
Copyright 2011 The Pragmatic Programmers, LLC

Chapter 3

The Bourne-Again Shell

3.1 Introduction

A Unix shell is a program that, at its base, provides an interface to

the features the operating system provides for running commands. It

allows a user to invoke commands with arguments that are usually

treated as strings. In addition to simply executing commands, a shell

is a fairly rich programming language: there are constructs for flow

control, alternation, looping, conditionals, basic mathematical opera-

tions, named functions, string variables, and two-way communication

between the shell and the commands it invokes.

When the shell invokes a command, it can control (redirect) the input

and output the command sees, and can connect commands by allowing

the output of one command to become the input of another (a pipeline).

The pipeline concept is central to this article. Each invoked command

returns a status to the shell, which the shell uses for constructs like

if-then-else and while.

Shells can be used interactively, from a terminal or terminal emulator

such as xterm, and non-interactively, reading commands from a file.

Most modern shells, including bash, provide command-line editing, in

which the command line can be manipulated using emacs- or vi-like

commands while it’s being entered, and various forms of a saved history

of commands.

One of the most familiar shell constructs is the pipeline, where two or

more commands are connected in a linear fashion so that the output of

one command becomes the input of the next.

Copyright 2011 The Pragmatic Programmers, LLC

42 CHAPTER 3. THE BOURNE-AGAIN SHELL

Bash processing is much like a shell pipeline: after being read from

the terminal or a script, data is passed through a number of stages,

transformed at each step, until the shell finally executes a command

and collects its return status.

This chapter will explore bash’s major components: input processing,

parsing, the various word expansions and other command processing,

and command execution, from the pipeline perspective. These compo-

nents act as a pipeline for data read from the keyboard or from a file,

turning it into an executed command.

Bash

Bash is the shell that appears in the GNU operating system, commonly

implemented atop the Linux kernel, and several other common operat-

ing systems, most notably Mac OS X.

The name is an acronym for Bourne-Again SHell, a pun combining the

name of Stephen Bourne (the author of the direct ancestor of the cur-

rent Unix shell /bin/sh, which appeared in the Bell Labs Seventh Edition

Research version of Unix) with the notion of rebirth through reimple-

mentation.

Bash is an sh-compatible shell that incorporates useful features from

the Korn shell (ksh) and other shells such as the C shell (csh). It is

intended to be a conformant implementation of the IEEEPOSIX Shell and

Utilities specification (IEEE Working Group 1003). It offers functional

improvements over sh for both interactive and programming use.

Like other GNU software, Bash is quite portable. It currently runs on

nearly every version of Unix and a few other operating systems —

independently-supported ports exist for hosted Windows environments

such as Cygwin and MinGW, and ports to Unix-like systems such as

QNX and Minix are part of the distribution. It only requires a Posix

environment to build and run, such as one provided by Microsoft’s SFU.

The original author of Bash was Brian Fox, an employee of the Free

Software Foundation. I am the current developer and maintainer, a vol-

unteer who works at Case Western Reserve University in Cleveland,

Ohio. One consequence of my never having been paid to work on Bash

is that it has always been the equivalent of a hobby. While I have had

to work around the rest of my life, Bash development has been rela-

tively independent of external pressures. The lack of anything but self-

imposed deadlines has had positive and negative benefits.

Copyright 2011 The Pragmatic Programmers, LLC

INTRODUCTION 43

Copyright 2011 The Pragmatic Programmers, LLC

44 CHAPTER 3. THE BOURNE-AGAIN SHELL

Posix

Posix is a name for a family of open system standards based on Unix.

There are a number of aspects of Unix that have been standardized,

from the basic system services at the system call and C library level to

applications and tools to system administration and management. The

Posix family of standards has been designated 1003 by the IEEE, and

have been ratified as international standards by the ISO.

Before 1997, Posix consisted of a large number of separate standards,

each considering a different aspect of the Unix interface. The Posix Shell

and Utilities standard was originally developed by IEEE Working Group

1003.2 (POSIX.2), which published its final specification in 1992. This

is the portion of the standard most relevant to Bash. Since 1997, the

Austin Group has taken over development of the Posix standards. The

current revision of the standard was published in 2008.

The portions of Posix of interest here concentrate on the command

interpreter interface and on utility programs commonly executed from

the command line or by other programs.

There are four primary areas of work in the Shell and Utilities standard:

• Aspects of the shell’s syntax and command language. A number

of special builtins such as cd and exec are specified as part of the

shell, since their functionality usually cannot be implemented by

a separate executable;

• A set of utilities to be called by shell scripts and applications.

Examples are programs like sed, tr, and awk. Utilities commonly

implemented as shell builtins are described in this section, such

as test and kill. An expansion of this section’s scope, originally

termed the User Portability Extension, or UPE, has standardized

interactive programs such as vi;

• A group of functional interfaces to services provided by the shell,

such as the traditional system() C library function. There are func-

tions to perform shell word expansions, perform filename expan-

sion (globbing), obtain values of Posix system configuration vari-

ables, retrieve values of environment variables (getenv()), and other

services;

• A suite of development utilities such as c99 (the Posix command

to invoke the C compiler), yacc, and make.

Copyright 2011 The Pragmatic Programmers, LLC

SHELL SYNTACTIC UNITS AND PRIMITIVES 45

Bash is concerned with the aspects of the shell’s behavior defined by

Posix. The shell command language has of course been standardized,

including the basic flow control and program execution constructs, I/O

redirection and pipelining, argument handling, variable expansion, and

quoting. The special builtins, which must be implemented as part of the

shell to provide the desired functionality, are specified as being part of

the shell; examples of these are eval and export.

Other utilities appear in the sections of Posix not devoted to the shell

which are commonly (and in some cases must be) implemented as

builtin commands, such as read and test. Posix also specifies aspects of

the shell’s interactive behavior, including job control and command line

editing. Interestingly, only vi-style line editing commands were stan-

dardized; emacs editing commands were left out due to objections.

There were certain areas in which Posix felt standardization was neces-

sary, but no, or only one, existing implementation provided the proper

behavior. The working group invented and standardized functionality

in these areas, including reserved words (e.g., “!”, which negates the

exit status of a pipeline), builtin commands (command, which bypasses

normal command lookup to skip shell functions), and word expansions

($((...))), which treats the characters between the parentheses as an

arithmetic expression and evaluates it). There existed multiple incom-

patible implementations of the test builtin, which tests files for type

and other attributes and performs arithmetic and string comparisons.

Posix considered none of these correct, so the standard behavior was

specified in terms of the number of arguments to the command.

While Posix includes much of what the shell has traditionally provided,

some important things have been omitted as being “beyond its scope.”

There is, for instance, no mention of a difference between a login shell

and any other interactive shell (since Posix does not specify a login

program). No fixed startup files are defined, either - the standard does

not mention .profile or a per-shell startup file other than to allow the

execution of a file named by a specific shell variable (ENV).

3.2 Shell Syntactic Units and Primitives

Shell Primitives

To the shell, there are basically three kinds of tokens, or syntactic units:

reserved words, words, and operators. Reserved words are those that

have meaning to the shell and its programming language; usually these

Copyright 2011 The Pragmatic Programmers, LLC

46 CHAPTER 3. THE BOURNE-AGAIN SHELL

words introduce flow control constructs, like if and while. Operators are

composed of one or more metacharacters: characters that have spe-

cial meaning to the shell on their own, such as “|” and “>”. The rest of

the shell’s input consists of ordinary words, some of which have spe-

cial meaning — assignment statements or numbers, for instance —

depending on where they appear on the command line.

Variables and Parameters

As in any programming language, shells provide variables: names to

refer to stored data and operate on it.

The shell provides basic user-settable variables and some builtin vari-

ables referred to as parameters. Variable names are restricted to alpha-

betic characters, numbers, and the underscore (“_”), and may not begin

with an underscore. Shell parameters do not follow that rule: parame-

ter names consist of a special character, such as “@” or “!”, or a num-

ber, and cannot be assigned directly. Shell parameters generally reflect

some aspect of the shell’s internal state, and are set automatically or

as a side effect of another operation.

