLong_SHIFT) | (size_t)digits[2]) << PyLong_SHIFT) | (size_t)digits[1]) << PyLong_SHIFT) | (size_t)digits[0]))); } } break; case 4: if (8 * sizeof(size_t) > 3 * PyLong_SHIFT) { if (8 * sizeof(unsigned long) > 4 * PyLong_SHIFT) { __PYX_VERIFY_RETURN_INT(size_t, unsigned long, (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]))) } else if (8 * sizeof(size_t) - 1 > 4 * PyLong_SHIFT) { return (size_t) ((((((((((size_t)digits[3]) << PyLong_SHIFT) | (size_t)digits[2]) << PyLong_SHIFT) | (size_t)digits[1]) << PyLong_SHIFT) | (size_t)digits[0]))); } } break; } #endif if (sizeof(size_t) <= sizeof(long)) { __PYX_VERIFY_RETURN_INT_EXC(size_t, long, PyLong_AsLong(x)) #ifdef HAVE_LONG_LONG } else if (sizeof(size_t) <= sizeof(PY_LONG_LONG)) { __PYX_VERIFY_RETURN_INT_EXC(size_t, PY_LONG_LONG, PyLong_AsLongLong(x)) #endif } } { #if CYTHON_COMPILING_IN_PYPY && !defined(_PyLong_AsByteArray) PyErr_SetString(PyExc_RuntimeError, "_PyLong_AsByteArray() not available in PyPy, cannot convert large numbers"); #else size_t val; PyObject *v = __Pyx_PyNumber_IntOrLong(x); #if PY_MAJOR_VERSION < 3 if (likely(v) && !PyLong_Check(v)) { PyObject *tmp = v; v = PyNumber_Long(tmp); Py_DECREF(tmp); } #endif if (likely(v)) { int one = 1; int is_little = (int)*(unsigned char *)&one; unsigned char *bytes = (unsigned char *)&val; int ret = _PyLong_AsByteArray((PyLongObject *)v, bytes, sizeof(val), is_little, !is_unsigned); Py_DECREF(v); if (likely(!ret)) return val; } #endif return (size_t) -1; } } else { size_t val; PyObject *tmp = __Pyx_PyNumber_IntOrLong(x); if (!tmp) return (size_t) -1; val = __Pyx_PyInt_As_size_t(tmp); Py_DECREF(tmp); return val; } raise_overflow: PyErr_SetString(PyExc_OverflowError, "value too large to convert to size_t"); return (size_t) -1; raise_neg_overflow: PyErr_SetString(PyExc_OverflowError, "can't convert negative value to size_t"); return (size_t) -1; } /* FastTypeChecks */ #if CYTHON_COMPILING_IN_CPYTHON static int __Pyx_InBases(PyTypeObject *a, PyTypeObject *b) { while (a) { a = a->tp_base; if (a == b) return 1; } return b == &PyBaseObject_Type; } static CYTHON_INLINE int __Pyx_IsSubtype(PyTypeObject *a, PyTypeObject *b) { PyObject *mro; if (a == b) return 1; mro = a->tp_mro; if (likely(mro)) { Py_ssize_t i, n; n = PyTuple_GET_SIZE(mro); for (i = 0; i < n; i++) { if (PyTuple_GET_ITEM(mro, i) == (PyObject *)b) return 1; } return 0; } return __Pyx_InBases(a, b); } #if PY_MAJOR_VERSION == 2 static int __Pyx_inner_PyErr_GivenExceptionMatches2(PyObject *err, PyObject* exc_type1, PyObject* exc_type2) { PyObject *exception, *value, *tb; int res; __Pyx_PyThreadState_declare __Pyx_PyThreadState_assign __Pyx_ErrFetch(&exception, &value, &tb); res = exc_type1 ? PyObject_IsSubclass(err, exc_type1) : 0; if (unlikely(res == -1)) { PyErr_WriteUnraisable(err); res = 0; } if (!res) { res = PyObject_IsSubclass(err, exc_type2); if (unlikely(res == -1)) { PyErr_WriteUnraisable(err); res = 0; } } __Pyx_ErrRestore(exception, value, tb); return res; } #else static CYTHON_INLINE int __Pyx_inner_PyErr_GivenExceptionMatches2(PyObject *err, PyObject* exc_type1, PyObject *exc_type2) { int res = exc_type1 ? __Pyx_IsSubtype((PyTypeObject*)err, (PyTypeObject*)exc_type1) : 0; if (!res) { res = __Pyx_IsSubtype((PyTypeObject*)err, (PyTypeObject*)exc_type2); } return res; } #endif static int __Pyx_PyErr_GivenExceptionMatchesTuple(PyObject *exc_type, PyObject *tuple) { Py_ssize_t i, n; assert(PyExceptionClass_Check(exc_type)); n = PyTuple_GET_SIZE(tuple); #if PY_MAJOR_VERSION >= 3 for (i=0; i= 0x02070000 if (!PyCapsule_IsValid(cobj, sig)) { PyErr_Format(PyExc_TypeError, "C variable %.200s.%.200s has wrong signature (expected %.500s, got %.500s)", PyModule_GetName(module), name, sig, PyCapsule_GetName(cobj)); goto bad; } *p = PyCapsule_GetPointer(cobj, sig); #else {const char *desc, *s1, *s2; desc = (const char *)PyCObject_GetDesc(cobj); if (!desc) goto bad; s1 = desc; s2 = sig; while (*s1 != '\0' && *s1 == *s2) { s1++; s2++; } if (*s1 != *s2) { PyErr_Format(PyExc_TypeError, "C variable %.200s.%.200s has wrong signature (expected %.500s, got %.500s)", PyModule_GetName(module), name, sig, desc); goto bad; } *p = PyCObject_AsVoidPtr(cobj);} #endif if (!(*p)) goto bad; Py_DECREF(d); return 0; bad: Py_XDECREF(d); return -1; } #endif /* FunctionImport */ #ifndef __PYX_HAVE_RT_ImportFunction #define __PYX_HAVE_RT_ImportFunction static int __Pyx_ImportFunction(PyObject *module, const char *funcname, void (**f)(void), const char *sig) { PyObject *d = 0; PyObject *cobj = 0; union { void (*fp)(void); void *p; } tmp; d = PyObject_GetAttrString(module, (char *)"__pyx_capi__"); if (!d) goto bad; cobj = PyDict_GetItemString(d, funcname); if (!cobj) { PyErr_Format(PyExc_ImportError, "%.200s does not export expected C function %.200s", PyModule_GetName(module), funcname); goto bad; } #if PY_VERSION_HEX >= 0x02070000 if (!PyCapsule_IsValid(cobj, sig)) { PyErr_Format(PyExc_TypeError, "C function %.200s.%.200s has wrong signature (expected %.500s, got %.500s)", PyModule_GetName(module), funcname, sig, PyCapsule_GetName(cobj)); goto bad; } tmp.p = PyCapsule_GetPointer(cobj, sig); #else {const char *desc, *s1, *s2; desc = (const char *)PyCObject_GetDesc(cobj); if (!desc) goto bad; s1 = desc; s2 = sig; while (*s1 != '\0' && *s1 == *s2) { s1++; s2++; } if (*s1 != *s2) { PyErr_Format(PyExc_TypeError, "C function %.200s.%.200s has wrong signature (expected %.500s, got %.500s)", PyModule_GetName(module), funcname, sig, desc); goto bad; } tmp.p = PyCObject_AsVoidPtr(cobj);} #endif *f = tmp.fp; if (!(*f)) goto bad; Py_DECREF(d); return 0; bad: Py_XDECREF(d); return -1; } #endif /* InitStrings */ static int __Pyx_InitStrings(__Pyx_StringTabEntry *t) { while (t->p) { #if PY_MAJOR_VERSION < 3 if (t->is_unicode) { *t->p = PyUnicode_DecodeUTF8(t->s, t->n - 1, NULL); } else if (t->intern) { *t->p = PyString_InternFromString(t->s); } else { *t->p = PyString_FromStringAndSize(t->s, t->n - 1); } #else if (t->is_unicode | t->is_str) { if (t->intern) { *t->p = PyUnicode_InternFromString(t->s); } else if (t->encoding) { *t->p = PyUnicode_Decode(t->s, t->n - 1, t->encoding, NULL); } else { *t->p = PyUnicode_FromStringAndSize(t->s, t->n - 1); } } else { *t->p = PyBytes_FromStringAndSize(t->s, t->n - 1); } #endif if (!