/* { dg-require-effective-target vect_int } */ /* { dg-additional-options "--param vect-max-peeling-for-alignment=0" } */ #include #include "tree-vect.h" #if VECTOR_BITS > 128 #define NINTS (VECTOR_BITS / 32) #else #define NINTS 4 #endif #define N (NINTS * 6) /* Keep execution time down. */ #if N <= 24 #define OUTERN N #else #define OUTERN NINTS #endif struct s{ int m; int n[4][4][N]; }; struct test1{ struct s a; /* array a.n is unaligned */ int b; int c; struct s e[N]; /* array e.n is aligned */ }; /* Avoid big local temporaries. */ #if NINTS > 8 struct test1 tmp1; #endif __attribute__ ((noinline)) int main1 () { int i,j; #if NINTS <= 8 struct test1 tmp1; #endif for (i = 0; i < OUTERN; i++) for (j = NINTS - 1; j < N - NINTS + 1; j++) { tmp1.e[i].n[1][2][j] = 8; } /* check results: */ for (i = 0; i < OUTERN; i++) for (j = NINTS - 1; j < N - NINTS + 1; j++) { if (tmp1.e[i].n[1][2][j] != 8) abort (); } /* not consecutive, will use strided stores */ for (i = 0; i < OUTERN; i++) for (j = NINTS - 1; j < N - NINTS + 1; j++) { tmp1.e[j].n[1][2][j] = 8; } /* check results: */ for (i = 0; i < OUTERN; i++) for (j = NINTS - 1; j < N - NINTS + 1; j++) { if (tmp1.e[j].n[1][2][j] != 8) abort (); } return 0; } int main (void) { check_vect (); return main1 (); } /* { dg-final { scan-tree-dump-times "vectorized 2 loops" 1 "vect" } } */ /* { dg-final { scan-tree-dump-times "Alignment of access forced using versioning" 1 "vect" {target {{! vector_alignment_reachable} && {! vect_hw_misalign} } } } } */