Variable values are strings. Some values are treated specially depending

on context; these will be explained later.

Variables are assigned using statements of the form name=[value]. The

value is optional; omitting it assigns the empty string to name. If the

value is supplied, the shell expands the value and assigns it to name.

The shell can perform different operations based on whether or not a

variable is set, but assigning a value is the only way to set a variable.

Variables that have not been assigned a value, even if they have been

declared and given attributes, are referred to as “unset”.

A word beginning with a dollar sign (“$”) introduces a variable or param-

eter reference. The word, including the dollar sign, is replaced with the

value of the named variable. The shell provides a rich set of expansion

operators, from simple value replacement to substitution or removal of

portions of a variable’s value matching a pattern.

There are provisions for local and global variables. By default, all vari-

ables are global. Any simple command (the most familiar type of com-

mand — a command name and optional set of arguments and redirec-

tions) may be prefixed by a set of assignment statements to cause those

variables to exist only for that command. The shell implements stored

procedures, or shell functions, which can have function-local variables.

Copyright 2011 The Pragmatic Programmers, LLC

SHELL SYNTACTIC UNITS AND PRIMITIVES 47

Variables can be minimally typed: in addition to simple string-valued

variables, there are integers and arrays. Integer-typed variables are

treated as numbers: any string assigned to them is expanded as an

arithmetic expression and the result is assigned as the variable’s value.

Arrays may be indexed or associative. Indexed arrays use numbers as

subscripts, where associative arrays use arbitrary strings. Array ele-

ments are strings, which can be treated as integers if desired. Array

elements may not be other arrays.

Bash uses hash tables to implement shell variables, and linked lists

of these hash tables to implement variable scoping. There are different

variable scopes for shell function calls and temporary scopes for vari-

ables set by assignment statements preceding a command. When those

assignment statements precede a command that is built into the shell,

for instance, the shell has to keep track of the correct order in which

to resolve variable references, and the linked scopes allow bash to do

that. There can be a surprising number of scopes to traverse depending

on the execution nesting level.

The Shell Programming Language

A “simple” shell command, one with which most readers are most famil-

iar, consists of a command name, such as echo or cd, and a list of zero

or more arguments and redirections. Redirections allow the shell user

to control the input to and output from invoked commands. As noted

above, users can define variables local to simple commands.

Reserved words introduce more complex shell commands. There are

constructs common to any high-level programming language: if-then-

else, while, a loop that iterates over a list of values, a C-like arithmetic

for loop, constructs that allow the user to select from a set of alterna-

tive values, and conditional constructs. These more complex commands

allow the shell to execute a command or otherwise test a condition and

perform different operations based on the result, or execute commands

multiple times.

One of the gifts Unix brought the computing world is the pipeline: a

linear list of commands, in which the output of one command in the

list becomes the input of the next. Any shell construct can be used in a

pipeline, and it’s not uncommon to see pipelines in which a command

feeds data to a loop that is used to process it.

Bash implements a facility that allows the standard input, standard

output, and standard error streams for a command to be redirected to

Copyright 2011 The Pragmatic Programmers, LLC

48 CHAPTER 3. THE BOURNE-AGAIN SHELL

another file or process when the command is invoked. Shell program-

mers can also use redirection to open and close files in the current shell

environment.

Bash allows shell programs to be stored and used more than once. Shell

functions and shell scripts are both ways to name a group of commands

and execute the group, just like executing any other command. Shell

functions are declared using a special syntax and stored and executed

in the same shell’s context; shell scripts are created by putting com-

mands into a file and executing a new instance of the shell to interpret

them. Shell functions share most of the execution context with the shell

that calls them, but shell scripts, since they are interpreted by a new

shell invocation, share only what is passed between processes in the

environment.

The shell has no separate command language. All of the programming

features are available when the shell is running commands interactively

read from the user’s terminal and when it is reading commands from a

script.

A Further Note

As you read further, keep in mind that the shell implements its fea-

tures using only a few data structures: arrays, trees, singly-linked and

doubly-linked lists, and hash tables. Nearly all of the shell constructs

are implemented using these primitives.

The basic data structure the shell uses to pass information from one

stage to the next, and to operate on data units within each processing

stage, is the WORD_DESC: !"#$#% & '(
 *+'$,$#&
 -
./' 0*+'$1 20 3#'+ #'456/ #$ & '5678 0256 9/7&1 20 :;/7& /&&+
5/ #$ *5 . .5& *+'$8 02< =>?@,@ABC1
Words are combined into, for example, argument lists, using simple

linked lists: !"#$#% & '(
 *+'$,;5& -& '(
 +'$,;5& 06#D 1=>?@,@ABC 0+'$1< =>?@,EFBG1
WORD_LIST are pervasive throughout the shell. A simple command is a

word list, the result of expansion is a word list, and the builtin com-

mands take word lists of arguments.

Copyright 2011 The Pragmatic Programmers, LLC

INPUT PROCESSING 49

3.3 Input Processing

The first stage of the bash processing pipeline is input processing: tak-

ing characters from the terminal or a file, breaking them into lines,

and passing the lines to the shell parser to transform into commands.

The lines are, as you would expect from experience, are sequences of

characters terminated by newlines.

Readline and Command Line Editing

Bash reads input from the terminal when interactive, and from the

script file specified as an argument otherwise. When interactive, bash

allows the user to edit command lines as they are typed in, using famil-

iar key sequences and editing commands similar to the Unix emacs and

vi editors.

Readline is the library bash uses to implement command line edit-

ing. The readline library provides a set of functions allowing users

to edit command lines, functions to save command lines as they are

entered and recall previous commands, and to perform csh-like history

expansion. Bash is readline’s primary “client,” and they are developed

together, but there is no bash-specific code in readline. Many other

projects have adopted readline to provide a terminal-based line editing

interface. Gdb and Python are two of the most well-known, but dozens

of applications use the Readline interface to read input.

Readline is very extensible: applications may implement their own edit-

ing commands and either bind them to key sequences or make them

available for users to do so. For instance, readline contains a set of

commands that move backward and forward in the command line by

words, using readline’s idea of word boundaries. While these suffice for

most applications, and most cases, Bash augments them with an addi-

tional set that uses shell metacharacters as word boundaries, as the

bash parser treats them.

Editing Modes

Readline provides editing modes: sets of key bindings and variables that

force readline to resemble the emacs or vi editors. By default, readline

starts in emacs editing mode.

Prompting

Bash allows users great flexibility in customizing the readline prompt.

It supports a number of backslash-escaped character sequences that

Copyright 2011 The Pragmatic Programmers, LLC

50 CHAPTER 3. THE BOURNE-AGAIN SHELL

expand to everything from the current username to an arbitrary date

and time string. Bash, and readline, provide a way to mark a sequence

of characters in the prompt as “invisible” — taking up no screen space

— allowing users to insert terminal escape sequences into the prompt.

Many multi-colored prompts and prompts that write to a window’s title

bar have resulted. This single feature proved the source of many redis-

play bugs.

Key Bindings and Macros

Readline allows arbitrary key bindings. Users may bind key sequences

of unlimited length to any of a large number of readline commands.

Readline has commands to move the cursor around the line, insert and

remove text, retrieving previous lines, and completing partially-typed

words. Users may define macros, which are strings of characters that

are inserted into the line in response to a key sequence, using the same

syntax as key bindings. Macros afford readline users a simple string

substitution and shorthand facility.

Command History

Readline provides access to the command history, the set of previously-

typed command lines. There are bindable readline commands to move

back and forth through the history, search for words in the history

list, and save and restore the history list to and from a file. There are

bindable commands and options to perform csh-like history expansion

(“bang history”). Bash augments the basic readline set with additional

bindable commands that search the history, expand the command line

in different ways, and expose the history to the word completion facili-

ties. There are two builtin bash commands to search for and re-execute

commands from the history and to manipulate the history file.