*t->p) return -1; if (PyObject_Hash(*t->p) == -1) return -1; ++t; } return 0; } static CYTHON_INLINE PyObject* __Pyx_PyUnicode_FromString(const char* c_str) { return __Pyx_PyUnicode_FromStringAndSize(c_str, (Py_ssize_t)strlen(c_str)); } static CYTHON_INLINE const char* __Pyx_PyObject_AsString(PyObject* o) { Py_ssize_t ignore; return __Pyx_PyObject_AsStringAndSize(o, &ignore); } #if __PYX_DEFAULT_STRING_ENCODING_IS_ASCII || __PYX_DEFAULT_STRING_ENCODING_IS_DEFAULT #if !CYTHON_PEP393_ENABLED static const char* __Pyx_PyUnicode_AsStringAndSize(PyObject* o, Py_ssize_t *length) { char* defenc_c; PyObject* defenc = _PyUnicode_AsDefaultEncodedString(o, NULL); if (!defenc) return NULL; defenc_c = PyBytes_AS_STRING(defenc); #if __PYX_DEFAULT_STRING_ENCODING_IS_ASCII { char* end = defenc_c + PyBytes_GET_SIZE(defenc); char* c; for (c = defenc_c; c < end; c++) { if ((unsigned char) (*c) >= 128) { PyUnicode_AsASCIIString(o); return NULL; } } } #endif *length = PyBytes_GET_SIZE(defenc); return defenc_c; } #else static CYTHON_INLINE const char* __Pyx_PyUnicode_AsStringAndSize(PyObject* o, Py_ssize_t *length) { if (unlikely(__Pyx_PyUnicode_READY(o) == -1)) return NULL; #if __PYX_DEFAULT_STRING_ENCODING_IS_ASCII if (likely(PyUnicode_IS_ASCII(o))) { *length = PyUnicode_GET_LENGTH(o); return PyUnicode_AsUTF8(o); } else { PyUnicode_AsASCIIString(o); return NULL; } #else return PyUnicode_AsUTF8AndSize(o, length); #endif } #endif #endif static CYTHON_INLINE const char* __Pyx_PyObject_AsStringAndSize(PyObject* o, Py_ssize_t *length) { #if __PYX_DEFAULT_STRING_ENCODING_IS_ASCII || __PYX_DEFAULT_STRING_ENCODING_IS_DEFAULT if ( #if PY_MAJOR_VERSION < 3 && __PYX_DEFAULT_STRING_ENCODING_IS_ASCII __Pyx_sys_getdefaultencoding_not_ascii && #endif PyUnicode_Check(o)) { return __Pyx_PyUnicode_AsStringAndSize(o, length); } else #endif #if (!CYTHON_COMPILING_IN_PYPY) || (defined(PyByteArray_AS_STRING) && defined(PyByteArray_GET_SIZE)) if (PyByteArray_Check(o)) { *length = PyByteArray_GET_SIZE(o); return PyByteArray_AS_STRING(o); } else #endif { char* result; int r = PyBytes_AsStringAndSize(o, &result, length); if (unlikely(r < 0)) { return NULL; } else { return result; } } } static CYTHON_INLINE int __Pyx_PyObject_IsTrue(PyObject* x) { int is_true = x == Py_True; if (is_true | (x == Py_False) | (x == Py_None)) return is_true; else return PyObject_IsTrue(x); } static CYTHON_INLINE int __Pyx_PyObject_IsTrueAndDecref(PyObject* x) { int retval; if (unlikely(!x)) return -1; retval = __Pyx_PyObject_IsTrue(x); Py_DECREF(x); return retval; } static PyObject* __Pyx_PyNumber_IntOrLongWrongResultType(PyObject* result, const char* type_name) { #if PY_MAJOR_VERSION >= 3 if (PyLong_Check(result)) { if (PyErr_WarnFormat(PyExc_DeprecationWarning, 1, "__int__ returned non-int (type %.200s). " "The ability to return an instance of a strict subclass of int " "is deprecated, and may be removed in a future version of Python.", Py_TYPE(result)->tp_name)) { Py_DECREF(result); return NULL; } return result; } #endif PyErr_Format(PyExc_TypeError, "__%.4s__ returned non-%.4s (type %.200s)", type_name, type_name, Py_TYPE(result)->tp_name); Py_DECREF(result); return