Word Completion

Readline provides a very general facility to complete partially-typed

words. Most completion is application-specific: bash augments the base

readline set with functions to complete command and variable names,

hostnames, usernames, and even complete against words from the

command history. Other applications using readline do the same thing:

gdb, for instance, has functions to complete variable and function names

from the symbol table of the program it’s debugging.

Bash implements a per-command programmable word completion mech-

anism using the basic readline structure. In addition to a large number

Copyright 2011 The Pragmatic Programmers, LLC

INPUT PROCESSING 51

of built-in completions (command names, shell function names, vari-

able names, builtin command names, etc.), programmable completion

allows a user to write shell functions to generate the list of possible

completions for a given word. This flexibility has resulted in the devel-

opment of a large set of bash completions, a number of which are dis-

tributed as a separate free software project.

Readline Structure

Readline is structured as a basic read/dispatch/execute/redisplay loop.

It reads characters from the keyboard using read()() or equivalent, or

obtains input from a macro. Each character is used as an index into a

keymap, or dispatch table. Though indexed by a single eight-bit char-

acter, the contents of each element of the keymap can be several things.

The characters can resolve to additional keymaps, which is how multiple-

character key sequences are possible. Resolving to a readline com-

mand, such as beginning-of-line(), causes that command to be executed.

It’s also possible to bind a key sequence to a command while simul-

taneously binding subsequences to different commands (a relatively

recently-added feature); there is a special index into a keymap to indi-

cate that this is done. Binding a key sequence to a macro provides

a great deal of flexibility, from the ability to insert arbitrary strings

into a command line to creating keyboard shortcuts for complex edit-

ing sequences. Readline stores each character that is bound to the

self-insert() command in the editing buffer, which when displayed may

occupy one or more lines on the screen.

Readline manages only character buffers and strings using C chars,

and builds multibyte characters out of them if necessary. It does not

use wchar_t internally for both speed and storage reasons, and because

the editing code existed before multibyte character support became

widespread. When in a locale that supports multibyte characters, read-

line automatically reads an entire multibyte character and inserts it

into the editing buffer. It’s possible to bind multibyte characters to edit-

ing commands, but one has to bind such a character as a key sequence

– possible, but difficult and usually not wanted. The existing emacs and

vi command sets do not use multibyte characters, for instance.

Once a key sequence finally resolves to an editing command, whether

that results in characters being inserted into the buffer, the editing

position being moved, or the line being partially or completely replaced,

readline updates the terminal display to reflect the results. Some bind-

Copyright 2011 The Pragmatic Programmers, LLC

52 CHAPTER 3. THE BOURNE-AGAIN SHELL

able editing commands, such as those that modify the history file, do

not cause any change to the contents of the editing buffer.

Updating the terminal display, while seemingingly simple, is quite involved.

Readline has to keep track of three things: the current contents of the

buffer of characters displayed on the screen, the updated contents of

that display buffer, and the actual characters displayed. In the presence

of multibyte characters, the characters displayed do not exactly match

the buffer, and the redisplay engine must take that into account. When

redisplaying, readline must compare the current display buffer’s con-

tents with the updated buffer, figure out the differences, and decide

how to most efficiently modify the display to reflect the updated buffer.

This problem has been the subject of considerable research through

the years (the string-to-string correction problem). Readline’s approach

is to identify the beginning and end of the portion of the buffer that dif-

fers, compute the cost of updating just that portion, including moving

the cursor backward and forward (e.g., will it take more effort to issue

terminal commands to delete characters and then insert new ones than

to simply overwrite the current screen contents?), perform the lowest-

cost update, then clean up by removing any characters remaining at

the end of the line if necessary and position the cursor in the correct

spot.

The redisplay engine is without question the one piece of readline that

has been modified most heavily. Originally written by Brian Fox and

Paul Placeway, it’s safe to say that very little of the code has remained

unexamined, if not unchanged. Most of the changes have been to add

functionality; most significantly, the ability to have non-displaying char-

acters in the prompt and to cope with characters that take up more

than a single byte. There have also been significant efficiency improve-

ments.

Readline returns the contents of the editing buffer to the calling appli-

cation, which is then responsible for saving the possibly-modified results

in the history list.

Applications Extending Readline

Just as readline offers users a variety of ways to customize and extend

readline’s default behavior, it provides a number of mechanisms for

applications to extend its default feature set.

First, bindable readline functions accept a standard set of arguments

and return a specified set of results, making it easy for applications to

Copyright 2011 The Pragmatic Programmers, LLC

INPUT PROCESSING 53

extend readline with application-specific functions. Bash, for instance,

adds more than thirty bindable commands, from bash-specific word

completions to interfaces to shell builtin commands.

The second way readline allows applications to modify its behavior

is through the pervasive use of pointers to hook functions with well-

known names and calling interfaces. Applications can replace some

portions of readline’s internals, interpose functionality “in front” of read-

line, and perform application-specific transformations. For an example

of the first, applications are allowed to replace readline’s default input,

redisplay, and terminal initialization and restore functions. The most

common example of function interposition is an application attempt-

ing word completion before readline’s default. Most applications using

readline implement application-specific word completion using this hook

function. The final example is also most commonly used in completion:

there is a set of functions that applications may use to transform words

(e.g., removing quoting characters from filenames or changing charac-

ter sets) when trying to match them against file system entries during

word completion.

Much of readline’s strength and consequent popularity stems from the

ease with which it can be extended.

Non-interactive Input Processing

When the shell is not using readline, it uses either stdio or its own

buffered input routines to obtain input. The bash buffered input pack-

age is preferable to stdio when the shell is not interactive because of the

somewhat peculiar restrictions Posix imposes on input consumption:

the shell must consume only the input necessary to parse a command

and leave the rest for executed programs. This is particularly important

when the shell is reading a script from the standard input. The shell is

allowed to buffer input as much as it wants, as long as it is able to roll

the file offset back to just after the last character the parser consumes.

As a practical matter, this means that the shell must read scripts a

character at a time when reading from non-seekable devices such as

pipes, but may buffer as many characters as it likes when reading from

files.

These idiosyncracies aside, the output of the non-interactive input por-

tion of shell processing is the same as readline: a buffer of characters

terminated by a newline.

Copyright 2011 The Pragmatic Programmers, LLC

54 CHAPTER 3. THE BOURNE-AGAIN SHELL

Multibyte Characters

Multibyte character processing was added to the shell a long time after

its initial implementation, and it was done in a way designed to mini-

mize its impact on the existing code. When in a locale that supports

multibyte characters, the shell stores its input in a buffer of bytes

(C Wchars), but treats these bytes as potentially multibyte characters.

Readline understands how to display multibyte characters (the key is

knowing how many screen positions a multibyte character occupies,

and how many bytes to consume from a buffer when displaying a char-

acter on the screen), how to move forward and backward in the line a

character at a time, as opposed to a byte at a time, and so on. Other

than that, multibyte characters don’t have much effect on shell input

processing. Other parts of the shell, described later, need to be aware

of multibyte characters and take them into account when processing

their input.

3.4 Parsing

Parsing is the process of taking lines of input read from the terminal

or obtained from readline and transforming them into commands that

can be executed.

The word is the basic unit on which the parser operates. Words are

sequences of characters separated by metacharacters. Metacharacters

are simple separators, like spaces and tabs, or characters that are spe-

cial to the shell language, like semicolons and ampersands. The initial

job of the parsing engine is lexical analysis: to separate the stream of

characters into words and apply meaning to the result.

One historical problem with the shell, as Tom Duff said in his paper

about rc, the Plan 9 shell, is that nobody really knows what the Bourne

shell grammar is. The original grammar as published in Bourne’s paper

describing the Seventh Edition version of the shell does not even allow

the command who | wc. Traditional shell parsers are built as a set

of functions, each interpreting an individual construct in a recursive-

descent fashion. However, the functions implementing the constructs in

the Bourne shell each took a flag that modified their behavior in subtle

context-dependent ways. The Posix shell committee deserves significant

credit for finally publishing a definitive grammar for a Unix shell, albeit

one that has plenty of context dependencies. That grammar isn’t with-

Copyright 2011 The Pragmatic Programmers, LLC

PARSING 55

out its problems — it disallows some constructs that historical Bourne

shell parsers have accepted without error — but it’s the best we have.

The Bash parser is derived from an early version of the Posix grammar,

and is, as far as I know, the only Bourne-style shell parser implemented

using Yacc or Bison. This has presented its own set of difficulties — the

shell grammar isn’t really well-suited to yacc-style parsing and requires

some complicated lexical analysis and a lot of cooperation between the

parser and lexical analyzer.

In any event, the lexical analyzer takes lines of input from readline or

another source, breaks them into tokens at metacharacters, identifies

the tokens based on context, and passes them on to the parser to be

assembled into statements and commands. There is a lot of context

involved — for instance, the word “for” can be a reserved word, an iden-

tifier, part of an assignment statement, or other word, and the following

is a perfectly valid command: !" !" #$!"% &! !"' !"% &!$(% (
*! + !"
that displays for.

At this point, a short digression about aliasing is in order. Bash allows

the first word of a simple command to be replaced with arbitrary text

using aliases. This facility is very versatile: one may use it to create

mnemonics for command names, to expand a single word to a complete

command name and set of arguments, and to ensure that a command

is always invoked with a pre-defined set of options. Since it’s completely

lexical, it can even be used (or abused) to change the shell grammar:

it’s possible to write an alias repeat that implements a compound com-

mand (repeat Ncommand) that bash doesn’t provide. The bash parser

implements aliasing completely in the lexical phase, though the parser

has to inform the analyzer when alias expansion is permitted.

Like many programming languages, the shell allows characters to be

quoted to remove their special meaning. Quoting is the only way to

allow metacharacters such as “&” to appear in a command. There are

three types of quoting, each of which is slightly different and per-

mits slightly different interpretations of the quoted text: the backslash,

which escapes the next character, single quotes, which prevent inter-

pretation of all enclosed characters, and double quotes, which pre-

vent some interpretation but allow certain word expansions (and treats

backslashes differently). The lexical analyzer interprets quoted charac-

Copyright 2011 The Pragmatic Programmers, LLC

56 CHAPTER 3. THE BOURNE-AGAIN SHELL

ters and strings and prevents their being recognized by the parser as

reserved words or metacharacters.

There are two interesting special cases of quoting: $’...’ and $"...". The

first is similar to single quotes, but expands backslash-escaped char-

acters in the same fashion as ANSI C strings. The $"..." construct allows

the characters between the double quotes to be translated using stan-

dard internationalization functions like gettext(). The former is widely

used; the latter, perhaps because there are few good examples or use

cases, less so.

The rest of the interface between the parser and lexical analyzer is

straightforward. The parser encodes a certain amount of state and

shares it with the analyzer to allow the sort of context-dependent anal-

ysis the grammar requires. For example, the lexical analyzer catego-

rizes words according to the token type: reserved word (in the appro-

priate context), word, assignment statement, and so on. In order to

do this, the parser has to tell it something about how far it has pro-

gressed parsing a command, whether it is processing a here-document,

whether it’s in a case statement or a conditional command, or process-

ing an extended shell pattern or compound assignment statement. A

few examples will illustrate the various uses.

• The lexical analyzer flags assignment statements specially, since

foo=4 echo bar is different from echo bar foo=4, and the parser can

tell it when an assignment statement may be recognized.

• When parsing a conditional command, bash allows extended shell

patterns and regular expressions, depending on the operator (==

or =~). Bash doesn’t require the metacharacters in the patterns be

quoted, so the parser has to force the lexical analyzer to treat these

metacharacters as part of the pattern rather than their normal

interpretation as word separators.

• In most cases, a semicolon terminates a command or list, but

while the parser is in the middle of the C-like arithmetic for com-

mand or a here-document, it has no special meaning.

• The parser knows when it is in a position to begin a command. It

can tell the lexical analyzer this so the analyzer can perform alias

expansion (and the analyzer can tell itself whether the next word is

subject to alias expansion) or flag words that are well-formed shell

assignment statements as such so they can undergo appropriate

expansion later.

Copyright 2011 The Pragmatic Programmers, LLC

PARSING 57

Almost all of the special cases are encapsulated into a single function:

the aptly-named special_case_tokens()().

The parser’s remaining work is relatively straightforward as well. Reserved

words result in the creation of C objects representing the particular

shell construct; the words returned by lexical analysis are converted to

word lists, redirections (which are represented as simple lists of objects

describing the required actions), and other elements. The objects are

arranged in trees and lists to represent familiar idioms like a; b; c and !" # #$ % & ' () * + , - %./ 0!12%. 3245#67 8 9:19 ;<7 9:#9 ℄/ 0!329:3 :1912:>> 1 ; % ??0!$7@"#$A 9B3C$9 9:390!$7
The structure is versatile enough to represent constructs like shell

functions and coprocesses that save a group of commands for future

execution.

The parser implementation, even when using improved parser genera-

tors like bison, was the source of the longest-lived incompatibility with

the Posix standard. One of the “new” features Posix standardized was

the $(...) form of command substitution, an improvement over the origi-

nal ‘...‘ form that permits easier nesting and more straightforward quot-

ing. Posix requires that the command within the parentheses be parsed

while it’s being read, so that the command itself determines when the

closing parenthesis is reached. It took a very long time and some inter-

esting changes to the bison grammar before bash was able to imple-

ment this sort of on-the-fly parsing.

Much of the work to recognize the end of the command substitution

during the parsing stage is encapsulated into a single function (parse_comsub()),

which knows an uncomfortable amount of shell syntax and duplicates

rather more of the token-reading code than is optimal. This function

has to know about here documents, shell comments, metacharacters

and word boundaries, quoting, and when reserved words are acceptable

(so it knows when it’s in a case statement): it took a while to get that

right. When expanding a command substitution during word expan-

sion, bash uses the parser to find the correct end of the construct. This

is similar to turning a string into a command for eval or bash -c, but

in this case the command isn’t terminated by the end of the string. In

Copyright 2011 The Pragmatic Programmers, LLC

58 CHAPTER 3. THE BOURNE-AGAIN SHELL

order to make this work, the parser must recognize a right parenthe-

sis as a valid command terminator, which leads to special cases in a

number of grammar productions and requires the lexical analyzer to

flag a right parenthesis (in the appropriate context) as denoting EOF.

The parser also has to save and restore parser state before recursively

invoking yyparse(), since a command substitution can be parsed and

executed as part of expanding a prompt string in the middle of read-

ing a command. Since the input functions implement read-ahead, this

function must finally take care of rewinding the bash input pointer to

the right spot, whether bash is reading input from a string, a file, or the

terminal using readline. This is important not only so that input is not

lost, but so the command substitution expansion functions construct

the correct string for execution.

The problems posed by programmable word completion, which allow

arbitrary commands to be executed while parsing another command,

are similar, and solved by saving and restoring parser state around

invocations.

Quoting is also a source of incompatibility and debate. Twenty years

after the publication of the first Posix shell standard, members of the

standards working group are still debating the proper behavior of obscure

quoting. As before, the Bourne shell is no help other than as a reference

implementation to observe behavior.

The parser returns a single C structure representing a command (which,

in the case of compound commands like loops may include other com-

mands in turn) and passes it to the next stage of the shell’s opera-

tion: word expansion. The command structure is composed of com-

mand objects and lists of words. Most of the word lists are subject to

various transformations, depending on their context, as explained in

the following sections.

3.5 Word Expansions

After parsing, but before execution, many of the words produced by the

parsing stage are subjected to one or more word expansions. As noted

above, shell quoting not only removes special meaning from characters,

but inhibits some or all word expansion.

The word expansions operate on the words or word lists produced by

the parser, and result in transformed word lists. In many cases, the

expansions transform one word into several, as explained below. There

Copyright 2011 The Pragmatic Programmers, LLC

WORD EXPANSIONS 59

are only a few cases in which a word is transformed into multiple

words via the word expansions (e.g., the expansion of "$@" into a list of

words constructed from the shell’s positional parameters). Word split-

ting, described later in this section, is the mechanism by which bash

creates multiple words from one.