NULL; } static CYTHON_INLINE PyObject* __Pyx_PyNumber_IntOrLong(PyObject* x) { #if CYTHON_USE_TYPE_SLOTS PyNumberMethods *m; #endif const char *name = NULL; PyObject *res = NULL; #if PY_MAJOR_VERSION < 3 if (likely(PyInt_Check(x) || PyLong_Check(x))) #else if (likely(PyLong_Check(x))) #endif return __Pyx_NewRef(x); #if CYTHON_USE_TYPE_SLOTS m = Py_TYPE(x)->tp_as_number; #if PY_MAJOR_VERSION < 3 if (m && m->nb_int) { name = "int"; res = m->nb_int(x); } else if (m && m->nb_long) { name = "long"; res = m->nb_long(x); } #else if (likely(m && m->nb_int)) { name = "int"; res = m->nb_int(x); } #endif #else if (!PyBytes_CheckExact(x) && !PyUnicode_CheckExact(x)) { res = PyNumber_Int(x); } #endif if (likely(res)) { #if PY_MAJOR_VERSION < 3 if (unlikely(!PyInt_Check(res) && !PyLong_Check(res))) { #else if (unlikely(!PyLong_CheckExact(res))) { #endif return __Pyx_PyNumber_IntOrLongWrongResultType(res, name); } } else if (!PyErr_Occurred()) { PyErr_SetString(PyExc_TypeError, "an integer is required"); } return res; } static CYTHON_INLINE Py_ssize_t __Pyx_PyIndex_AsSsize_t(PyObject* b) { Py_ssize_t ival; PyObject *x; #if PY_MAJOR_VERSION < 3 if (likely(PyInt_CheckExact(b))) { if (sizeof(Py_ssize_t) >= sizeof(long)) return PyInt_AS_LONG(b); else return PyInt_AsSsize_t(b); } #endif if (likely(PyLong_CheckExact(b))) { #if CYTHON_USE_PYLONG_INTERNALS const digit* digits = ((PyLongObject*)b)->ob_digit; const Py_ssize_t size = Py_SIZE(b); if (likely(__Pyx_sst_abs(size) <= 1)) { ival = likely(size) ? digits[0] : 0; if (size == -1) ival = -ival; return ival; } else { switch (size) { case 2: if (8 * sizeof(Py_ssize_t) > 2 * PyLong_SHIFT) { return (Py_ssize_t) (((((size_t)digits[1]) << PyLong_SHIFT) | (size_t)digits[0])); } break; case -2: if (8 * sizeof(Py_ssize_t) > 2 * PyLong_SHIFT) { return -(Py_ssize_t) (((((size_t)digits[1]) << PyLong_SHIFT) | (size_t)digits[0])); } break; case 3: if (8 * sizeof(Py_ssize_t) > 3 * PyLong_SHIFT) { return (Py_ssize_t) (((((((size_t)digits[2]) << PyLong_SHIFT) | (size_t)digits[1]) << PyLong_SHIFT) | (size_t)digits[0])); } break; case -3: if (8 * sizeof(Py_ssize_t) > 3 * PyLong_SHIFT) { return -(Py_ssize_t) (((((((size_t)digits[2]) << PyLong_SHIFT) | (size_t)digits[1]) << PyLong_SHIFT) | (size_t)digits[0])); } break; case 4: if (8 * sizeof(Py_ssize_t) > 4 * PyLong_SHIFT) { return (Py_ssize_t) (((((((((size_t)digits[3]) << PyLong_SHIFT) | (size_t)digits[2]) << PyLong_SHIFT) | (size_t)digits[1]) << PyLong_SHIFT) | (size_t)digits[0])); } break; case -4: if (8 * sizeof(Py_ssize_t) > 4 * PyLong_SHIFT) { return -(Py_ssize_t) (((((((((size_t)digits[3]) << PyLong_SHIFT) | (size_t)digits[2]) << PyLong_SHIFT) | (size_t)digits[1]) << PyLong_SHIFT) | (size_t)digits[0])); } break; } } #endif return PyLong_AsSsize_t(b); } x = PyNumber_Index(b); if (!x) return -1; ival = PyInt_AsSsize_t(x); Py_DECREF(x); return ival; } static CYTHON_INLINE PyObject * __Pyx_PyBool_FromLong(long b) { return b ? __Pyx_NewRef(Py_True) : __Pyx_NewRef(Py_False); } static CYTHON_INLINE PyObject * __Pyx_PyInt_FromSize_t(size_t ival) { return PyInt_FromSize_t(ival); } #endif /* Py_PYTHON_H */