The shell’s traditional role is to perform what is essentially macro expan-

sion and execute commands. There is a rich set of word expansions

available, which allow the shell programmer a great deal of flexibility —

sometimes arguably too much.

I won’t spend a lot of time on the basic expansions, since they’re so

familiar. The “$” character introduces a word expansion. Most word

expansions specify a shell variable name, which is expanded to its

value, and that value is either returned or further transformed. That’s

the basic and most common expansion.

Brace Expansion

The first expansion, one that is handled completely separately from the

others, is brace expansion. This is a feature that bash adopted from the

C shell, and has subsequently been adopted by other Bourne-inspired

shells. Brace expansion takes the form !"#$%"&'($&')!""* $+'
and expands into separate words based on the comma-separated words

between the braces. Unlike filename expansion, which is similar in

appearance, the generated strings don’t have to correspond to existing

filenames. The real power of this construct is that the optional prefix

pre and suffix post are “glued” to the beginning and end of each string

between the braces; the above expansion would result in !"$%" $+' !"'($ $+' !"')!"" $+'
Brace expansions precede the other word expansions, and brace expan-

sion doesn’t apply any semantic meaning to the text between the braces,

leaving that for subsequent processing stages.

Since brace expansions can be nested, the generated filenames don’t

have to already exist, and brace expansions can contain characters

understood by other expansions, it’s possible to express complex sets

of files in a very compact way. The classic example is
)$(% !$$' -.+!-#.
/-#"0&"12'*&32/-#"04546&)$(7"0**

Copyright 2011 The Pragmatic Programmers, LLC

60 CHAPTER 3. THE BOURNE-AGAIN SHELL

One of the most common uses of brace expansion is to produce sequences

of words or numbers, and bash provides shorthand to effect that. There

are ways to generate increasing and decreasing sequences of numbers

or letters, with a user-specified increment. This is most often used to

provide a list of words through which the for command will iterate.

Tilde Expansion

Tilde expansion is another feature that first appeared in the C shell.

Like many other C shell features, it was originally intended as primarily

an interactive feature — a shorthand way to refer to a user’s home

directory.

The Korn shell and bash both implemented tilde expansion, and the

Posix committee considered it valuable enough to include in the stan-

dard. It’s grown beyond a simple shorthand mechanism into a way to

refer to a large number of different directories.

Bash implements a csh-like directory stack, which is a list of directories

in which a user has indicated “interest”, using the pushd and popd

builtins to add and remove directories. Bash overloads tilde expansion

so that it can refer to numbered elements in the directory stack. This

novel extension is allowed, but not required, by Posix.

Parameter and Variable Expansions

The variable expansions are the ones users find most familiar. They

provide the shell much of its expressive and programming power. Like

most high-level programming languages, the shell provides variables

and ways to manipulate them. Shell variables are barely typed, and,

with few exceptions, are treated as strings. The expansions expand

and transform these strings into new words and word lists. These con-

structs are most often used by shell programmers rather than casual

users.

In addition to the basic expansion of a variable’s name to its value,

there are expansions that depend on the state of a variable: different

expansions or assignments happen based on whether or not the vari-

able is set. For instance, the expansion ${parameter:-word} will expand

to parameter if it’s set, and word if it’s not set or set to the empty string.

The ${parameter:+word} construct does the opposite; it expands to noth-

ing if parameter is not set or set to the empty string, and to word if it’s

set. Programmers can use different constructs to assign default values,

Copyright 2011 The Pragmatic Programmers, LLC

WORD EXPANSIONS 61

or even to treat unset variables as errors, complete with unique error

messages.

There are expansions that act on the variable’s value itself. Program-

mers can use these to produce substrings of a variables’s value, the

value’s length, remove portions that match a specified pattern from the

beginning or end, or replace portions of the value matching a specified

pattern with a new string. To this set, bash adds a set of expansions

that modify the case of alphabetic characters in a variable’s value, mak-

ing it possible to directly express an idiom that historically required

using tr.

One fairly powerful extension bash provides – one that has created a

fair amount of confusion – is the notion of variable indirection. I picked

the feature up from the Korn shell, but where ksh limits it to variables

with a specific nameref attribute, bash allows it to be applied arbitrarily.

This changes the expansion syntax to allow a leading exclamation point

(${!parameter}), while leaving the rest of the expansion unchanged. The

leading “!” causes the shell to use the value of parameter as the name

of a second variable, which is expanded. It’s the expanded value of the

second variable that is used in the rest of the expansion, rather than the

value of parameter itself. This has proven somewhat difficult to explain.

Command Substitution

Command substitution is a feature that the Bourne shell first provided,

a nice marriage of the shell’s ability to run commands and manipulate

variables. The shell runs a command, collects the output, and uses that

output as the value of the expansion. One questionable implementation

decision was that the shell removes the trailing newlines in the com-

mand’s output, instead of letting them be removed later by subsequent

word splitting. The Bourne-style ‘command‘, which bash and Posix still

support, had some peculiar rules concerning the behavior of characters

preceded by a backslash; the Korn shell introduced the more modern

$(command) form, which is the Posix standard and preferred.

Process Substitution

One of the problems with command substitution is the nature of its

definition: it runs the enclosed command immediately and waits for it

to complete; and there’s no easy way for the shell to send input to it.

Bash uses a feature named process substitution, a sort of combination

of command substitution and shell pipelines, to compensate for these

Copyright 2011 The Pragmatic Programmers, LLC

62 CHAPTER 3. THE BOURNE-AGAIN SHELL

shortcomings. The Korn shell originally implemented the feature; bash

adopted and extended it. The syntax is very similar to the modern com-

mand substitution: <(command) or >(command). Like command sub-

stitution, bash runs command, but lets it run in the background and

doesn’t wait for it to complete. The key is that bash opens a pipe to the

command for reading (the first form) or writing (the second) and exposes

it as a filename. This filename, either a file in /dev/fd corresponding to a

file descriptor, or a named pipe (FIFO), becomes the result of the expan-

sion. Commands expecting filenames can read from or write to them as

expected, and the input or output comes from or is sent to command.

When combined with shell redirection, this is a powerful construct.

Arithmetic Expansion

Another new feature the Korn shell and bash implement, subsequently

standardized by Posix, is arithmetic expansion. The Posix-invented $((expres-

sion)) syntax causes expression to be evaluated according to the same

rules as C language expressions. The result of the expression becomes

the result of the expansion. In one of the few cases where bash variables

can have a type, variables can be declared as integers, which means

this arithmetic evaluation will be performed each time the variable is

assigned a value.

Variable expansion is where the difference between single and dou-

ble quotes becomes most apparent. Single quotes inhibit all expan-

sions — the characters enclosed by the quotes pass through the expan-

sions unscathed — whereas double quotes permit some expansions and

inhibit others. The word expansions and command, arithmetic, and

process substitution take place — the double quotes only affect how

the result is handled — but brace and tilde expansion do not.

Word Splitting

The results of the word expansions are split using the characters in

the value of the shell variable IFS as delimiters. This is how the shell

transforms a single word into more than one. Each time one of the

characters in $IFS, or in some cases a sequence of one of the characters,

appears in the result, bash splits the word into two. The default value

of IFS is space, tab, and newline, which produces the familiar behavior

of a variable value consisting of several space-separated words becom-

ing separate arguments to a command. Single and double quotes both

inhibit word splitting.

Copyright 2011 The Pragmatic Programmers, LLC

WORD EXPANSIONS 63

There are a number of rules that complicate the issue, having to do with

sequences of white space characters also in the value of IFS. When the

value of IFS contains whitespace characters, sequences of these char-

acters serve to delimit fields. This means that the shell will only create

null fields when performing word splitting if the value of IFS contains a

non-whitespace character and that character is used as the field delim-

iter (whew!). This allows the shell to behave like awk when desired: a

variable whose value is "nopass::1001:1001" will, when IFS contains a

colon, result in four fields.

Word splitting, and the conditions under which it takes place (or doesn’t)

is another aspect of the shell that is hard to understand and explain.

It’s one of the things that most often trips up novices.

Filename Generation (globbing)

After the results are split, the shell interprets a special notation that

generates filenames. The shell interprets each word resulting from the

previous expansions as a potential pattern and tries to match it against

an existing filename, including any leading directory path. The syntax

is again familiar: “*” matches any sequence of characters, “?” matches

a single character, and matching “[” and “]” define a set of possible

characters to match.

Bash’s implementation adds a few needed enhancements to the basic

Bourne shell and Posix specification. The Posix standard specifies that

patterns that match nothing are left unchanged and passed to the com-

mand as written. Some users prefer the csh-like behavior of treating

a pattern that matches no files as an error ("echo: No match."), so

bash provides an option to enable that behavior. Bash also allows the

user to specify that patterns that match no files are removed entirely,

to reduce the number of spurious error messages from invoked com-

mands. There are additional options to specify that alphabetic case

should be ignored when matching the pattern, and an interesting shell

variable (GLOBIGNORE). GLOBIGNORE is set to a list of patterns. The

results of filename generation are tested against each of the patterns

in GLOBIGNORE, and, if a filename matches the GLOBIGNORE pattern,

it is removed from the filename generation results. In other words, if

a pattern matches a filename, but that filename also matches one of

the patterns in $GLOBIGNORE, the filename is treated as if it had not

matched.

Copyright 2011 The Pragmatic Programmers, LLC

64 CHAPTER 3. THE BOURNE-AGAIN SHELL

The basic set of pattern matching characters is similar to what Posix

calls basic regular expressions. There are several additional pattern

matching operators which bash adopted from the Korn shell that extend

the filename generation facility to have capabilities similar to Posix

extended regular expressions. These aren’t enabled by default, since

they’re not specified by Posix, but are available via a settable option.

This has caused its own set of problems, since to use these in a func-

tion it’s necessary to have the option enabled both when the function

definition is read (the option changes the behavior of the shell parser)

as well as when the function is executed.

If the basic architecture of the shell parallels a pipeline, the word expan-

sions are a small pipeline unto themselves. Each stage of word expan-

sion takes a word and, after possibly transforming it, passes it to the

next expansion stage. After all the word expansions have been per-

formed, the command is executed.

Implementation

The Bash implementation of word expansions builds on the basic data

structures already described. The words output by the parser are expanded

individually, resulting in one or more words for each input word. The

WORD_DESC data structure has proved versatile enough to hold all the

information required to encapsulate the expansion of a single word. The

flags are used to encode information for use within the word expansion

stage and to pass information from one stage to the next. For instance,

the parser uses a flag to tell the expansion and command execution

stages that a particular word is a shell assignment statement, and the

word expansion code uses flags internally to inhibit word splitting or

note the presence of a quoted null string "$x", where $x is unset or

has a null value). Using a single character string for each word being

expanded, with some kind of character encoding to represent additional

information, would have proved much more difficult.

As with the parser, the word expansion code handles characters whose

representation requires more than a single byte. For example, the vari-

able length expansion (${#variable}) counts the length in characters,

rather than bytes, and the code can correctly identify the end of expan-

sions or characters special to expansions in the presence of multibyte

characters.

Copyright 2011 The Pragmatic Programmers, LLC

COMMAND EXECUTION 65

3.6 Command Execution

The command execution stage of the internal bash pipeline is where

the real action happens. Most of the time, the set of expanded words is

decomposed into a command name and set of arguments, and passed to

the operating system as a file to be read and executed with the remain-

ing words passed as the rest of the elements of argv.

The description thus far has deliberately concentrated on what Posix

calls simple commands — those with a command name and set of argu-

ments. This is the most common type of command, but bash provides

much more.

The input to the command execution stage is the command struc-

ture built by the parser and a set of possibly-expanded words. This

is where the real bash programming language comes into play. The

programming language uses the variables and expansions discussed

previously, and implements the constructs one would expect in a high-

level language: looping, conditionals, alternation, grouping, selection,

conditional execution based on pattern matching, expression evalua-

tion, and several higher-level constructs specific to the shell.

Redirection

One thing that is somewhat unique to bash and other shells, a func-

tion of their role as an interface to the operating system, is the ability to

redirect input and output to and from the commands it invokes. Com-

mands normally read from their standard input and write to their stan-

dard output; in an interactive shell these are both usually connected to

the user’s terminal. Redirection allows users to specify different files

that replace standard input and output for a single command, a group

of commands, or for the shell itself. The redirection syntax is one of the

things that reveals the sophistication of the shells’s early users: until

very recently, it required users to keep track of the file descriptors they

were using and explicitly specify by number any outside the standard

input, output, and error.

A recent addition to the redirection syntax allows users to direct the

shell to choose a suitable file descriptor and assign it to a specified vari-

able, instead of having the user choose one. This reduces the program-

mer’s burden of keeping track of file descriptors, but adds extra pro-

cessing: the shell has to duplicate file descriptors in the right place, and

make sure they are assigned to the specified variable. This is another

Copyright 2011 The Pragmatic Programmers, LLC

66 CHAPTER 3. THE BOURNE-AGAIN SHELL

example of how information is passed from the lexical analyzer to the

parser through to command execution: the analyzer classifies the word

as a redirection containing a variable assignment; the parser, in the

appropriate grammar production, creates the redirection object with a

flag indicating assignment is required; and the redirection code inter-

prets the flag and ensures that the file descriptor number is assigned

to the correct variable.

Redirection is another conceptually simple but powerful mechanism.

The only factor complicating its implementation is having to remember

how to undo redirections. The shell deliberately blurs the distinction

between commands executed from the file system that cause the cre-

ation of a new process and commands the shell executes itself (builtins),

but, no matter how the command is implemented, the effects of redi-

rections should not persist beyond the command’s completion. (The

exec builtin is an exception to this rule.) The shell therefore has to

keep track of how to undo the effects of each redirection, otherwise

redirecting the output of a shell builtin would change the shell’s stan-

dard output. Bash knows how to undo each type of redirection, either

closing a file descriptor that it allocated, or saving file descriptor being

duplicated to and restoring it later using dup2()). These use the same

redirection objects as those created by the parser and are processed

using the same function.

Since multiple redirections are implemented as simple lists of objects,

the redirections used to undo are kept in a separate list. That list is

processed when a command completes, but the shell has to take care

when it does so, since redirections attached to a shell function or the

. builtin must stay in effect until that function or builtin completes.

When it doesn’t invoke a command, the exec builtin causes the undo

list to simply be discarded, because redirections associated with exec

persist in the shell environment.

The other complication is one Bash brought on itself. Historical ver-

sions of the Bourne shell allowed the user to manipulate only file descrip-

tors 0-9, reserving descriptors 10 and above for the shell’s internal

use. Bash relaxed this restriction, allowing a user to manipulate any

descriptor up to the process’s open file limit. This means that Bash has

to keep track of its own internal file descriptors, including those opened

by external libraries and not directly by the shell, and be prepared

to move them around on demand. This requires a lot of bookkeeping,

some heuristics involving the close-on-exec flag, and yet another list of

Copyright 2011 The Pragmatic Programmers, LLC

COMMAND EXECUTION 67

redirections to be maintained for the duration of a command and then

either processed or discarded.

Builtin Commands

Bash makes a number of commands part of the shell itself. These com-

mands are executed by the shell, without creating a new process. There

are several reasons a command can be a builtin:

• it’s essentially part of the shell language, like break or continue;

• it manipulates the shell’s internal state, like declare or set;

• it cannot be implemented as an external command, like cd or map-

file;

• or for efficiency reasons, such as test and printf.

The most common reason to make a command a builtin is to maintain

or modify the shell’s internal state. cd is a good example; one of the

classic exercises for introduction to Unix classes is to explain why cd

can’t be implemented as an external command. exit is a close second.

No matter how they are implemented, all commands should adhere to

the standard Posix option and argument conventions; the Bash builtins

do so.

In addition to the traditional set of builtin commands in historical ver-

sions of sh, Posix invented or standardized functionality in areas where

no existing implementation provided the proper behavior. The command

builtin was invented to allow shell functions to override builtin com-

mands, while still permitting the function access to the builtin’s capa-

bilities. Posix standardized the behavior of the test command based on

the number of arguments to the command.

Posix used the System V shell as the basis for the standard, but added

a number of builtins and features from the ksh88 edition of the Korn

shell. Some of these builtins are alias, fc, getopts, and the job control

builtins fg/bg/jobs.

Bash provides several new and extended builtin commands. The bind

builtin provides control over readline’s key bindings and variables from

the shell, so they can be set in bash’s startup files. Readline also pro-

vides command history; the bash history builtin allows users to display

and modify the history list and manipulate the history file. The map-

file builtin is very specialized: it efficiently reads lines from a file into

Copyright 2011 The Pragmatic Programmers, LLC

68 CHAPTER 3. THE BOURNE-AGAIN SHELL

an array variable. The programmable completion facilities are imple-

mented using three builtins: complete, compgen, and compopt. The

pushd, popd, and dirs builtins manipulate the directory stack.

With only a few exceptions, the new bash builtins expose portions of

bash’s internal state so it can be modified. In only a few cases is a

command a builtin for purely efficiency reasons.

Bash builtins use the same internal primitives as the rest of the shell.

Each builtin is implemented using a C language function that takes a

list of words as arguments. The words are those output by the word

expansion stage; the builtins treat them as command names and argu-

ments. For the most part, the builtins use the same standard expan-

sion rules as any other command, with a couple of exceptions: the bash

builtins that accept assignment statements as arguments (e.g., declare

and export) use the same expansion rules the assignment arguments as

those the shell uses for variable assignments. This means that, assum-

ing the variable X has the value "a b", the commands: !"#$%&'()
and$%&'() !"#
behave identically. Other shells assign Y the value “a” and export a vari-

able named “b” with the null string as its value. This is one place where

the flags member of the WORD_DESC structure is used to pass informa-

tion between one stage of the shell’s internal pipeline and another.

Simple Command Execution

Simple commands are the ones most commonly encountered. The search

for and execution of commands read from the file system, and collection

of their exit status, covers many of the shell’s remaining features.

Shell variable assignments, words of the form var=value, are a kind of

simple command themseleves. Assignment statements can either pre-

cede a command name or stand alone on a command line. If they pre-

cede a command, the variables are passed to the executed command

in its environment (if they precede a builtin command or shell func-

tion, they persist, with a few exceptions, only as long as the builtin

or function executes). If they’re not followed by a command name, the

assignment statements modify the shell’s state.

Copyright 2011 The Pragmatic Programmers, LLC

COMMAND EXECUTION 69

When presented a command name that is not the name of a shell

function or builtin, bash searches the file system for an executable

file with that name. The value of the PATH variable is used as a colon-

separated list of directories in which to search. Command names con-

taining slashes (or other directory separator) are not looked up, but are

executed directly.

When a command is found using a PATH search, bash saves the com-

mand name and the corresponding full pathname in a hash table,

which it consults before conducting subsequent PATH searches. If the

command is not found, bash executes a specially-named function, if

it’s defined, with the command name and arguments as arguments to

the function. Some Linux distributions use this facility to offer to install

missing commands.

If bash finds a file to execute, it forks and creates a new execution envi-

ronment, and executes the program in this new environment. The exe-

cution environment is an exact duplicate of the shell environment, with

minor modifications to things like signal disposition and files opened

and closed by redirections.

Job Control

The shell can execute commands in the foreground, in which it waits for

the command to finish and collects its exit status, or the background,

where the shell immediately reads the next command. Job control is the

ability to move processes (commands being executed) between the fore-

ground and background, and to suspend and resume their execution.

To effect this, Bash introduces the concept of a job which is essentially

a command being executed by one or more processes. A pipeline, for

instance, uses one process for each element of the pipeline. The pro-

cess group is a way to join separate processes together into a single job.

The terminal has a process group ID associated with it, so the fore-

ground process group is the one whose process group ID is the same

as the terminal’s.

When a job is to be moved from the foreground to the background, the

user types the suspend character (usually ^Z), which causes the pro-

cess group to stop. Bash receives notification that the job has stopped,

and, leaving the job suspended, returns to read a new command. The

user can run the bg builtin to resume the job’s execution in the back-

ground, as if it had been started that way originally. A job in the back-

Copyright 2011 The Pragmatic Programmers, LLC

70 CHAPTER 3. THE BOURNE-AGAIN SHELL

ground can be moved to the foreground using the fg builtin, where the

shell will wait for it and return its exit status as usual.

Though there are other uses for the ability to stop and restart jobs — to

make sure there are enough resources for a long-running job to finish,

for instance — job control is most commonly employed to multiplex

the terminal between a number of different jobs. There may be any

number of process groups in the background simultaneously, but only

one process group may be in the foreground, since it has access to the

terminal for input. (One of the more annoying aspects of job control

is that by default all process groups that share the same terminal can

all write to it simultaneously.) The shell provides various shorthand to

refer to these jobs, including the notion of current and previous jobs. In

practice, however, more than a few background jobs becomes unwieldy.

The shell uses a few simple data structures in its job control implemen-

tation. There is a structure to represent a child process, including its

process ID, its state, and the status it returned when it terminated. A

pipeline is just a simple linked list of these process structures. A job is

quite similar: there is a list of processes, some job state (running, sus-

pended, exited, etc.), and the job’s process group ID. The process list

usually consists of a single process; only pipelines result in more than

one process being associated with a job. Each job has a unique process

group ID, and the process in the job whose process ID is the same as

the job’s process group ID is called the process group leader. The cur-

rent set of jobs is kept in an array, conceptually very similar to how it’s

presented to the user. The job’s state and exit status are assembled by

aggregating the state and exit statuses of the constituent processes.

Like several other things in the shell, the complex part about imple-

menting job control is bookkeeping. The shell must take care to assign

processes to the correct process groups, make sure that child process

creation and process group assignment are synchronized, and that the

terminal’s process group is set appropriately, since the terminal’s pro-

cess group determines the foreground job (and, if it’s not set back to

the shell’s process group, the shell itself won’t be able to read terminal

input). Since it’s so process-oriented, it’s not straightforward to imple-

ment compound commands such as while and for loops so an entire loop

can be stopped and started as a unit, and few shells have done so.

Job control was first implemented in Berkeley Unix almost 30 years

ago, and it is still controversial today. Its critics contend that it is

messy, inelegant, and spoils the clean Unix process semantics.

Copyright 2011 The Pragmatic Programmers, LLC

COMMAND EXECUTION 71

Compound Commands

Compound commands consist of lists of one or more simple commands

and are introduced by a keyword such as if or while. This is where the

programming power of the shell is most visible and effective.

The lists of simple commands can be pipelines, or pipelines separated

by && or ||, which are shorthand for if-then-else-style conditional exe-

cution.

The basic compound commands should be familiar to anyone who’s

used or programmed a Bourne-derived shell.

Stephen Bourne was heavily influenced by his experience with Algol-68,

on which he had worked immediately before joining Bell Labs and writ-

ing his shell. The shell’s programming language syntax is reminiscent

of “structured programming” languages, most notably Algol. One espe-

cially visible aspect of this heritage is the practice of terminating com-

pound commands with a keyword that is the initial keyword reversed

(fi, esac). We would be terminating while loops with od instead of done

today if there had not already been a Unix program with that name.

Bash adds a few more compound commands to the basic Posix set. The

select command allows users to pick from a list of alternatives displayed

on the screen, and execute commands based on the selection. The [[

command is a variant of the test command that’s been incorporated

into the shell language, which solves several problems, and extended

with additional capabilities, such as pattern matching. There is a C-like

arithmetic for loop, and the ((command to evaluate arithmetic expres-

sions and return a status based on whether the expression evalutes to

a non-zero value.

The implementation is fairly unsurprising. The parser constructs objects

corresponding to the various compound commands, and interprets them

by traversing the object. Each compound command is implemented

by a corresponding C function that is responsible for performing the

appropriate expansions, executing commands as specified, and altering

the execution flow based on the command’s return status. The function

that implements the for command is illustrative. It must first expand the

list of words following the in reserved word. Once the list is expanded,

the function must iterate through the words in the result, assigning

the word to the appropriate variable, executing the list of commands in

the for command’s body. The for command doesn’t have to alter execu-

tion based on the return status of the command, but it does have to

Copyright 2011 The Pragmatic Programmers, LLC

72 CHAPTER 3. THE BOURNE-AGAIN SHELL

pay attention to the effects of the break and continue builtins. Once all

the words in the list have been used, the for command returns. As this

shows, for the most part, the implementation follows the description

very closely.

Coprocesses

Recent bash versions implement a construct named coprocesses, based

on concepts in the Korn shell. A coprocess is a sort of cross between

process substitution and a background command. Coprocesses are

introduced by preceding a command with the coproc reserved word.

The shell runs the command in the background, and establishes a two-

way pipe between the shell and the command. Note the similarity to

process substitution, but coprocesses are not tied to a particular com-

mand and the shell takes care of a lot of the details.

Coprocesses may be named; the default name is COPROC. This means

that, in theory at least, there may be more than one, but the ability

to control more than one coprocess hasn’t yet been implemented. The

shell creates an array variable with the same name as the coprocess,

and assigns the file descriptors used to communicate with that copro-

cess to indices of the array (note the similarity to the pipe system call).

These can be used in redirections or passed as arguments to other com-

mands. The shell exposes the process ID of the coprocess, so the user

can kill it, or wait for it to terminate.

Signals and Traps

The shell allows the user and programmer to write equivalents of the

signal handlers one would write in C, providing shell programs the abil-

ity to respond to and handle exceptional conditions. The trap builtin is

the interface to the signal handling ability; the user specifies a com-

mand or set of commands that should be executed when the shell

receives a particular signal, and the shell arranges for these command

to be run sometime after that signal arrives, when it is “safe” to do so.

The trap handling implementation is similar to what the operating sys-

tem kernel has to do when executing a signal handler: the shell saves

state, transfers control to the command associated with the signal, and

restores state when that command has terminated. The shell’s trap

commands, unlike C signal handlers, are allowed to run arbitrary pro-

grams and shell commands.

Copyright 2011 The Pragmatic Programmers, LLC

LESSONS LEARNED 73

The trap mechanism is familiar to anyone who’s programmed in C, but

it’s fairly primitive. That hasn’t stopped shells from overloading it with

a number of extra conditions that don’t correspond to signals sent by

the kernel. The first was the EXIT trap, which allows the user to specify

commands that are run when the shell exits. This is a useful place to

put cleanup code, since the EXIT trap is run whenever the shell exits,

whether intended or not. Bash adds the DEBUG trap, which is run just

before each simple command is executed, and the RETURN trap, which

is run before execution resumes after a shell function or script executed

with the “.” builtin completes.

Bash provides an option that forces the shell to exit whenever a com-

mand fails. This is often used by shell scripts that do not want to check

the success or failure of each command, but want to ensure that every

command they execute completes successfully. The ERR trap is exe-

cuted whenever the shell would exit due to a failed command when this

option is enabled. It’s another useful place to put cleanup and error

handling code.

Complex Examples

When programmers combine the shell’s programming language with

its builtin commands and the ability to execute commands from the file

system, it becomes possible to write very complex applications using

the shell.

There are several good examples of large, complex shell programs. The

largest, most complex ones are probably those produced by autoconf

— the autoconf-produced configuration script for bash-4.2 runs about

33,000 lines, for instance — but one worth particular mention is the

bash debugger, bashdb, written by Rocky Bernstein.

3.7 Lessons Learned

What I’ve Found is Important

I’ve spent over twenty years working on bash, and I’d like to think I’ve

discovered a few things that are important. The lessons are more prag-

matic than anything, and not Bash- or shell-specific.

The most important thing, one that I can’t stress enough, is that it’s

vital to have detailed change logs. It’s good when you can go back to

your change logs and remind yourself about why a particular change

Copyright 2011 The Pragmatic Programmers, LLC

74 CHAPTER 3. THE BOURNE-AGAIN SHELL

was made. It’s even better when you can tie that change to a particular

bug report, complete with reproducible test case, or suggestion.

If it’s appropriate, extensive regression testing is something I would

recommend building into a project from the beginning. Bash has thou-

sands of test cases covering virtually all of its non-interactive features.

(I have considered building tests for interactive features — Posix has

them in its conformance test suite — but did not want to have to dis-

tribute the framework I judged it would need.) Bash has constraints

placed on it by history, backwards compatibility, and standards; in my

case, regression testing is essential.

Standards are important. Bash has benefited from being an implemen-

tation of a standard. It’s important to participate in the work standard-

izing the software you’re implementing. In addition to discussion about

features and their behavior, having a standard to refer to as the arbiter

can work well. (It can also work poorly. It depends on the standard.)

Not only are external standards important, but it’s good to have internal

standards as well. I was lucky enough to fall into the GNU Project’s set of

standards, which provide plenty of good, practical advice about design

and implementation.

Good documentation is another essential. If you expect a program to be

used by others, it’s worth having comprehensive, clear documentation.

If software is successful, there will end up being lots of documenta-

tion for it, and it’s important that the developer write the authoritative

version.

There’s a lot of good software out there. Use what you can: for instance,

gnulib has a lot of convenient library functions (once you can unravel

them from the gnulib framework). So do the BSDs and Mac OS X.

Picasso said "Great artists steal" for a reason.

Engage the user community, but be prepared for occasional criticism,

some that will be head-scratching. An active user community can be

a tremendous benefit, but one consequence is that people will become

very passionate. Don’t take it personally.

What I Would Have Done Differently

Bash has millions of users. I’ve been educated about the importance

of backwards compatibility. In some sense, backwards compatibility

means never having to say you’re sorry. The world, however, isn’t quite

that simple. I’ve had to make incompatible changes from time to time,

Copyright 2011 The Pragmatic Programmers, LLC

CONCLUSIONS 75

nearly all of which generated some number of user complaints, though

I always had what I considered to be a valid reason, whether that was

correct a bad decision, to fix a design misfeature, or to correct incom-

patibilities between parts of the shell. I would have introduced some-

thing like the formal bash “compatibility level” notion earlier.

Bash’s development has never been particularly “open”. I have become

comfortable with the idea of milestone releases (e.g., bash-4.2) and

individually-released patches. There are reasons for doing this: I accom-

modate vendors with longer release timelines than the free software and

open source worlds, and I’ve had trouble in the past with beta software

becoming more widespread than I’d like. If I had to start over again,

though, I would have considered more frequent releases, using some

kind of public repository.

No such list would be complete without an implementation considera-

tion. One thing I’ve considered multiple times, but never done, is rewrit-

ing the Bash parser using straight recursive-descent rather than using

bison. I once thought I’d have to do this in order to make command sub-

stitution conform to Posix, but I was able to resolve that issue without

changes that extensive. Were I starting Bash from scratch, I probably

would have written a parser by hand. It certainly would have made

some things easier.

3.8 Conclusions

Bash is a good example of a large, complex piece of free software. It

has had the benefit of more than twenty years of development, and is

mature and powerful. It runs nearly everywhere, and is used by millions

of people every day, many of whom don’t realize it.

Bash has been influenced by many sources, dating back to the original

7th Edition Unix shell, written by Stephen Bourne. The most significant

influence is the Posix standard, which dictates a significant portion of

its behavior. This combination of backwards compatibility and stan-

dards compliance has brought its own challenges.

Bash has profited by being part of the GNU Project, which has provided

a movement and a framework in which bash exists. Without GNU, there

would be no bash.

Copyright 2011 The Pragmatic Programmers, LLC

76 CHAPTER 3. THE BOURNE-AGAIN SHELL

Bash has also benefited from its active, vibrant user community. Their

feedback has helped to make bash what it is today — a testament to

the benefits of free software.

